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We study the magnetic properties of the adatom systems on a semiconductor surface Si(111):{C,Si,Sn,Pb}-
(
√

3 × √
3). On the basis of all-electron density functional theory calculations we construct effective low-energy

models taking into account spin-orbit coupling and electronic correlations. The Hartree-Fock simulations for the
unit cell with nine correlated orbitals put forward insulating ground states with the noncollinear 120◦-Néel (for C,
Si, Sn monolayer coverages) and 120◦-row-wise (for Pb adatom) antiferromagnetic orderings. The corresponding
spin Hamiltonians with anisotropic exchange interactions are derived by means of the superexchange theory and
the calculated Dzyaloshinskii-Moriya interactions in the systems with Sn and Pb adatoms are revealed to be very
strong and compatible with the isotropic exchange couplings. To simulate the excited magnetic states we solve
the constructed spin models by means of the Monte Carlo method, where at low temperatures and zero magnetic
field we observe complex spin spiral patterns in Sn/Si(111) and Pb/Si(111). On this basis the formation of
antiferromagnetic skyrmion lattice states at high magnetic fields in the adatom sp electron systems is discussed.
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I. INTRODUCTION

There is a special focus on the adatom systems
Si(111):{C,Si,Sn,Pb}-(

√
3 × √

3) formed by a silicon surface
(111) with the 1/3 monolayer coverage by C, Si, Sn, or
Pb adatoms. Being the physical realizations of the one-band
Hubbard model on a triangular lattice, this family of the adatom
materials demonstrates a remarkable variety of interesting
physical properties. For instance, the scanning tunneling
spectroscopy and photoemission spectroscopy experiments [1]
on Sn/Si(111) demonstrated the isostructural metal-insulator
transition at ∼60 K predicted by Profeta and Tosatti [2]
on the basis of LSDA + U calculations. Another important
phenomenon observed in the scanning tunneling microscopy
experiments is a charge density wave state related to the
redistribution of the valence electrons in the system [3,4].

On the theoretical side, the main efforts to describe the
Si(111):{C,Si,Sn,Pb} surface nanostructures were concen-
trated on the construction and solution of minimal electronic
models taking into account local and nonlocal Coulomb
interactions [2,5–9]. These studies successfully reproduced ex-
perimentally observed metal-insulator transitions and charge-
ordering phase diagrams. Moreover, numerical simulations of
the many-body Hamiltonians helped to resolve the existing
discrepancies in various experiments suggesting different
ordering phenomena [10].

Much less attention has been paid to the magnetic properties
of these materials. At the moment there is no consistent
description of the magnetic ground state as well as of the
excited states at finite temperatures and magnetic fields.
For instance, first-principles simulations [9] of the adatom
system with Sn revealed that the 120◦ antiferromagnetic
state has the lowest total energy, although it was shown that
the magnetic moments are strongly delocalized. In turn, the
authors of Ref. [7] reported on the formation of the so-called
collinear row-wise magnetic ordering in the Sn/Si(111) system
stabilized due to hopping processes beyond nearest neighbors.
Such a magnetic model was motivated by the comparison
of the angle-resolved photoemission spectroscopy (ARPES)

experiment and dynamical cluster approximation spectra.
However, there is still no direct experimental confirmation
of the row-wise magnetic state. Last but not least, spin-orbit
coupling was not taken into account in these studies. However,
it can be very important and lead to nontrivial topological
properties as it follows from the DFT results for Si/Si(111)
presented in Ref. [11]. The situation with spin-orbit coupling
can be even more interesting in the case of heavy adatoms such
as Sn and Pb.

In this paper we perform a comprehensive theoretical
description of magnetic properties in the Si(111):{C,Si,Sn,Pb}
systems in the ground state as well as at finite temperatures
and magnetic fields. Our approach combines first-principles
simulations within density functional theory, construction of
the low-energy models taking into account spin-orbit coupling
and electronic correlations in the Wannier function basis, and
determination of the magnetic exchange interactions by means
of the superexchange theory. The zero-temperature mean-field
Hartree-Fock solution of the constructed electronic models
for the 3 × 3 unit cell reveals noncollinear 120◦-Néel states
for the adatom systems with carbon, silicon, and tin, while the
120◦-row-wise magnetic state is found to be more stable in
Si(111):Pb. Here, we argue that the formation of a magnetic
order in the Si(111):X systems is a joint effect of spin-orbit
coupling, direct exchange interactions between neighboring
Wannier functions, and hopping parameters beyond nearest
neighbors.

Another important result we obtained by means of classical
Monte Carlo simulations is the complex spin patterns, such as
interpenetrating spin spirals stabilized in the Si(111):{Sn,Pb}
systems at low temperatures. These nontrivial structures are
formed due to strong Dzyaloshinskii-Moriya interactions
(DMIs) between nearest neighbors on a triangular lattice and,
in principle, can be experimentally observed by using spin-
polarized scanning tunneling microscopy [13,14]. Finally,
at high magnetic fields ∼2J01, where J01 is the isotropic
exchange interaction between nearest neighbors, we predict
the stabilization of an antiferromagnetic skyrmion lattice state.
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FIG. 1. (a) Crystal structure of Si(111):X. Violet spheres denote T4-S4 positions of adatoms X, and blue and green spheres show the silicon
and hydrogen atoms, respectively. (b) xy plane. The interaction paths are shown with orange lines. Red arrows stand for the DMI vectors. For
next-nearest-neighbor interactions dark and light red arrows denote the DMI vectors with the negative and positive z component, respectively.
Crystal structures are visualized by using the VESTA software [12].

II. RESULTS OF DFT + SO CALCULATIONS

To simulate electronic and magnetic properties of the
Si(111):{C,Si,Sn,Pb} systems, we have performed first-
principles calculations within density functional theory
(DFT) [15] using the generalized gradient approximation
(GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [16]. To this end, we have employed
Quantum Espresso [17] and Vienna ab initio simulation
package (VASP) [18,19]. In these calculations, we set the
energy cutoff in the plane-wave decomposition to 400 eV and
the energy convergence criteria to 10−8 eV. For the Brillouin-
zone integration a 20 × 20 × 1 Monkhorst-Pack mesh was
used.

The simulated atomic structures of the
Si(111):{C,Si,Sn,Pb} systems are presented in Fig. 1
and contain three layers of silicon, one monolayer of adatoms,
and a hydrogen slab, as described in Ref. [5]. Here, adatoms
occupy the T4 positions in Si/Si(111), Sn/Si(111), and
Pb/Si(111) [6,9], while in the case of C/Si(111) adatoms are
in the S4 underlayer positions [20]. The optimized atomic
structures are consistent with those reported in previous
studies [6,9,20].

Band structures calculated within DFT demonstrate the
main peculiarity of the systems, which is one well-separated
doubly degenerate band located near the Fermi level, that is
further split when spin-orbit coupling (DFT + SO) is taken
into account [Fig. 2(b)]. This splitting strongly depends on the
adatom type and varies from 3.5 meV (for C) to 109 meV (for
Pb). Thus, within this family of the surface nanostructures one
can probe either weak or strong limits of spin-orbit coupling
in a strongly correlated material.

III. WANNIER FUNCTIONS

To parametrize the DFT + SO spectra and construct the cor-
responding low-energy models we have employed maximally
localized Wannier functions [21–23]. As shown in Fig. 3,
the resulting Wannier functions are strongly delocalized.
Importantly, they are not centered at the adatoms. Instead, their
centers are found to be close to the substrate plane. The spread
of the Wannier functions in Si(111):{C,Si,Sn,Pb} (Table I) is
much larger than those one observes in 3d transition metal

compounds with strong hybridization effects (the correspond-

ing spread in a copper oxide is about 4.5 Å
2
) [24].

From Fig. 3 one can see that the structure of the constructed
Wannier functions is very complicated. Previously, it was
proposed that the separated band at the Fermi level is formed by
molecular orbitals as a linear combinations of atomic orbitals
of the adatom and substrate [6]. As we will show below, the
delocalization of the magnetic orbitals leads to an additional
ferromagnetic contribution to the total exchange interaction
between nearest neighbors.

IV. SPIN AND ORBITAL MAGNETIZATION

Strong delocalization of the Wannier functions described
in the previous section affects the magnetic properties of the
systems in question. In this section we analyze and discuss
the formation of the magnetic moments. For this purpose
we use the results obtained from the spin-polarized DFT +
SO calculations for the minimal (

√
3 × √

3) unit cell, which
corresponds to the case of the ferromagnetic configuration.

Due to the strong hybridization between the adatom and
surface states, the total spin magnetic moment of the unit cell
is considerably suppressed in the case of the Sn and Pb systems
(Table I). Moreover, in the case of C/Si(111) the carbon adatom
is in the S4 underlayer position, and as a result the considerable
spin (electron) density is concentrated on the substrate silicon
atom Si1, which can be now considered as an effective adatom.
The adatom contribution to the total magnetization gradually
decreases within the series, ∼16% for Si/Si(111) and ∼6% for
Pb/Si(111).

The calculated total and adatom magnetic moments in the
Sn/Si(111) system are in good agreement with previous results
reported in Ref. [9]. However, it is also important to compare
their values with those calculated for closely related surface
nanostructures. For instance, in the case of SiC(0001) [25]
and Ge(111) surfaces [26] the spin magnetic moments of the
Sn adatom are larger than that in Sn/Si(111) (this work). As
shown in Ref. [27], the difference in magnetization between
Sn/SiC(0001) and Sn/Si(111) can be explained by a more
localized behavior of the system with the SiC substrate. The
corresponding LDA bandwidth is about 0.5 eV for Sn/Si(111)
and 0.29 eV for Sn/SiC(0001) [27].
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FIG. 2. (a) Band structures of Si(111):{C,Si,Sn,Pb} near the Fermi level as obtained from DFT (red solid line) and DFT + SO (blue dashed
line) calculations. (b) Band splitting (in meV) due to spin-orbit coupling.

According to our first-principles calculations, the
Si(111):{C,Si,Sn,Pb} surface nanostructures are characterized
by a strong spin-orbit coupling. The pz atomic orbital of
adatoms (the head of the magnetic orbital) corresponds to

FIG. 3. Maximally localized Wannier functions describing the
band at the Fermi level in Si(111):X with X = {C, Si, Sn, Pb}. Violet
spheres denote adatoms.

zero angular momentum L = 0 and as a result gives zero
orbital magnetization. However, since in our case the Wannier
functions have a more complicated structure, one can expect
a nonzero orbital magnetic moment as described in Ref. [28].
To this end we have performed calculations based on the
modern theory of orbital magnetization implemented in the
Quantum Espresso and Wannier 90 packages [29,30]. In these
calculations we use a minimal (

√
3 × √

3) unit cell with the fer-
romagnetic order. It was found that the orbital magnetization is
close to zero (∼10−3 μB) for all the systems in question. In the
case of the Pb adatom we obtained 2.6 × 10−3 μB per unit cell.
These results were confirmed by the direct calculation of the
orbital magnetic moments of the atoms and unit cell by using
VASP. They are also close to zero. Thus one can conclude that
the g factor has no orbital contribution and g ≈ 2. This result
will be used in Sec. VIII to estimate critical magnetic fields
needed to form a skyrmion state.

V. LOW-ENERGY MODEL

To describe electronic and magnetic properties of the
adatom systems we use an effective electronic model taking
into account spin-orbit coupling and electronic correlations in
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TABLE I. Bare direct exchange interactions and spreads of the
Wannier functions (WF) calculated for the adatom systems Si(111):X
with X = {C, Si, Sn, Pb}. Munit

S and Madatom
S are the total spin

magnetization of the
√

3 × √
3 unit cell and spin magnetic moment

of the adatom as obtained from the spin-polarized DFT + SO
calculations for the ferromagnetic state. The last two rows show the
magnetic moments of the silicon atoms nearest and next nearest to
the adatom.

X C Si Sn Pb

J
F (bare)
01 (meV) 1.64 3.81 5.44 7.34

Spread of WF (Å
2
) 12.4 15.6 16.8 17.7

Munit
S (μB ) 0.99 0.70 0.27 0.20

Madatom
S (μB ) 0.078 0.112 0.026 0.012

MSi1
S (μB ) 0.124 0.013 0.008 0.007

MSi2
S (×3) (μB ) 0.054 0.090 0.039 0.033

the Wannier function basis:

Ĥ =
∑
ij,σσ ′

tσσ ′
ij â+

iσ âjσ ′ + 1

2

∑
i,σσ ′

U â+
iσ â+

iσ ′ âiσ ′ âiσ

+ 1

2

∑
ij,σσ ′

Vij â+
iσ â+

jσ ′ âjσ ′ âiσ

+ 1

2

∑
ij,σσ ′

JF
ij â+

iσ â+
jσ ′ âiσ ′ âjσ , (1)

where i (j ) and σ (σ ′) are site and spin indices; U , Vij , and JF
ij

represent the local Coulomb, nonlocal Coulomb, and direct
exchange interactions, respectively; tσσ ′

ij is the element of the
hopping matrix with spin-orbit coupling.

Coulomb and direct exchange interactions. The detailed
analysis of the local and nonlocal Coulomb interactions in
the Si(111):X systems was reported in Ref. [5]. It was found
that the screened Coulomb interactions calculated within the
random phase approximation (RPA) are about 4–5 times
smaller than the bare ones. In our work we use their partially
screened values as reported in Ref. [5]: U = 1.4, 1.1, 1.0,
and 0.9 eV for C, Si, Sn, and Pb adatoms, respectively, and
V01 = 0.5 eV for all adatoms.

In contrast to previous studies our model contains ferromag-
netic exchange interactions as a result of the direct overlap
between neighboring Wannier functions. To estimate an
upper bound of JF

ij , which corresponds to its bare value, we
performed numerical integrations of the following expression
by means of the Monte Carlo method:

J
F (bare)
ij =

∫
W ∗

i (r)Wj (r)W ∗
j (r ′)Wi(r ′)

|r − r ′| d rd r ′, (2)

where Wi(r) is a Wannier function centered at the ith site. The
results are presented in Table I. One can see that the calculated
values of J

F (bare)
ij are much smaller compared to the Coulomb

interactions. However, as we will show below, they play an
important role in magnetic properties of Si(111):{C,Si,Sn,Pb}.

Due to the smallness of JF
ij , direct calculations of its

partially screened value within RPA is a hard numerical
problem requiring extremely accurate integrations. To give a
reasonable estimation of the partially screened direct exchange

TABLE II. Hopping integrals (in meV) between nearest and next-
nearest neighbors as obtained from DFT + SO calculations for the
adatom systems Si(111):X with X = {C, Si, Sn, Pb}. See Fig. 1(b)
for details.

X t01 t02

C

(
35.11 0.27
−0.27 35.11

) (−13.47 + 0.14i −0.43i

−0.43i −13.47 − 0.14i

)
Si

(
48.33 0.71
−0.71 48.33

) (−20.28 + 0.09i −0.21i

−0.21i −20.28 − 0.09i

)
Sn

(
43.51 5.53
−5.53 43.51

) (−18.99 + 0.14i −0.86i

−0.86i −18.99 − 0.14i

)
Pb

(
41.32 16.68

−16.68 41.32

) (−19.15 + 0.11i −2.09i

−2.09i −19.15 − 0.11i

)

interaction we use the ratio between bare and partially screened
values of the Coulomb interaction parameters obtained in
Ref. [5], which is about 4.5. Using the scaling relation
JF

01 = J
F (bare)
01 /4.5, one obtains JF

01 = 0.36, 0.85, 1.21, and
1.63 meV for C, Si, Sn, and Pb adatoms, respectively. However,
since the determination of JF

01 is a delicate task, we will also
use JF

ij as a free parameter for description of the ground
(Sec. VI) and excited (Sec. VII) states of Si(111):{C,Si,Sn,Pb}
by varying its value from zero to its bare limit.

Hopping integrals. The calculated hopping integrals are
presented in Table II. Their diagonal parts are in excellent
agreement with previously reported values obtained without
spin-orbit coupling [5]. However, the latter gives a significant
contribution that results in comparably large anisotropic
exchange parameters. The structure of the hopping matrices in
the spin space fully obeys the symmetry of the system. One can
see that t01 is real and contains nondiagonal elements, which is
a result of the C3v symmetry of the triangular lattice formed by
the Wannier functions (Fig. 4). For the next-nearest-neighbor
bonds the symmetry is lower. We will analyze these symmetry
aspects below on the level of the spin model.

VI. HARTREE-FOCK SIMULATIONS
OF THE ELECTRONIC MODELS

Computational methods combining first-principles band
structure calculations and many-body techniques are of great

FIG. 4. C3v symmetry of the triangular lattice formed by the
Wannier functions. Here, C3(z) and σv stand for the rotation by
2π/3 around the z axis and vertical mirror planes, respectively.
Blue and violet spheres denote substrate silicon atoms and adatom,
respectively.
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FIG. 5. Schematic view of magnetic structures used in the Hartree-Fock calculations: (a) ferromagnetic (FM), (b) 120◦-Néel, (c) 120◦-RW,
and (d) collinear-RW.

interest in the physics of strongly correlated materials. Con-
ventional approaches based on density functional theory (DFT)
have the well-known difficulties related to a proper treatment
of electronic correlations. On the other hand, their extensions
taking into account correlations beyond DFT [such as DFT +
U and dynamical mean-field theory (DMFT)] become really
involved when a magnetic ground state and spin-orbit coupling
effects are concerned.

For example, geometric frustrations and their interplay
with electronic correlations have been the subject of intense
research. In this context, the class of adatom systems Si(111):X
is an ideal candidate to study these effects. It is known that the
Hubbard model at half filling on a triangular lattice displays a
120◦ noncollinear ordering (120◦-Néel). However, this point
is not verified for the Si(111):Sn system, where early ab
initio simulations in the weakly correlated regime showed that
the 120◦-Néel order is indeed stabilized in the Si(111):Sn
system [2,9], while other studies based on the DMFT
approach argued that an unusual collinear row-wise (RW)
alignment takes place and emerges from long-range electron
hopping processes [7,8]. Generally, a geometrically frustrated
arrangement may destroy any long-range magnetic configura-
tion and give rise to a spin-liquid state.

The problem gets even more complicated when electrons
are delocalized. This issue was studied in Ref. [9] for the
Si(111):Sn system, where local magnetic moments residing on
Sn adatoms were shown to be small (∼0.06 μB) compared to
the total ferromagnetic moment. As shown in Table I, this takes
place in all four systems. Thus, the magnetism in Si(111):X
is far from being purely local and has a significant nonlocal
character, so the picture of localized atomic magnetic moments
used in DFT calculations seems to be inappropriate.

To tackle these problems one has to resort to a proper
theoretical method. To this end, the basis of Wannier functions
seems to be a more appropriate choice compared to that of
atomic orbitals, as it incorporates hybridization effects and can
serve as an alternative basis for the low-energy model. Indeed,
as seen in Fig. 3, the resulting Wannier functions constructed
by projecting a single band located near the Fermi level onto
adatom pz orbitals have a rather complicated structure and are
spread in space quite significantly. Nonetheless, this choice
allows us to work in the framework of localized magnetic
moments, which in this case reside on the corresponding
Wannier functions rather than on a single atomic orbital.

The effective model Eq. (1) constructed in the basis of
Wannier functions is solved in the mean-field Hartree-Fock
approximation, which has proved to be a good tool to study

magnetic states in systems with strong correlations:(
t̂k + V̂H

k + Ĵ H
k

)|ϕk〉 = εk|ϕk〉, (3)

where t̂k is the Fourier transform of the hopping parameters
t̂ij , V̂H

k and Ĵ H
k are the Hartree-Fock potentials describing the

on-site and intersite Coulomb and direct exchange interactions,
respectively, and εk and |ϕk〉 are the corresponding eigenvalues
and eigenvectors in a given basis; a self-consistent solution of
Eq. (3) is achieved with respect to the density matrix:

n̂ =
∑

k

|ϕk〉〈ϕk|. (4)

Further details on the computational scheme are provided in
Refs. [31,32].

We have considered four possible magnetic configurations
shown in Fig. 5 by comparing their energies calculated
within the Hartree-Fock approximation for the unit cell
containing nine correlated sites. As a first step, we neglect
the direct exchange interaction JF

01 and take into account
only Coulomb interactions U and V01 in Eqs. (1) and (3).
From the corresponding energies presented in Table III it is
seen that the 120◦-Néel order is found to be dominating in
Si(111):{C,Si,Sn}, while the 120◦-RW order is more favorable
in Si(111):Pb.

First, it is worth noting that the 120◦-RW magnetic structure
[Fig. 5(c)] is different from the collinear ferrimagnetic order
[collinear row-wise magnetic structure; Fig. 5(d)] considered
in previous studies [7,8]. The collinear row-wise order is
unstable in our Hartree-Fock simulations for all the systems in
question. The geometrical frustrations and spin-orbit coupling
tend to align magnetic moments to form a 120◦ structure in
the xz plane.

Second, the 120◦-Néel order in X = Sn is in agreement
with previous studies based on DFT + U calculations, while
the DMFT-based approaches predict RW to be a magnetic

TABLE III. Energy of magnetic configurations (in eV with
respect to the ferromagnetic state) in Si(111):X, X = {C, Si, Sn, Pb},
as calculated from the Hartree-Fock approximation for the 3 × 3 unit
cell with J F

01 = 0 eV.

Si(111):C Si(111):Si Si(111):Sn Si(111):Pb

FM 0.0 0.0 0.0 0.0
120◦-Néel −0.055 −0.149 −0.141 −0.136
120◦-RW −0.042 −0.120 −0.124 −0.143
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FIG. 6. (a) Densities of states in Si(111):Sn as obtained from
the Hartree-Fock approximation for the 120◦-Néel magnetic order
with different values of U (V01 = 0, J F

01 = 0). (b) Densities of states
corresponding to the magnetic ground states of Si(111):X, X = {C,
Si, Sn, Pb} as obtained from the Hartree-Fock approximation in the
full model, Eq. (1) [see Sec. V and Fig. 7(a)].

ground state for sufficiently large values of U . First of all,
this discrepancy can be attributed to the fact that the Hartree-
Fock approximation is formulated at zero temperature, while
previous studies based on DMFT have been performed in the
experimentally accessible temperature range. Next, our model
Eq. (1) is extended to include the effect of spin-orbit coupling,
which in the case of Si(111):{Sn,Pb} gives a significant
contribution renormalizing hopping parameters.

To give some comparison on different approaches, we have
explored critical values of the on-site Coulomb interaction
U in a metal-insulator phase transition. Densities of states
of the Si(111):Sn system calculated within the Hartree-Fock
approximation for different values of U (V01 = 0, JF

01 = 0)
are shown in Fig. 6(a). As seen, the charge gap starts to
open at Uc ≈ 0.5 eV, which is smaller than the critical values
Uc ≈ 0.60, 0.65, and 0.75 eV obtained within the single-site
DMFT, variational cluster, and dual fermion approaches,
respectively [8,9]. Despite this fact, we believe that the
Hartree-Fock approximation is still reliable since the values
of U used in our calculations (see Sec. V) are much higher
compared to the critical ones. However, even though we treat
electronic correlations in a mean-field manner, they do play
an important role in stabilizing a magnetic ground state in the
Si(111):X system.

FIG. 7. Magnetic ground states for different values of J F as
obtained from the Hartree-Fock approximation (a) for the full model
and (b) for the model with nearest-neighbor hopping parameters only.
The ratio J F

01/J
F (bare)
01 ≈ 0.22 given in Sec. III is shown with vertical

lines. The energies were calculated for the unit cell containing nine
correlated sites.

Next, we proceed to study the effect of the direct exchange
interaction JF

01 on a magnetic ground state. The results obtained
with respect to the ratio JF

01/J
F (bare)
01 are presented in Fig. 7(a).

One can see that for any value of JF
01/J

F (bare)
01 the 120◦-Néel

order is found to be stable in X = C and Si, while the 120◦-RW
magnetic structure is stabilized only in X = Pb. The situation
is different in the case of Si(111):Sn, where depending on the
ratio JF

01/J
F (bare)
01 both magnetic states can be realized. This

result leads to a very interesting conclusion that the magnetic
ground state in the Si(111):X systems is also controlled by the
value of JF

01.
Another important conclusion is that for small ratios

JF
01/J

F (bare)
01 the energy difference of the 120◦-Néel and

120◦-RW magnetic orders in the Pb/Si(111) system is about
2 meV per correlated orbital, which, as we will show below,
is smaller than the anisotropic exchange interaction between
nearest neighbors. Thus, small variations of the intersite
exchange interaction JF

01 in the Hartree-Fock simulations for
the Pb/Si(111) system can lead to a transition between these
two antiferromagnetic states.

To get a deeper insight on this effect, we have eliminated
hopping parameters beyond nearest neighbors and performed
the same calculations with respect to the ratio JF

01/J
F (bare)
01 . As

shown in Fig. 7(b), the 120◦-Néel order is stabilized in all four
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TABLE IV. Isotropic Jij and anisotropic Dij exchange interac-
tions (in meV) in Si(111):X, X = {C, Si, Sn, Pb}, as obtained from
DFT + SO calculations, Eqs. (6) and (7). See Fig. 1(b) for details.

X J01 D01 J02 D02 J02/J01

C 2.38 (0.0, 0.042, 0.0) 0.26 (0.015, 0.0, −0.005) 0.11
Si 6.94 (0.0, 0.228, 0.0) 0.75 (0.015, 0.0, −0.005) 0.11
Sn 6.48 (0.0, 1.925, 0.0) 0.73 (0.065, 0.0, −0.010) 0.11
Pb 8.30 (0.0, 6.895, 0.0) 0.83 (0.180, 0.0, −0.009) 0.10

systems, as expected for the nearest-neighbor Hubbard model
on a triangular lattice. However, in this case the transition
between the 120◦ Néel and 120◦-RW magnetic orders is
still observed in Si(111):Pb. As will be shown below, this
direct exchange interaction gives an additional contribution to
the kinetic isotropic exchange parameters between magnetic
moments favoring their ferromagnetic alignment. Meanwhile,
we conclude that the stabilization of a magnetic order in the
Si(111):X systems is a joint effect of long-range hopping pro-
cesses, spin-orbit coupling, and nonlocal electron correlations.

VII. SPIN HAMILTONIAN

To probe the excited magnetic states in the adatom systems
we construct spin models within the superexchange theory [33]
formulated in the limit tij 
 U . In our case tij /U varies from
0.025 (for X = C) to 0.045 (for X = Pb) that justifies this
approach. The corresponding spin Hamiltonian is given by

Ĥspin =
∑
ij

Jij Ŝi Ŝj +
∑
ij

Dij [Ŝi × Ŝj ] +
∑
ij

Ŝi

↔
�ij Ŝj ,

(5)

where Ŝ is the spin operator, and Jij , Dij , and
↔
�ij are

the isotropic exchange coupling, antisymmetric anisotropic
(Dzyaloshinskii-Moriya), and symmetric anisotropic interac-
tions, respectively. The summation runs twice over all pairs.

Isotropic exchange interaction. In terms of the electronic
model parameters given in Eq. (1) the isotropic exchange
interaction can be expressed in the following form [33,34]:

Jij = 1

Ũ
Trσ {t̂j i t̂ij } − JF

ij , (6)

where t̂ij is the hopping integral with spin-orbit coupling,
and the effective local Coulomb interaction is estimated as
Ũ = U − Vij . The first kinetic term is the famous Anderson’s
superexchange, while the second one, JF

ij , represents the direct
ferromagnetic exchange due to the overlap between neighbor-
ing Wannier functions. Their values calculated with the par-
tially screened JF

ij as described in Sec. V are given in Table IV.
Anisotropic exchange interactions. Antisymmetric

Dzyaloshinskii-Moriya and symmetric anisotropic exchange
interactions are given by

Dij = i

2Ũ
[Tr(t̂ij )Tr(t̂j iσ ) − Tr(t̂j i)Tr(t̂ijσ )], (7)

↔
�ij = 1

2Ũ
[Tr(t̂j iσ ) ⊗ Tr(t̂ijσ ) + Tr(t̂ijσ ) ⊗ Tr(t̂j iσ )], (8)

where σ are the Pauli matrices.

TABLE V. Symmetric anisotropic exchange interactions
↔
�01 (in

meV) in Si(111):Sn and Si(111):Pb as obtained from DFT + SO
calculations, Eq. (8). See Fig. 1(b) for details.

Sn Pb

↔
�01

⎛⎝0.0 0.0 0.0
0.0 0.245 0.0
0.0 0.0 0.0

⎞⎠ ⎛⎝0.0 0.0 0.0
0.0 2.784 0.0
0.0 0.0 0.0

⎞⎠

The calculated DMIs are presented in Table IV. Let us first
discuss their symmetry. Since the resulting Wannier functions
reside on the adatom-silicon bonds, symmetry properties of the
spin Hamiltonian are consistent with the C3v point group of a
triangular lattice formed by adatoms. According to Moriya’s
rules [35], vertical reflections go through the bonds between
nearest neighbors, and the corresponding anisotropic exchange
parameters are perpendicular to their bonds and lie in the xy

plane (see Fig. 4). On the other hand, next-nearest neighbors
are not located on the mirror planes, and we obtain the nonzero
z components of the anisotropic exchange parameters that
alternate within the coordination sphere.

Another important contribution to the magnetic anisotropy
is the symmetric anisotropic exchange interaction,

↔
�ij . The

calculated tensors for the Si(111):Sn and Pb systems are
presented in Table V. One can see that they favor alignment
of the magnetic moments in the xz plane, and the principal
axis of

↔
�01 coincides with the DMI vector for the same

bond in agreement with the results of Ref. [36], where a
general one-band Hubbard model with spin-orbit coupling was
analyzed. The corresponding elements of

↔
�ij for X = Si and

C are less than 10−4 meV.
In the systems with inversion symmetry breaking the ratio

|Dij |
Jij

is a control parameter for the period of spiral structures
or for a size of individual skyrmions at finite temperatures and
magnetic fields. Depending on the adatom this ratio for the
kinetic interactions presented in Table IV is varied from 0.017
(for X = C) to 0.83 (for X = Pb). It provides unprecedented
possibilities to control and tune the DMI strength within this
family of surface nanostructures.

Importantly, the spin Hamiltonians obtained for the adatom
systems can be classified with respect to the ratio between
the nearest-neighbor DMI, D01, and next-nearest-neighbor
isotropic exchange interaction, J02. For instance, in the case
of the C/Si(111) and Si/Si(111) systems J02 > |D01| and the
corresponding spin model is the isotropic Heisenberg model of
the J01-J02 type. For the calculated ratio J02

J01
≈ 0.1 presented

in Table IV previous theoretical studies based on the classical
J01-J02 spin Hamiltonian have revealed the formation of the
120◦-Néel state [37]. Namely, this state is observed in our
zero-temperature simulations for the C/Si(111) and Si/Si(111)
systems. Moreover, the calculated ratio J02

J01
≈ 0.1 prevents the

formation of any incommensurate spiral structure in the ground
state as well as a skyrmion state at finite magnetic fields [38]. In
turn, it is worth noting that solutions of the quantum J1-J2 spin
models identify J02

J01
= 0.1 as a transition point to the spin-liquid

state [39,40].
The situation is different in the case of Sn/Si(111) and

Pb/Si(111) where spin-orbit coupling has a noticeable effect
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FIG. 8. Snapshots of the Si(111):Pb spin texture given for a sublattice A (a) and a full lattice (b) as obtained from Monte Carlo simulations
for N = 150 × 150, T/J01 = 0.01 and different values of h/J01. Spin components in the xy plane are indicated with black arrows. (c) Static
spin structure factors for the corresponding spin textures.

and J01 and D01 are of the same order and much larger than
J02. As a result, this property leads to the formation of a
novel 120◦ row-wise order as shown in the previous section
and antiferromagnetic skyrmion lattice states as we will show
below.

VIII. MONTE CARLO RESULTS

In crystals with the Cnv symmetry, the anisotropic exchange
interaction favors a rotation of magnetic moments along the
propagation direction of a spin spiral structure, and they
are expected to possess a Néel-type skyrmion state [41].
Moreover, the formation of an antiferromagnetic skyrmion
texture (AF-SkX) on the antiferromagnetic triangular lat-
tice with Dzyaloshinskii-Moriya interactions was reported
recently [42].

In this section we focus on the effect of an external magnetic
field h applied to the spin system Eq. (5):

H = Hspin − h
∑

i

ez
i , (9)

where the spin variables are now treated as classical vectors,
|ei | = 1, and the magnetic field is directed along the z axis.
In a classical limit for the given spin vector length one has
to renormalize model parameters of the quantum spin model.
This is done by scaling the exchange interactions (given in
Tables IV and V) by the maximum length of the product
of two spin operators, that is, S(S + 1), where S = 1/2 and
� = 1. However, it is worth noting that this scaling is rather
arbitrary and instead of using unit vectors one can leave their
quantum mechanical length without distinction between model
parameters.

Our Monte Carlo simulations have been performed based
on the heat-bath method combined with overrelaxation. The
corresponding model parameters are given up to next-nearest
neighbors. In these calculations supercells of various size
from N = 96 × 96 to 150 × 150 spins with periodic boundary
conditions are used and a single run contains (0.5–2.0) × 106

Monte Carlo steps. For initial relaxation the system is gradually
cooled down from higher temperatures.

While different states can be identified from the real-space
spin textures, to trace their formation we have computed the
static spin structure factors:

S⊥(q) = 1

N

〈∣∣∣∣∣∑
i

ex
i e−iq·r i

∣∣∣∣∣
2

+
∣∣∣∣∣∑

i

e
y

i e−iq·r i

∣∣∣∣∣
2〉

(10)

and

S‖(q) = 1

N

〈∣∣∣∣∣∑
i

ez
i e

−iq·r i

∣∣∣∣∣
2〉

, (11)

as well as the total chirality χL and skyrmion number χQ:

χL = 1

8π

〈∑
i

χ
(12)
i + χ

(34)
i

〉
(12)

and

χQ = 1

8π

〈∑
i

A
(12)
i sgn

[
χ

(12)
i

] + A
(34)
i sgn

[
χ

(34)
i

]〉
, (13)

where χ
(ab)
i = ei · ea × eb is the so-called local chirality

defined on a triangle {r i ,ra,rb} and A
(ab)
i =‖ (ea − ei) ×

(eb − ei) ‖ / 2 is the corresponding area. The latter quantities
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FIG. 9. Skyrmion number χQ and total chirality χL as a function
of the applied magnetic field h/J01 obtained from the Monte Carlo
simulations for N = 150 × 150 and T/J01 = 0.01 in Si(111):Pb. The
inset shows the corresponding area used to calculate local chiralities,
Eqs. (10)–(11).

are considered as order parameters that represent topological
stability of the corresponding state.

First, it is important to demonstrate connection between
the finite-temperature Monte Carlo and zero-temperature
Hartree-Fock results. To this end we performed Monte Carlo
simulations for the 3 × 3 unit cell. The obtained magnetic
configurations are of 120◦-Néel or 120◦-RW type in agreement
with the Hartree-Fock approximation [Fig. 7(a)]. We would
like to stress that such a small size of the unit cell prevents the
formation of any long-range magnetic order. We address this
question below.

The results obtained for the Si(111):Pb system for the 150 ×
150 unit cell are presented in Fig. 8. Interestingly, the system
exhibits several phases as a magnetic field applied along the
z axis is varied. At low magnetic fields a complex spin spiral
state is stabilized. It is composed of three interpenetrating
spin spirals formed on each sublattice and characterized by
a single q vector. As the magnetic field increases the system
enters into a stable AF-SkX state which is a superposition of
three Néel-type SkX lattices characterized by three q vectors
(which are in turn formed by three spin spirals). As seen from
Fig. 9, the AF-SkX state is favored in a wide range of magnetic
fields. However, a stepwise behavior of the skyrmion number
and total chirality with respect to the magnetic field is a result
of the discrete finite-size model allowing for only definite
numbers of skyrmions [42]. Finally, at higher magnetic fields
the AF-SkX state is followed by a vortex-like texture and
a paramagnetic phase. We observe a weak dependence of
|q| on the magnetic field as one can see from Fig. 8(c), for

instance, |q| = 0.76 (h = 0.0), |q| = 0.76 (h = 3.6J01), and
|q| = 0.59 (h = 6.2J01).

Our results are in agreement with those reported in
Ref. [42]. However, it is worth mentioning that in this work
we have employed an extended spin model including both
antisymmetric and symmetric anisotropy terms up to the
next-nearest neighbors, which justifies the realization of the
so-called multiple q states in a more general case. The similar
skyrmion lattice state is realized in Sn/Si(111). However, there
is one important difference, which is a skyrmion size controlled
by the ratio |Dij |

Jij
and estimated to be about 40 Å and 26 Å for

X = Sn and Pb, respectively.
Finally, Fig. 9 gives us the value of the magnetic field ∼2J01

needed to form a skyrmion state. Taking the estimated g factor
and calculated exchange interaction parameters we conclude
that the critical point may be accessible at the magnetic fields
∼190 T for Sn/Si(111) and ∼250 T for Pb/Si(111), which is too
large to be reached in laboratories. To decrease their values one
can reduce isotropic exchange interactions between nearest
neighbors. In our simulations it can be done by changing the
value of JF

01. For instance, if one takes its bare value J
F (bare)
01 =

5.44 meV for Sn/Si(111) the critical field can be estimated as
66 T. On the other hand, one can consider a mixed adatom
system combining carbon (weak isotropic exchange) and tin
(strong Dzyaloshinskii-Moriya interaction) sublattices. This
aspect remains open for future investigation.

IX. SUMMARY

The main purpose of our study is to complete the picture
of principal interactions in the Si(111):{C,Si,Sn,Pb} adatom
systems. Taking into account spin-orbit coupling leads to a
complex nondiagonal form of the hopping matrix, while the
overlap between neighboring Wannier functions is responsible
for the direct ferromagnetic exchange interaction that strongly
affects low-energy properties of the systems in question. Our
solutions of the constructed electronic and spin models have
shown that the resulting state of the surface nanosystem mainly
depends on these parameters that can be varied with the adatom
type and their coupling with a substrate.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with Igor Solovyev.
The work is supported by the Ministry of Education and Sci-
ence of the Russian Federation, Project No. 16.1751.2014/K,
and President of Russian Federation Grant No. MD-
6458.2016.2. M.I.K. acknowledges support from the ERC
Advanced Grant 338957 FEMTO/NANO.

[1] S. Modesti, L. Petaccia, G. Ceballos, I. Vobornik, G. Panaccione,
G. Rossi, L. Ottaviano, R. Larciprete, S. Lizzit, and A. Goldoni,
Phys. Rev. Lett. 98, 126401 (2007).

[2] G. Profeta and E. Tosatti, Phys. Rev. Lett. 98, 086401 (2007).
[3] J. M. Carpinelli, H. H. Weitering, M. Bartkowiak, R. Stumpf,

and E. W. Plummer, Phys. Rev. Lett. 79, 2859 (1997).

[4] J. Slezák, P. Mutombo, and V. Cháb, Phys. Rev. B 60, 13328
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247602 (2015).

[28] S. A. Nikolaev and I. V. Solovyev, Phys. Rev. B 89, 064428
(2014).

[29] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Phys.
Rev. Lett. 95, 137205 (2005).

[30] D. Ceresoli, U. Gerstmann, A. P. Seitsonen, and F. Mauri, Phys.
Rev. B 81, 060409(R) (2010).

[31] I. V. Solovyev, J. Phys.: Condens. Matter 20, 293201 (2008).
[32] S. A. Nikolaev, V. V. Mazurenko, A. A. Tsirlin, and V. G.

Mazurenko, Phys. Rev. B 94, 144412 (2016).
[33] P. W. Anderson, Phys. Rev. 115, 2 (1959).
[34] T. Yildirim, A. B. Harris, A. Aharony, and O. Entin-Wohlman,

Phys. Rev. B 52, 10239 (1995).
[35] T. Moriya, Phys. Rev. 120, 91 (1960).
[36] L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev.

Lett. 69, 836 (1992).
[37] S. E. Korshunov, Phys. Rev. B 47, 6165 (1993).
[38] T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108,

017206 (2012).
[39] R. Kaneko, S. Morita, and M. Imada, J. Phys. Soc. Jpn. 83,

093707 (2014).
[40] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca,

Phys. Rev. B 93, 144411 (2016).
[41] A. N. Bogdanov and D. A. Yablonsky, Sov. Phys. JETP 95, 178

(1989).
[42] H. D. Rosales, D. C. Cabra, and P. Pujol, Phys. Rev. B 92,

214439 (2015).

224418-10

https://doi.org/10.1038/ncomms2617
https://doi.org/10.1038/ncomms2617
https://doi.org/10.1038/ncomms2617
https://doi.org/10.1038/ncomms2617
https://doi.org/10.1103/PhysRevB.83.041104
https://doi.org/10.1103/PhysRevB.83.041104
https://doi.org/10.1103/PhysRevB.83.041104
https://doi.org/10.1103/PhysRevB.83.041104
https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/10.1103/PhysRevB.82.035116
https://doi.org/10.1038/srep19728
https://doi.org/10.1038/srep19728
https://doi.org/10.1038/srep19728
https://doi.org/10.1038/srep19728
https://doi.org/10.1103/PhysRevB.94.035427
https://doi.org/10.1103/PhysRevB.94.035427
https://doi.org/10.1103/PhysRevB.94.035427
https://doi.org/10.1103/PhysRevB.94.035427
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1103/RevModPhys.81.1495
https://doi.org/10.1103/RevModPhys.81.1495
https://doi.org/10.1103/RevModPhys.81.1495
https://doi.org/10.1103/RevModPhys.81.1495
https://doi.org/10.1103/PhysRevLett.114.177203
https://doi.org/10.1103/PhysRevLett.114.177203
https://doi.org/10.1103/PhysRevLett.114.177203
https://doi.org/10.1103/PhysRevLett.114.177203
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.69.113313
https://doi.org/10.1103/PhysRevB.69.113313
https://doi.org/10.1103/PhysRevB.69.113313
https://doi.org/10.1103/PhysRevB.69.113313
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1103/PhysRevB.94.054435
https://doi.org/10.1103/PhysRevB.94.054435
https://doi.org/10.1103/PhysRevB.94.054435
https://doi.org/10.1103/PhysRevB.94.054435
https://doi.org/10.1038/srep30598
https://doi.org/10.1038/srep30598
https://doi.org/10.1038/srep30598
https://doi.org/10.1038/srep30598
https://doi.org/10.1103/PhysRevLett.111.106403
https://doi.org/10.1103/PhysRevLett.111.106403
https://doi.org/10.1103/PhysRevLett.111.106403
https://doi.org/10.1103/PhysRevLett.111.106403
https://doi.org/10.1103/PhysRevLett.114.247602
https://doi.org/10.1103/PhysRevLett.114.247602
https://doi.org/10.1103/PhysRevLett.114.247602
https://doi.org/10.1103/PhysRevLett.114.247602
https://doi.org/10.1103/PhysRevB.89.064428
https://doi.org/10.1103/PhysRevB.89.064428
https://doi.org/10.1103/PhysRevB.89.064428
https://doi.org/10.1103/PhysRevB.89.064428
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1103/PhysRevB.81.060409
https://doi.org/10.1103/PhysRevB.81.060409
https://doi.org/10.1103/PhysRevB.81.060409
https://doi.org/10.1103/PhysRevB.81.060409
https://doi.org/10.1088/0953-8984/20/29/293201
https://doi.org/10.1088/0953-8984/20/29/293201
https://doi.org/10.1088/0953-8984/20/29/293201
https://doi.org/10.1088/0953-8984/20/29/293201
https://doi.org/10.1103/PhysRevB.94.144412
https://doi.org/10.1103/PhysRevB.94.144412
https://doi.org/10.1103/PhysRevB.94.144412
https://doi.org/10.1103/PhysRevB.94.144412
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1103/PhysRevB.52.10239
https://doi.org/10.1103/PhysRevB.52.10239
https://doi.org/10.1103/PhysRevB.52.10239
https://doi.org/10.1103/PhysRevB.52.10239
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevB.47.6165
https://doi.org/10.1103/PhysRevB.47.6165
https://doi.org/10.1103/PhysRevB.47.6165
https://doi.org/10.1103/PhysRevB.47.6165
https://doi.org/10.1103/PhysRevLett.108.017206
https://doi.org/10.1103/PhysRevLett.108.017206
https://doi.org/10.1103/PhysRevLett.108.017206
https://doi.org/10.1103/PhysRevLett.108.017206
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.92.214439
https://doi.org/10.1103/PhysRevB.92.214439
https://doi.org/10.1103/PhysRevB.92.214439
https://doi.org/10.1103/PhysRevB.92.214439



