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The sequences of ground states in frustrated antiferromagnetic rings with odd number of local spins
characterized by a single bond defect or by arbitrary uniform couplings to an additional spin located at the
center are determined. The sequences provide firm constraints on the total ground-state quantum numbers,
which are more stringent than those arising from the Lieb-Mattis theorem for bipartite quantum spin systems.
Apart from their theoretical importance, they suggest the possibility of tailoring a given class of the molecular
nanomagnets with desired ground-state properties by tuning the relevant couplings. In particular, they predict
the spin S = 1/2 ground state for the centered rings composed of the half-integer spins with approximately
uniform interactions. They confirm the applicability of the recent classification of spin frustration in both types
of molecular nanomagnets. The classification is also discussed in the classical limit for the first class of the rings,
providing a direct picture of frustration types. The Lieb-Mattis energy-level ordering and an analog of the Landé
band, i.e., the energy spectra properties simplifying the characterization of the rings using the bulk magnetic or
NMR measurements, are briefly discussed.
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I. INTRODUCTION

Synthesis of magnetic molecules has influenced both
experimental and theoretical physics and chemistry, providing
a variety of examples of frustrated quantum spin systems [1–7],
in particular a wide class of chromium-based rings [8–12]
or complexes of iron and gadolinium ions represented by
centered wheels [3,13]. Their schemata corresponding to the
odd-numbered rings are shown in Fig. 1. One aspect of
their study is connected with envisaged practical applications
in data storage and quantum computing or low-temperature
cooling [13–18]. The second aspect touches on fundamentals
of the theory of quantum spin systems.

The molecules can be rigorously analyzed by bulk tech-
niques, providing test beds for the consequences of such
concepts as tunneling of the magnetization, frustration, in-
formation processing, entanglement [8], or basic theorems
describing the properties of the low-energy states [19]. Among
the molecules intensively studied at present are the members
of the Cr8 family [8] such us the Cr7M rings (M = Ni, Cd, Mn)
[20] or their derivatives Cr9 [9,10,21] as well as those with the
Gd7 [13] or Mn5 [22] cores. The common feature of these
molecular nanomagnets is the strong localization of the spin
magnetic moment on the metallic centers which substantiates
the spin model description.

Following Toulouse and coworkers [23,24] and
Kirkpatrick [25], the geometric frustration means that
in a given system there exists at least one cycle with an
odd number of antiferromagnetic bonds. This criterion is
fulfilled for both types of rings depicted in Fig. 1. The
geometric frustration affects the ground-state energy (GS)
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which becomes higher than the sum of the simultaneously
minimized local interactions [26,27].

Here we handle frustration following the geometric context
defined by Toulouse. We note that Kahn [28] restricted the no-
tion of frustration in molecular nanomagnets to the particular
cases when the ground state is formed by the eigenstates of the
corresponding spin model Hamiltonian which are accidentally
degenerated for two spin quantum numbers S, at least one
of them different from zero. If this condition is fulfilled,
frustration is referred to as the degenerate frustration and this
perspective is sometimes adopted in literature [9,21,29].

A need for classification of spin frustration in molecular
nanomagnets was realized when the nonanuclear chromium-
based rings were synthesized and analyzed [9]. In these
systems it was found that the ground-state total spin S

survives in a certain range after a geometric frustration is
switched on and the bipartiteness of the rings is broken. To
discriminate this region of frustration from that changing the
GS quantum number S, the former was assigned to the third
type of frustration and the latter was assigned to the second
type. The first type of frustration was reserved to the Kahn
degenerate frustration. This classification was then renewed
and qualified [10,19].

The molecular nanomagnets exhibit their quantum proper-
ties at a very low-temperature region so that a crucial aspect of
their exploration is the understanding of the low-energy spectra
and the corresponding eigenstates. A step in this direction has
been accomplished for the rings with a single bond defect [19],
unveiling the universal GS sequence and compliance of the
so-called Lieb-Mattis level ordering (LMLO). In this paper
we address these problems in more detail and we include
centered rings explicitly in our analysis. We start from the
in-depth discussion of bipartiteness in finite systems defined
by Lieb and Mattis and its consequences arising from the
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FIG. 1. Examples of the rings with odd number of quantum spins
and the nearest-neighbor interactions J : (a) a regular pentagon with
one bond modified and (b) a centered regular hexagon. Solid lines
represent antiferromagnetic couplings with J = 1, whereas dashed
ones correspond to those with an arbitrary value J = α. The reflection
symmetry considered is depicted by dotted lines.

Lieb-Mattis theorem (LMT) [30–32]. Then we demonstrate
the relations between bipartiteness and frustration as well as
a number of results for the odd-numbered rings with either a
single defected bond or with a single spin located in the center
which are exemplified in Figs. 1(a) and 1(b), respectively. We
also note the similarities and differences of the quantum spin
systems with the Ising and classical counterparts in the case of
the rings subject to a single bond defect.

II. BIPARTITENESS AND CLASSIFICATION
OF FRUSTRATION IN SPIN SYSTEMS

In the Lieb and Mattis (LM) formulation [30,31] the finite
spin system described by the Heisenberg Hamiltonian

H =
∑

1�j<k�n

Jjksj ·sk (1)

is subject to the LMT provided that it is bipartite. A system
of quantum spins {sj } (j = 1,2, . . . ,n) is bipartite if a set of
indices {1 � j � n} can be decomposed into disjoint parts A

and B, and there exists such a real number g2 that all exchange
couplings satisfy the following inequalities:

Jjk � g2 for j ∈ A,k ∈ B, (2a)

Jjk � g2 for j,k ∈ A or j,k ∈ B, (2b)

where the positive values are assigned to the antiferromagnetic
interactions.

Then, introducing the maximum total spins in subsystems
SA = ∑

j∈A sj , SB = ∑
k∈B sk and their absolute difference

S = |SA − SB |, (3)

the LMT implies that for any g2 and for all S � S the following
rule is obeyed:

Emin(S + 1) > Emin(S), (4)

where Emin(S) denotes the minimum energy in the band
corresponding to a given total spin quantum number S. This
rule is referred to as the LMLO [19,33], whereas Emin(S)
describes the so-called Landé band [2,34–37].

The value S given by Eq. (3) is the crucial quantity.
The LMT predicts that for any bipartite system the value S

subset (or subsystem) A subset (or subsystem) B

(a) (b) (c)

FIG. 2. (a) Bipartiteness defined in graph theory and in the
Lieb-Mattis formulation (b) for g2 = 0 and (c) for g2 > 0. Blue
(solid) lines denote graph edges or antiferromagnetic couplings with
Jjk � g2, green (dotted) lines correspond to ferromagnetic ones
(Jjk < 0), and red (dashed) lines indicate antiferromagnetic couplings
with 0 < Jjk � g2.

constitutes the upper limit for the total spin number S in the
GS, i.e.,

S � S. (5)

Moreover, the firm constraint (5) becomes even more stringent
and implies the unique GS value S0 = S in two special cases:
(i) g2 = 0; (ii) S � 1/2, preserving the LMLO condition (4)
for S � S0. We emphasize that LMT does not hash out the
validity of LMLO in the domain S < S and then a minimum
in the Landé band may occur for S = S.

The LM definition of bipartiteness is more general than that
used in the conventional graph theory. Within the mathematical
approach [38], the compact graph is bipartite if a set of vertexes
can be decomposed into two disjoint sets A and B, and all
the graph edges connect vertexes from different subsets only,
as illustrated in Fig. 2(a). Such a bipartite graph contains
only cycles with an even number of edges [38]. If this graph
represents a system with antiferromagnetic interactions only,
then it is unfrustrated. A four-edge cycle appears in Fig. 2(a)
and is distinguished from the remaining edges by bold lines.

A bipartite system of quantum spins with g = 0 can
be obtained from the bipartite graph in Fig. 2(a) when its
edges represent antiferromagnetic interactions. In addition, the
ferromagnetic couplings within the subsystems are admissible.
The resulting exemplary graph of this class is shown in
Fig. 2(b), where the antiferromagnetic and ferromagnetic
interactions are represented by solid blue lines and dotted
green lines, respectively. In the mathematical sense, these new
“ferromagnetic” graph edges get a different color [39].

Interestingly, in the graphs representing a bipartite spin
system with g = 0, only the cycles with an even number of
antiferromagnetic interactions occur. Therefore, the geometric
frustration is excluded in this case [23,24,29,40] and the total
spin S is uniquely determined in the GS, i.e., S0 = S.

The LMT assumptions expressed by the inequalities in
Eqs. (2) allow antiferromagnetic interactions within sub-
systems, but then each pair of sites belonging to different
subsystems needs to be antiferromagnetically coupled with
the strength which is not weaker that any antiferromagnetic
coupling existing within subsystems. An example of such
bipartite model system with g2 > 0 is presented in Fig. 2(c),
where dashed (red) lines represent intersubsystem antiferro-
magnetic couplings with the upper limit g2 (0 < Jjk � g2).

224421-2



SEQUENCES OF GROUND STATES AND CLASSIFICATION . . . PHYSICAL REVIEW B 94, 224421 (2016)

In this type of bipartite systems, two features should be
emphasized: (i) they exhibit some cycles with an odd number
of antiferromagnetic couplings, so that they are geometrically
frustrated; (ii) their GS total spin S obeys the constraint (5)
despite frustration. These remarkable features were outlined
for the triangular systems in the preceding publication [19]
and explain why the third type of frustration may exist.

III. FRUSTRATED RINGS

The frustration in both types of antiferromagnetic rings is
discussed, considering the isotropic Heisenberg models for
quantum spin systems presented in Fig. 1, i.e.,

H1 =
n−1∑
j=1

sj ·sj+1 + αsn ·s1, (6)

H2 =
n∑

j=1

sj ·sj+1 + αs0 ·
n∑

j=1

sj , n + 1 ≡ 1, (7)

where n is an odd or even integer for H1 and H2, so that the odd
number of sites in the ring N is equal to n or n + 1, respectively.
The local site-independent spin values sj are arbitrary, i.e.,
sj = s.

Due to the spherical symmetry both the total spin S and
its projection M are good quantum numbers. The models
are symmetric with respect to reflection ρ in the plane
perpendicular to the defected bond or to an edge of the regular
polygon representing the centered rings (see Fig. 1). This
symmetry leads to the additional quantum number r = ±1
(± for short) which distinguishes the symmetric and the
antisymmetric states, respectively.

In the rings with a single bond defect α, the geometric
frustration occurs for α > 0, whereas in the second class
considered, it is present for any α �= 0. From the point of
view of bipartiteness of the systems (6) and (7) with arbitrary
odd number N , this property is fulfilled for the first class
of rings if α � 0 with g2 = 0 and for the second class, if
α � 1 with 1 � g2 � α. However, there are notable exceptions
and bipartiteness is more common in some architectures. The
triangle with a single defect is bipartite with g2 > 0 for
arbitrary α > 0 [19], which leads to the constraint on the
total GS spin S � s. Moreover, in the limit n = 2 in Eq. (7),
the centered rings can be depicted as the isosceles triangles
[see Figs. 3 and 1(b)]. Their legs correspond to the identical
defected bonds α and their base corresponds to the double
peripheral bond. These triangles are also bipartite for α > 0
with g2 > 0, so the upper limit for their GS quantum number
S amounts to s.

A. Rings with a single bond defect

In the GS, the rings of this class have the unique total spin
S = s for α � 0, whereas for α > 0 the value S is subject to the
constraint S � s [19]. Except for the Kahn frustration points,
their energy structure is characterized by LMLO, irrespective
of the bond strength α, and the allowed GS quantum numbers
S forge the universal sequence in the domain α � 0 of the

α  <  0 0  <  α  ≤  2
α  ≤  g2  ≤  2

α  >  2
2  ≤  g2  ≤  α

OR

2

0

1 2

0

1 2

0

1 2

0

1

(a) (b) (c)

FIG. 3. Isosceles triangles representing the centered rings with
n = 2 and their partitioning. The legs represent the defects of the
strength α and the double lines in the base visualize the contribution
from the first term in Eq. (7). Spins denoted by dark and light
circles belong to different subsystems. The triangle in panel (a) is
not bipartite, whereas those in panel (b) and (c) are bipartite.

form

S = s,s − 1, . . . ,

{
2,1,0,1,2,

3/2,1/2,1/2,3/2,

}
. . . ,s − 1,s, (8)

where the upper (lower) row corresponds to the integer
(half-integer) spin number s, respectively. The sequence of
GS’s begins with |s,+〉 and ends with |S,r〉, where r = (−1)2s .
When α increases the total spin S changes according to Eq. (8),
whereas the quantum number r alternates. The sequences of
the quantum numbers S calculated for a regular heptagon
(n = 7) with s = 2 and 5/2 are illustrated in Fig. 4.

Hence, there are 2s + 1 different GS’s separated by 2s Kahn
frustration points characterized by the enhanced degeneracy
arising from the energy-level crossings of the states with
different symmetry and the quantum numbers S (except for
S = 1/2). Thus the phenomenon of degenerate frustration is
not so rare as anticipated earlier [9]. The coordinates of the cor-
responding level crossings α

(j )
c (1 � j � 2s) are exemplified

in Table I (after Supplemental Material in Ref. [19]).
The value α(1)

c terminates the domain of the GS spin S = s

which starts from α = 0 and is adjacent to the unfrustrated
domain α < 0 with the same ground state. Thus the left edge of
the sequence (8) is attributed to the third type of frustration [9].
We deem that the right edge of the sequence (8), which
commences at α(2s)

c , represents the third type of frustration,
too. In the limit α → ∞ the ring with an odd number n of
spins can be reduced to the unfrustrated ring with n − 1 spins
and a single s = 0 impurity which is equivalent to the open

0

 1/2

1

 3/2

2

 5/2

3

 0.00  0.25  0.50  0.75  1.00  0.75  0.50  0.25  0.00

S0

α 1/α

symmetric

antisymmetrics = 2

s = 5/2

FIG. 4. The total spin S in the GS as a function of α for n = 7 in
the cases s = 2 and 5/2. For the half-integer spin s = 5/2 and α = 1
the symmetry of the state S = 1/2 is changed; this point is denoted
by a full triangle.

224421-3



FLOREK, ANTKOWIAK, AND KAMIENIARZ PHYSICAL REVIEW B 94, 224421 (2016)

TABLE I. The coordinates of the consecutive level crossing points
α(j )

c for a number of spin values s and sizes n calculated for the
model with a single bond defect. For half-integer spins the coordinates
α(s+1/2)

c = 1 and are omitted. The results for n = 3 are exact.

s j n = 3 n = 5 n = 7 n = 9 n = 11

1 1 1/2 0.294 0.197 0.138 0.098
2 2 3.562 5.438 7.777 10.790

3/2 1 1/2 0.287 0.201 0.15362
3 5/2 5.580 9.223 13.069

2 1 1/2 0.279 0.195
2 2/3 0.470 0.363
3 3/2 2.564 4.671
4 3 8.164 14.366

5/2 1 1/2 0.275 0.192
2 5/8 0.410 0.316
4 7/4 4.002 9.247
5 7/2 11.333 20.805

segment with the GS spin S = s. The coordinates α(1)
c for

several fixed spin values are plotted as a function of 1/n in
Fig. 5. The systematic decline of the data suggests that the first
region of the third type of frustration shrinks to zero for the
macroscopic rings.

The domain of the second type of frustration exists for
s > 1/2 and is spread over α(1)

c < α < α(2s)
c . This segment

of the α values is split into 2s − 1 intervals with different
GS’s characterized by the corresponding links in the sequences
defined in Eq. (8). The adjacent intervals are separated by the
Kahn degenerate frustration points (see Fig. 4).

For half-integer spins the point α
(s+1/2)
c = 1 locates the

level crossing of the states |1/2,±〉, recovering the anticipated
fourfold degeneracy [41]. In particular, for α slightly higher
than 1 in the spin s = 1/2 rings the energy levels of the GS’s
|1/2,±〉 should be close, which explains qualitatively a very
small gap between the two Kramers doublets observed in the
heptanuclear vanadium ring [4].

For integer spins, the coordinates α(s)
c < 1 and α(s+1)

c > 1
encompassing the value α = 1 constitute the limits for the
S = 0 GS domain and imply the nondegenerate GS for α = 1,
which was noticed in some particular cases [28,41].

FIG. 5. The coordinates α(1)
c as a function of 1/n for spin values

s defined in the legend.

FIG. 6. Variation of the first crossing points α(1)
c as a function of

1/s for a number of rings. The full symbols represent the calculated
classical limits s → ∞.

In Fig. 6 the variation of α(1)
c for 3 � n � 11 is illustrated

for s � 1 and an evidence of the quantum effects is provided,
comparing the data with respect to the classical values deter-
mined below. Recalling that for s = 1/2 the value α(1)

c = 1
irrespective of n, the most strong quantum effects are exposed
in this case. Interestingly, the triangular structure leads to the
coordination of the first Kahn frustration point α(1)

c which
coincides with the classical value 1/2 if s > 1/2.

Serendipitously, all the calculations performed for nonbi-
partite rings indicate that LMLO given by Eq. (4) is satisfied,
i.e., the differences

�S = Emin(S) − Emin(S − 1) (9)

are positive for any α except for the Kahn degenerate
frustration points, where �S = 0. Moreover, for a fixed α

the differences �S form a monotonically increasing sequence.
This feature implies the field-driven transitions between the
ground states M = S − 1 and M = S in the applied magnetic
field [10,19].

The dependence �S(α) is shown for n = 7 and s = 2
in Fig. 7. As expected, for the two bottom solid lines �1

and �2 the dependence is not monotonic and they approach
zeros at the corresponding critical values αc listed in Table I.
The four (2s = 4) upper curves (dotted lines) tend to linear

0

5

 10

 15

0 2 4 6 8  10  12  14

Δ S
  (

a.
u.

)

α

FIG. 7. The LMLO consequences in a ring with a single bond de-
fect and n = 7, s = 2. The differences �S are plotted for 1 � S � 14
from bottom to top. Irrelevant segments are omitted. Zeros of �1

and �2 are placed at α = α(j )
c , where j = 2,3 and 1,4, respectively.

Different behavior for α → ∞ is depicted by varying line styles.
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FIG. 8. The configurations corresponding to the minimum of
energy for a classical antiferromagnetic pentagon: (a) α � αc; (b) and
(c) two possible configurations for α > αc (with different chirality);
αc = 1/4 for n = 5.

functions with nonzero and increasing slopes, whereas the
other (n − 3)s differences (dashed lines) converge to constant
values. Interestingly, the ratio of the increments �2/�1 could
be a measure of α if the first two magnetization steps were
accessible experimentally.

The frustration effects can be analyzed in the classical
counterpart of the model (6), considering the energy function

Eclass =
n−1∑
j=1

cos ψj + α cos φ, (10)

where ψ1�j�n−1 = ∠( �sj ,�sj+1), φ = |∠( �sn,�s1)| = |ψn|, 0 �
φ � π and the length | �sj | = 1. Its minima determine the stable
spin configurations which yield the classical representation of
the corresponding frustration types discussed. We have found
that the spin vectors minimizing the function (10) are coplanar
and all the angles ψj are the same (ψj = ψ).

In the frustration-free region α � 0 the only configura-
tions allowed are collinear (ψj = π and φ = 0), yielding
the resultant vector |�S| = | �sj | = 1. A possible solution for
an unfrustrated pentagon (10) is shown in Fig. 8(a). The
model (10) is more flexible for α > 0 and allows both the
collinear nondegenerate (ψj = π,φ = 0) and noncollinear
double degenerate (ψj �= π,φ �= 0) spin configurations. They
are separated by the critical value

αc(n) = 1/(n − 1).

The configurations for 0 < α < αc(n) constitute the classical
representation of the third type of frustration (|�S| = | �sj |). For
α > αc(n) the first and the second types are merged. The first
type is related to the twofold chiral degeneration observed,
whereas the GS spin value criterion (|�S| < | �sj |), appropriate
for the second type of frustration, is also satisfied. Exemplary
configurations representing the second type of frustration in
a classical pentagon, which are distinguished by chirality, are
presented in Figs. 8(b) and 8(c).

The sequences (8) adhere to the Ising limit of the model (6),
replacing S by |M|, so that in the ground state |M| � s.
The first doublet in the sequence |M = ±s,+〉 represents
GS for α < 1. All the states of the sequence starting from
|M = ±(s − 1),−〉 are degenerate and appear for α � αc =
α(1)

c = 1. In this way for α > 1 the second and the third
types of frustration are merged. The highly degenerated
states corresponding to α > 1 are split by the transverse spin
components in the model (6), then degeneracy is lifted, bands
of energy levels occur, and the full sequences (8) of GS’s are
formed. We emphasize that the Ising models are not classical
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α  ≥  1
1  ≤  g 2  ≤  α

0  <  α  <  1
α  ≤  g 2  ≤  1

FIG. 9. A centered square representing a frustrated homogeneous
spin system which for α > 0 contains cycles (0,j,j + 1,0) consisting
of three antiferromagnetic bonds. This system is bipartite (a) with
A = {0} when α � 1 (1 � g2 � α) or (b) with A = {1,3} when 0 <

α < 1 (α � g2 � 1). For α < 0 the centered square is not bipartite,
whereas for α = 0 there are two independent systems and this case
is not a subject of the Lieb-Mattis theorem.

and their GS sequence resembles that of the quantum spin
s = 1/2 models.

The Ising model satisfies the LMLO, when applied to the
absolute value of the total spin component |M|. Since for
α < 1 the GS is characterized by |M| = s and for α > 1
it is characterized by |M| � s, then for all α the following
inequality is satisfied:

Emin(|M| + 1) > Emin(|M|) for |M| � s,

where Emin(|M|) denotes the energy minimum for a given |M|.

B. Centered rings

All the centered regular polygons with n sides are frustrated
for any α �= 0 and bipartite for α � 1 due to the partitioning
with A = {0} and B = {1,2, . . . ,n}, where n is even. The case
n = 4 is exemplified in Fig. 9. Therefore, for α � 1 the upper
limit S of the total spin S in the GS is S = (n − 1)s which
entails the constraint

S � (n − 1)s. (11)

The LMLO given by Eq. (4) is automatically satisfied for the
levels with the total spins S � S.

When the coupling of the central spin is ferromagnetic
(α < 0), then the unique decomposition is A = {0,1,2, . . . ,n}
and B = ∅. This case is not excluded by the LMT [31], and
leads to the trivial constraint

S � (n + 1)s. (12)

As in the antiferromagnetic region 0 < α < 1 the bipartiteness
is violated for the rings with n > 4, the same result (12) could
be then expected.

The constraints found are important but do not specify
explicitly what are the real GS quantum numbers S and what
is their dependence on α, s, or n. To address these problems,
first the case n = 4 in the model (7) is discussed in more detail,
transforming the corresponding Hamiltonian into a sublattice
version [36]

H
(n=4)
2 = Sa · Sb + αs0 ·(Sa + Sb), (13)

where Sa = s1 + s3 and Sb = s2 + s4.
Its eigenvalues and eigenvectors can be obtained by the

exact algebraic calculations. Skipping the technical details, the
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FIG. 10. The low-lying energy levels as a function of α for the
centered square and S � 25/2. The irrelevant levels are omitted to
bring out the occurrence of LMLO. In the upper inset the sequence
of the allowed GS spin values S is shown for s = 5/2.

final results are the following. There are 8s critical values α
(j )
c

which are spread over the interval [−4,4]. In the subdomain
α < 0 the critical values form the arithmetic sequence of length
4s, where α

(j )
c = (j − 1)/s − 4, with α(1)

c = −4 independent
of s. In the interval 0 � α < 1 the number of the critical
values amounts to s or s − 1/2 if the spin s is integer or
half integer, whereas their values are given by the expression
α

(4s+j )
c = j/(s + 1). Due to the bipartiteness demonstrated in

Fig. 9, the LMT determines the limit S � s. For half-integer
spins s there exists the critical value α

(5s+1/2)
c = 1, where only

the GS symmetry is changed with the total spin S = 1/2 fixed.
In the remaining subdomain α > 1, the critical values form
the arithmetic sequences: α

(5s+j )
c = 1 + j/s, 1 � j � 3s,

or α
(5s+1/2+j )
c = (2s + 1)/2s + j/s, 1 � j � 3s − 1/2 for

integer and half-integer spin numbers s, respectively. It is easy
to check that the last critical value α(8s)

c = 4.
Apart from the level crossing points, the energy spectra

and the eigenstates have been calculated for a variety of the
spin values s. The spectra reveal the LMLO features of the
model (13). In Fig. 10 the energy levels are directly plotted
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FIG. 11. The α dependence of the increments �S ,
S = 3/2,5/2, . . . ,25/2, for the centered square and s = 5/2,
showing the LMLO features and the prevalence of the rule
�S+1 > �S , 3/2 � S < 25/2, which implies the field-driven
transitions M → M + 1 between the ground states in the applied
magnetic field. The data for α = 1.25 (marked with the dashed
vertical line) are used to plot the Zeeman diagram in Fig. 12.

as a function of α, whereas in Fig. 11 the graph illustrates
the energy differences �S defined in Eq. (9) which are always
positive for α �= α

(j )
c as the manifestation of the LMLO and

lead to an analog of the Landé band. Moreover, �S forges
the increasing series (�S+1 > �S), what implies the regular
magnetization plateaus corresponding to successive transitions
M → M + 1 in the applied magnetic field. It is striking that
an anomalous jump in the slop of the gaps �S occurs in the
bipartite region α > 1 so that it is likely to appear also for
n > 4. Indeed, the separation of the upper 2s curves seen in
Fig. 11 can be also expected from the broad plateau present
in Fig. 5(b) of Ref. [13] which was found for the centered
hexagon.

The effect of the field-driven energy-level crossing and the
abrupt change in the slope of �S is shown for α = 1.25 in
Fig. 12. The ground-state energies are set to zero, so that on the
horizontal axis the allowed values of M appear systematically
according to the rule �M = 1, where M is the total spin
projection. The anomalous size of the magnetization step is
proportional to �S=15/2 and could be a direct measure of the
positive α value, if the corresponding level crossings were
accessible experimentally.

Qualitatively, our results for n = 4 (including those for
n = 2) can be summarized in the form of the constraints on
the total spin S in the ground state:

s � S � (n − 1)s for α � 1, (14a)

S � s for 0 < α < 1, (14b)

s � S � (n + 1)s for α < 0. (14c)

In all the cases of α, the restrictions (14) on the spin values S

are more stringent than the constraints (11) and (12) predicted
from LMT, yielding the lower bounds for the total spin S

in Eqs. (14a) and (14c), and lowering the upper bound in
Eq. (14b).

Quantitatively, for n = 2,4 and the increasing parameter α,
the following unique sequences of the ground-state quantum
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FIG. 12. The field dependence of the Zeeman energies of the
M = −S sublevels originating from Emin(S) in the dimensionless
units for s = 5/2 and α = 1.25, imposing gμB = 1 and assuming
that the GS energy is set to be zero [E∗(S) = Emin(S) − EGS]. As
shown on the horizontal axis, the quantum numbers M change by 1,
what corresponds to the height of the successive magnetization steps
in the increasing magnetic field.

numbers S can be found from the algebraic calculations:

(n + 1)s, . . . ,s + 1,s, . . . ,

{
1,0,1

1
2 , 1

2

}
, . . . ,(n − 1)s, (15)

where the upper and the lower part correspond to the integer
or half-integer local spin s. These sequences are universal
in the sense that they are obeyed for arbitrary spin value s,
but their length and the coordinates αc of the crossing points
depend on s. The corresponding sequence of the ground states
begins with |(n + 1)s,+〉 and terminates with |(n − 1)s,+〉.
The sequences in the expression (15) can be visualized as the
asymmetric double staircases, as exemplified in the inset in
Fig. 10 for n = 4 and s = 5/2.

We have also considered the centered rings with the size
n > 4 and a number of spin values s by the numerical
simulations within the exact diagonalization technique. We
follow the convention that the number of sites in the centered
ring is N = n + 1. The numerics reveals a picture which
is coherent with the proceeding exact findings (15) for the
centered square and some partial results [3]. In general, the
length of the sequence (15) determining the GS total spin

TABLE II. The coordinates of the consecutive level crossing
points α(j )

c for s = 1/2 and some ring sizes n. The common value
α(1)

c = −4 is omitted and the content is reduced due to the relation
α(j )

c = −α(2ns+1−j )
c for j � ns − 1.

j n = 6 n = 8 n = 10 n = 12 n = 14

2 −3.236 −3.604 −3.759 −3.838 −3.884
3 −1.369 −2.653 −3.193 −3.466 −3.621
4 0.685 −1.045 −2.233 −2.838 −3.182
5 3.236 0.523 −0.846 −1.922 −2.541
6 4.000 2.653 0.423 −0.712 −1.685
7 3.604 2.233 0.356 −0.614
8 4.000 3.193 1.922 0.307
9 3.759 2.838 1.685

TABLE III. The coordinates of the consecutive level crossing
points α(j )

c for 1 � s � 5/2 and some ring sizes n. The common
value α(1)

c = −4 is omitted and the content is reduced due to the
symmetry between α(j )

c values.

n = 6 n = 8

j s = 1 s = 3/2 s = 2 s = 5/2 s = 1 s = 3/2

2 −3.489 −3.625 −3.706 −3.758 −3.702 −3.765
3 −2.810 −3.196 −3.388 −3.504 −3.216 −3.451
4 −2.163 −2.765 −3.065 −3.246 −2.721 −3.133
5 −1.435 −2.321 −2.737 −2.985 −2.238 −2.811
6 −0.721 −1.870 −2.406 −2.722 −1.721 −2.482
7 0.360 −1.408 −2.070 −2.457 −1.147 −2.148
8 1.435 −0.940 −1.732 −2.190 −0.594 −1.810
9 2.163 −0.470 −1.389 −1.921 0.297 −1.463
10 2.810 0.282 −1.044 −1.650 1.147 −1.107
11 3.489 0.705 −0.697 −1.378 1.721 −0.743
12 4.000 1.408 −0.349 −1.104 2.238 −0.372
13 1.870 0.232 −0.829 2.721 0.223
14 2.321 0.465 −0.553 3.216 0.558
15 2.765 1.044 −0.277 3.702 1.107
16 3.196 1.389 0.198 4.000 1.463
17 3.625 1.732 0.395 1.810
18 4.000 2.070 0.691 2.148
19 2.406 1.104 2.482

values as a function of α amounts to 2ns + 1. The consecutive
values S are separated by 2ns Kahn level crossing points

−4 < α(j )
c < 4

for 1 < j < 2ns, while α(1)
c = −4 and α(2ns)

c = 4. The values
calculated for s = 1/2 and 6 � n � 14 are given in Table II,
whereas the remaining data for n � 6 are contained in
Table III. We note a symmetry α

(j )
c = −α

(2ns−j+1)
c , where 1 �

j � (n − 1)s − 1/2 for half-integer s or 1 � j � (n − 1)s for
integer s.

The GS sequences (15) and the coordinates of the crossing
points confirm that constraints (14) are fulfilled for all the
centered rings considered. Moreover, for the half-integer spins
built in, there exist two neighboring states with the total spin
S = 1/2 and different symmetry, one of them in the vicinity
of α = 1 which should be experimentally accessible. We note
a numerical evidence found that the LMLO rule is satisfied for
this type of rings.

The left and right edges of the GS sequences shown in
Eq. (15) yield S = (n + 1)s and (n − 1)s, respectively. These
values coincide with those obtained for the corresponding
unfrustrated rings in the limit α → ∓∞. Thus according to our
criterion based on the value of the GS total spin, the domains
|α| > 4 belong to the sectors of the third type of frustration.

IV. DISCUSSION AND CONCLUSIONS

The results confirm applicability of the classification of the
spin frustration in molecular magnets suggested on the basis of
the nonanuclear rings with a single defect and the qualitative
arguments [9]. In the frustrated rings considered, there exist the
ground states with the total spin S which coincides with that for
the corresponding unfrustrated systems and is characteristic
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for the third type of frustration. However, in the centered rings
the third type of frustration is also characterized by the GS
value S = (n + 1)s for α < −4 and S = (n − 1)s for α > 4
which correspond to those of unfrustrated rings in the proper
limit. The coordinates of the GS level crossings determine the
Kahn first type frustration points. Their number amounts to 2s

and 2ns for the rings with a single bond defect and the centered
rings, respectively, which is much higher than expected [9].
The remaining areas covered by the α values coincide with the
domains of the second type of frustration.

On the basis of the algebraic calculations carried out
for the small sizes N and subsequent numerical simulations
performed for higher N as well as for a number of the spin
variables s, the unique sequences of the GS are established.
It is striking that for the rings with a single bond defect, the
GS total spins S do not depend on N and are bound by the
constraint S � s.

The chain of the allowed GS spin values is longer for the
centered rings because the number of α edges amounts to
n = N − 1. However, a half of the allowed values corresponds
to the ferromagnetic coupling α < 0 which is difficult to
realize experimentally in the environment with the antiferro-
magnetic interactions between the peripheral spins. In practical
application, we can expect that α > 0 and then for any
half-integer spins s we can expect a small value S for the
moderate couplings, which can be even reduced to the GS spin
S = 1/2 in the vicinity of the homogeneous coupling α = 1.
This feature appears irrespective of the size N and the spin
value s and implies that the centered odd-numbered rings
with homogeneous antiferromagnetic interactions could be
considered as possible realization of the molecular qubit. This
observation opens fresh scope for pursuing such spin S = 1/2
molecules among this type of rings. For the noncentered rings
the state S = 1/2 is also contained in the GS sequence but for
the realistic couplings in the nonanuclear chromium rings [10]
the gap separating the neighboring states S = 1/2 and 3/2 is
too small for the practical qubit realization.

The strict compliance of the LMLO rule revealed for the
rings in question is an unusual result and not expected in view
of the LMT requirement of the lattice bipartiteness. For the
rings with the single bond defect it was possible to refer to
the bipartiteness of the isosceles triangle and speculate about
the inheritance of the LMLO property. However, the isosceles
triangles as building blocks of the centered rings (see Fig. 3) are
not bipartite for α < 0. It seems that the existence of the LMLO
rule is a more common feature and may not be related to the
bipartiteness. This supposition can be supported by the similar
observation of the ordering of the lowest-energy levels with
increasing S found for the spin s = 1/2 finite-size clusters on
the triangular lattice [42]. These clusters resemble the centered
rings we are dealing with and their lowest edges of the energy
levels Emin(S) display the pure Landé-band dependence

Emin(S) − EGS ∼ S(S + 1),

including the lowest value S = 1/2 or 0 for the clusters with
the odd or even number of sites.

In the following we suggest that this behavior may not
be universal but a coincidental corollary of the uniform
couplings and the value s = 1/2. To this end, in Fig. 13 we
present the energy-level diagrams calculated for the centered
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FIG. 13. The energy-level diagrams for α = 0.1, 0.6, 1.0, and 1.5
plotted vs S(S + 1) in panels (a)–(d), respectively. The bottom curves
depict the edges Emin(S).

hexagons with s = 5/2, assuming α = 0.6, 1.0 for the sector
corresponding to S = 1/2, and α = 0.1, 1.5 for the sectors
with S = 5/2 in the corresponding GS’s. The curves visualize
the dependence of the GS energies on S(S + 1). The straight
lines comply with the Landé rule. Among the curves presented
in Fig. 13, the best performance is found in the panel (b) for
α = 0.6 which yields the GS total spin S = 1/2. For α = 0.1
[Fig. 13(a)] the GS spin S = 5/2 and, as expected, the LMLO
feature �S > 0 is then fulfilled for S > 5/2, but the curve
achieves the minimum for S = 5/2 so that clear deviations
from the Landé rule appear in this part of the curve. An
interesting feature is revealed for α = 1.0 in Fig. 13(c). For
this ratio the ground state is characterized by S = 1/2 and
the first part of the curve follows through the Landé rule,
but there is a cusp at the position 2s + 1 from the end. This
cusp signalizes that α is large enough to reach the area of
separation illustrated in Fig. 11. The same peculiarity occurs
for α = 1.5 [Fig. 13(d)], but the minimum is exhibited for
the GS spin S = 5/2. In relation to the clusters of s = 1/2
spins on the triangular lattice [42], our results suggest that
the cusps expected are irrelevant. They may come out at the
second to last position set out by the value 2s + 1. However,
due to the data in Table III, for the half-integer local spins
s > 1/2 the minima in Emin(S) are very likely to supervene
which may affect the approach applicable for s = 1/2 [42]. For
the centered rings and α = 1.0 (Table II) the GS spin S = 1/2
so that we confirm indirectly the regular Landé-like behavior
observed for the finite triangle-based clusters in Ref. [42].

The LMLO implies that the nanomagnets modeled by the
rings in question exhibit the magnetization plateaus with the
steps of the same height corresponding to the field-induced GS
transitions �M = 1. The size of the plateaus is determined by
the increments �S . We note that the transitions corresponding
to the field-induced level crossing can be observed also in
the NMR experiments [43–45], providing the consecutive �S

values for S � S.
The level crossings correspond to the Kahn degeneration

points and signalize the changes in the GS spin S which
determines the magnetic moment. Thus the total z component
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of spin is the observable determining the ground states in
the applied field, as shown in the diagram plotted in Fig. 5
in Ref. [10] and realized in some experiments [9,10,46].
Moreover, mosaics of the local magnetizations plotted therein
and accessible by NMR [44] can provide indicators of the
proper ground states.

These measurements are feasible on the chromium-based
rings at low temperatures, as the dominant coupling is of the
order of 1.4 meV and a gap to the excited states exceeds the
thermal energy kBT . Thus in the Kelvin and a sub-Kelvin
temperature region the phonon degrees of freedom can be
neglected.

The onset of the total magnetization steps (i.e., the inflection
point in the isotherms of the magnetic moment) was observed
in the Cr9 molecule with a single defected bond [10] at
about Bex = 4.6 T = Bcr/2, where Bcr denotes the width of
the S = 1/2 magnetization step or �S=3/2 according to the
definition (9). This value of Bcr implies that α ≈ 0.49, referring
to the diagram in Fig. 5 in Ref. [10], which agrees very well
with the value α = 0.52 ± 0.02 estimated independently by
fitting the magnetometry data. Likewise, knowing the GS
sequence (8) for s = 3/2, we can predict the value of α

for the compound denoted by 4 in Ref. [9], which provides
another example of the ring-shaped Cr9 molecules. The fitting
performed there led to the value 0.37 � α � 0.38. Referring
to the proper magnetization curve in Fig. 2 in Ref. [9] we
find Bex ≈ 3.7 T corresponding to Bcr = 7.5 T. Invoking the
diagram in question [10], we immediately obtain α ≈ 0.38
without any fit.

We point out that some features of the frustrated bipartite
systems survive in the similar frustrated nonbipartite systems.
This occurs not only for the rings considered here. For
example, the Cr8Ni molecule [46] is not bipartite but is a
kind of expansion of the isosceles bipartite triangle shown in
Fig. 3 with α > 1. It is not surprising that in this case the
GS sequence 2 � S � 0 was found [47] and the corollary of
the LMLO rule on the regular magnetization staircase was
observed [46]. As the nonbipartite and frustrated structures
are often encountered in practical realizations of the molecular
rings, their interpretation within Heisenberg models would be
expedited if the inheritance suggested was proved.

Finally we mention spectacular consequences of LMT ap-
plied to bipartite molecular nanomagnets. Any even-numbered
ring with the nearest-neighbor antiferromagnetic interaction is
bipartite with g2 = 0 and yields a unique ground-state spin
S = 0 and displays the magnetization staircase with the step
heights �M = 1 which was observed in the Fe10 ring with
s = 5/2 [48]. The class of the butterfly-shape mixed valent
manganese tetramers [49–51] provides another example of
systems complying with the LMT assumptions. Then it is
possible to predict the topology of interactions leading to the

GS spin S = 1/2 appropriate for the molecular qubit or the
high-spin value S expected for single molecule magnets if the
number of half-integer spins is odd or even, respectively.

In conclusion, we have established the unique sequences
of the ground states for the frustrated homometallic rings
with the odd number of spins comprising either a single
(k = 1) bond defect α or a doped spin at the center connected
to all the k = n peripherals by the same coupling α. The
sequences are composed of 2ks + 1 states ordered in a regular
manner and constitute firm constraints on the possible total
GS spin numbers S. In particular, the rings containing the
half-integer spins s exhibit the ground-state spin S = 1/2 in the
experimentally accessible range of interactions, i.e., α � 1.0.

A knowledge of the allowed ground-state quantum numbers
and their relation to the relevant couplings may stimulate a
search for the molecules with predictable low-temperature
properties, including the molecular candidates for the quantum
processing units.

The rings explored belong to a class of frustrated quantum
systems preserving the Lieb-Mattis energy-level ordering
which expedites their characterization by the bulk magnetic
measurements or the NMR spectra. The reason for this feature
is not understood for nonbipartite systems violating the LMT
assumptions. Thus the molecular nanomagnets not only enable
testing the concepts of quantum physics but also bring some
intriguing results which are challenging for quantum theory.

The classification of spin frustration based on the ground-
state total spin and its relation to the unfrustrated analog is
obeyed for the rings studied. Typically the edges of the ground-
state sequences belong to the domains of the third type of
frustration, and the degenerate frustration occurs in the variety
of the energy-level crossing points. The remaining part of the
frustrated region is covered by the domain of the second type
of frustration.

In the classical limit the lowest energy is reached for spin
configurations which depend on α and are symmetric with
respect to the reflection. The spin vectors are collinear for
α � α(1)

c (n) and noncollinear otherwise. Their configurations
illustrate directly all the types of spin frustration in the
corresponding molecular rings.
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