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Classical spin liquids in stacked triangular-lattice Ising antiferromagnets

D. T. Liu,1 F. J. Burnell,1,2 L. D. C. Jaubert,3 and J. T. Chalker1

1Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom
2School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

3Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0395, Japan
(Received 18 August 2016; revised manuscript received 8 November 2016; published 12 December 2016)

We study Ising antiferromagnets that have nearest-neighbor interactions on multilayer triangular lattices with
frustrated (abc and abab) stacking, and make comparisons with the unfrustrated (aaa) stacking. If interlayer
couplings are much weaker than in-plane ones, the paramagnetic phase of models with frustrated stackings has a
classical spin-liquid regime at low temperature, in which correlations are strong both within and between planes,
but there is no long-range order. We investigate this regime using Monte Carlo simulations and by mapping the
spin models to coupled height models, which are treated using renormalization group methods and an analysis
of the effects of vortex excitations. The classical spin-liquid regime is parametrically wide at small interlayer
coupling in models with frustrated stackings. By contrast, for the unfrustrated stacking there is no extended
regime in which interlayer correlations are strong without three-dimensional order.
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I. INTRODUCTION

The triangular-lattice Ising antiferromagnet is arguably
the simplest model of a highly frustrated magnet and was
probably the earliest such system to be studied in detail
[1]. At low temperatures it is both highly fluctuating and
strongly correlated; indeed, it remains disordered down to
zero temperature and has a macroscopically degenerate ground
state. The combination of fluctuations with correlations is
typical more generally of highly frustrated magnets, which
in this regime have been termed cooperative paramagnets or
classical spin liquids [2].

In this paper, we consider three-dimensional (3D) Ising
antiferromagnets built from triangular layers that are stacked
in such a way that nearest-neighbor interlayer interactions
are frustrated, and make comparisons with the unfrustrated
stacking. We focus on low-temperature behavior in systems
with weak interlayer coupling, where correlations within each
layer are necessarily strong but correlations between layers are
controlled by a competition between fluctuations and interac-
tions. Using a combination of perturbative and nonperturbative
analytical techniques and Monte Carlo simulations, we show
that this competition leads to a classical spin-liquid regime, in
which strong correlations exist without long-range order.

Models for frustrated magnets can be classified at the mean-
field level according to the properties of the matrix of exchange
interactions. In this approach, the eigenvectors associated with
the minimum eigenvalues of the interaction matrix provide
candidate ordering patterns. These minimum eigenvalues
appear at isolated points in reciprocal space for unfrustrated
systems, but may be highly degenerate for frustrated systems.
For example, for nearest-neighbor interactions on the kagome
and pyrochlore lattices, the subspace of minimum eigenvalues
forms a flat band that spans the entire Brillouin zone [2–4].
Other cases display intermediate behavior: on the diamond
lattice with nearest- and next-nearest-neighbor interactions,
the minimum eigenvalues form a two-dimensional (2D)
surface in the 3D Brillouin zone [5]. The systems we discuss
here are distinctive in having minimum eigenvalues that lie on
lines in the 3D Brillouin zone [6]. One of our central findings is

that these systems have a cooperative paramagnetic regime in
which they develop strong correlations that are centered near
these reciprocal-space lines.

The three different ways of stacking triangular layers that
we compare in this work are indicated in standard notation
by aaa, abc, and abab (see Fig. 1). Of these, the first
provides a reference model without interlayer frustration,
while the abc stacking yields minimum eigenvalues along
helices in the Brillouin zone, and the abab stacking gives
minimum eigenvalues on a ring around the Brillouin zone
corner. The abc stacking with equal in-plane and interlayer
interactions is equivalent to a nearest-neighbor model on
the face-centered-cubic (fcc) lattice, while the abab stacking
forms the hexagonal-close-packed (hcp) lattice.

Moving beyond a mean-field classification, the theoretical
understanding of stacked triangular-lattice Ising antiferromag-
nets (TLIAFMs) that we develop here is based on the height
model description of low-temperature states for a single layer
[7,8]. This long-established model represents ground states
of a layer in terms of an emergent height field, with a simple
effective Hamiltonian that captures the entropy of fluctuations.
A spin-flip excitation fractionalizes into an unbound vortex-
antivortex excitation pair in the height field, and the vortex
separation sets the correlation length at finite temperature in
the single-layer model. In the following, we derive and study
height models for weakly coupled multilayer systems, showing
how the interplay of interlayer coupling and vortex excitations
allows strong correlations to develop between layers, without
long-range order. We also use the results of extensive Monte
Carlo simulations to test these conclusions and to examine
behavior when interlayer coupling is not weak.

Our study is motivated in part by observations [9,10] of
charge ordering in the materials LuFe2O4 and YbFe2O4. The
charge states of Fe2+ and Fe3+ ions in these systems can be
represented using Ising pseudospins, with antiferromagnetic
coupling between pseudospins arising from screened Coulomb
interactions [9,11]. The pseudospins occupy the sites of an
abc-stacked triangular lattice, though with an alternating
layer spacing that is not included in the models we study.
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FIG. 1. The three different ways of stacking triangular lattices
that are considered in this paper: aaa (top left), abc (top right), abab

stacking (bottom). In-plane interactions J and interlayer interactions
J⊥ are indicated with full and dashed lines, respectively.

Experimental studies [9,10,12], in particular of YbFe2O4 [10],
find helices of scattering intensity in a temperature range
above a three-dimensional charge-ordering transition. These
helices mirror in their reciprocal-space location the positions
of minimum eigenvalues of the interaction matrix discussed
above. While an accurate description of these materials would
require treating additional (magnetic) degrees of freedom [12],
the results we present in this paper demonstrate how strong
interlayer correlations can arise over an extended temperature
range without long-range order.

Past theoretical work on charge ordering in these materials
has included quite detailed mean-field treatments [9,11] and
Monte Carlo simulations of a bilayer model [13], but has
not made use of the understanding of single-layer TLIAFMs
provided by height models, or used simulations to study
correlations in the paramagnetic phase with the detail we
present here.

TLIAFMs with other stackings have been examined pre-
viously in a variety of contexts. Treatments of the abab

case include mean-field theory, a low-temperature expansion,
and Monte Carlo simulations [14–16]. That work has probed
the ordering transition, but without examining the limit of
weakly coupled layers or correlations in the paramagnetic
phase. TLIAFMs with unfrustrated (aaa) stacking have been
of long-standing interest [17]. They display a continuous phase
transition that, strikingly, is in the 3D XY universality class
despite the absence of a microscopic continuous symmetry
[18,19]. The two components of the order parameter represent
ordering at the two inequivalent Brillouin zone corners, and the
XY symmetry is broken in the ordered phase by dangerously

J⊥
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T
J

3D ordered

Classical
spin-
liquid
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1

1

FIG. 2. Schematic phase diagram for stacked triangular-lattice
Ising antiferromagnets. The full line represents the phase boundary,
and the dashed line indicates a smooth crossover.

irrelevant sixfold anisotropies. This model and transition are
also important as an imaginary-time representation of the
quantum dimer model on the hexagonal lattice [20].

The remainder of the paper is organized as follows. We
introduce the models studied and give an overview of their
physical behavior in Sec. II. We describe Monte Carlo results
in Sec. III. We introduce height models in Sec. IV and analyze
their behavior in Secs. V and VI. Results from our different
approaches are compared in Sec. VII. Some technical details
are described in a series of appendixes. An outline of some of
the results has been presented previously in Ref. [21].

II. MODELS AND OVERVIEW

The starting point for our investigation is the nearest-
neighbor Ising antiferromagnet on stacked triangular layers
with anisotropic couplings. Each spin is coupled to its six
in-plane neighbors with an exchange constant J > 0 and to the
closest spins in the layers above and below with an exchange
constant J⊥ (see Fig. 1). The Hamiltonian is

H = J
∑
〈ij〉,z

σi,zσj,z + J⊥
∑
{ij},z

σi,zσj,z+1 + H (1), (1)

where H (1) indicates further-neighbor interactions, which may
be present in the bare Hamiltonian or may represent terms
generated under renormalization. Here, σi,z = ±1, the notation
〈i,j 〉 denotes nearest-neighbor pairs of sites from the same
layer, and {i,j} nearest-neighbor pairs from adjacent layers.
The sign of J⊥ may be taken positive without loss of generality
since it can be reversed by the transformation σi,z → σ ′

i,z =
(−1)zσi,z.

We are concerned with the statistical mechanics of these
models as a function of temperature T and the interaction
strength ratio J⊥/J . At J⊥/J = 1, one expects ordering below
a temperature Tc ∼ J , while for J⊥/J = 0 the system of
uncoupled layers remains disordered at all temperatures. A
schematic phase diagram obtained by interpolating between
these limits has the form shown in Fig. 2. For J⊥/J � 1,
the paramagnetic phase extends to temperatures T � J . In
this regime, spins are highly correlated within each layer. Our
objectives are to understand interlayer correlations and the
form of the phase boundary for small T/J and J⊥/J , in each
of the three stackings. For the two frustrated stackings we find
that at small J⊥/J there is a low-temperature regime in which

224413-2



CLASSICAL SPIN LIQUIDS IN STACKED TRIANGULAR- . . . PHYSICAL REVIEW B 94, 224413 (2016)

the correlation lengths, both in-layer and interlayer, are much
larger than the lattice spacing. A system in this regime is termed
a cooperative paramagnet or classical spin liquid. This regime
is smoothly connected to the conventional paramagnetic state
at T 	 J but distinguished from it by strong correlations.

For orientation, it is useful to have a simple approach
that gives an initial indication of likely behavior. Mean-field
theory can often be employed in this way but fails here,
wrongly predicting an ordering temperature set by J , even
for small J⊥. An alternative that has been widely applied
in geometrically frustrated magnets is the self-consistent
Gaussian approximation (SCGA) [22]. It is well controlled
only for n-component spins at large n, but is known in some
instances to be quite accurate even for Ising systems [23]. In
the SCGA, correlations are given in terms of the interaction
matrix J and the inverse temperature β by

〈σiσj 〉 = [(βJ + λI)−1]ij . (2)

Here, λ is a parameter fixed by the consistency condition
〈|σi |2〉 = 1, which can be satisfied throughout the paramag-
netic phase. Using a spectral decomposition of J in terms
of its eigenvalues εl

q and eigenvectors ul
q(α), where α labels

sites within a unit cell and l labels the bands of J, the SCGA
expression for the structure factor is

S(q) = 1

N

∑
i,j

[(βJ + λI)−1]ij e
iq·(ri−rj )

=
∑
l,α,α′

ul∗
q (α)ul

q(α′)

βεl
q + λ

. (3)

From this it is apparent [barring cancellations in the sum∑
α,α′ ul∗

q (α)ul
q(α′)] that maxima in S(q) arise from minima

in εl
q.

Applying the SCGA to stacked triangular-lattice antifer-
romagnets, the paramagnetic phase extends to temperatures
T � J if J⊥ � J , and in this regime the maxima in S(q)
are sharply defined. To find the location of these maxima
in reciprocal space, we examine the minima of εl

q. We take
axes with ẑ perpendicular to the triangular layers, unit spacing
between neighboring layers for the aaa and abc stackings,
and unit spacing between neighboring a layers in the abab

stacking, which has two sites per primitive unit cell. We choose
in-plane lattice vectors

a1 = (1,0,0) and a2 = (1/2,
√

3/2,0). (4)

The corresponding in-plane reciprocal lattice vectors are
A1 = 2π (1, − 1/

√
3,0) and A2 = 2π (0,2/

√
3,0). We use δ

to denote the separation vector between neighboring sites
in adjacent layers. Hence, δ = (0,0,1), (1/2,

√
3/6,1), and

(1/2,
√

3/6,1/2) for the aaa, abc, and abab stackings,
respectively.

The contribution to εl
q from in-plane interactions has a

minimum at the K points of the triangular-lattice Brillouin
zone:

K =
(

4π

3
,0

)
and K′ =

(
2π

3
,

2π√
3

)
. (5)

Upon inclusion of small J⊥, these minima evolve in different
ways for each of the stackings we consider. For the aaa

FIG. 3. Location of surfaces on which eigenvalues of the interac-
tion matrix are constant and close to the minimum, for (top) the abc

stacking, and (bottom) the abab stacking, at J⊥/J = 0.2.

stacking, they lie at isolated points, undisplaced in plane and
at qz = π . For the frustrated stackings, their locations can
be specified in terms of the wave-vector-dependent complex
scalar ζ = 1 + eiq·a1 + eiq·a2 . In the abc case they lie on the
curve

ζ = −J⊥
J

eiq·δ (6)

and in the abab case they lie on

|ζ | = J⊥
J

, qz = 0. (7)

These conditions, respectively, define helices and rings cen-
tered on the zone corners, as shown in Fig. 3. Further discussion
of the interaction matrix eigenvalues is given in Appendix A.

III. MONTE CARLO SIMULATIONS

We use extensive Monte Carlo simulations to find the
ordering temperature for all three models and to study
correlations in the paramagnetic phase of models on the abc-
and abab-stacked lattices. The primary observables computed
are the energy E, specific heat C, and the structure factor S(q),
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FIG. 4. Phase boundaries for the unfrustrated (aaa) and frustrated
(abc and abab) stackings. Points: data from Monte Carlo simulations.
Lines: fits to theory of Sec. V D; see discussion in Sec. VII.

which is obtained from the Fourier transform of magnetization

σ̃ (q) =
∑

i

eiq·ri σi (8)

as

S(q) = 1

L2Lz

〈|σ̃ (q)|2〉. (9)

Because of the complex energy landscape arising from geo-
metrical frustration, we employ a parallel tempering algorithm
with single-spin-flip Metropolis dynamics [24,25]. Specifi-
cally, we simulate Nr replicas (taking Nr ∼ 100) at geometri-
cally spaced temperatures, with the highest temperature ∼5J .
A Monte Carlo sweep involves one single-spin-flip attempt
per site, followed by one parallel tempering swap attempt
between replicas at adjacent temperatures. A system consists
of Lz rhombic layers, each of size L × L lattice constants,
with periodic boundary conditions in all directions. A typical
simulation treats ≈105 sites (L = 72–200, Lz = 12–48) using
105 sweeps. We measure E and C each sweep, and S(q) every
Nr sweeps. Further details of the data analysis are presented
in Appendix B.

A. Ordering transition

Phase diagrams as a function of T and J⊥ are shown in Fig. 4
for both the unfrustrated (aaa) and the frustrated (abc and
abab) stackings. For a given strength of interlayer coupling,
the ordering temperature (determined from the maximum of
the heat capacity) is much lower in the systems with frustrated
stackings compared with the unfrustrated one. In addition,
over most of the range of J⊥/J studied, the transitions in
the systems with frustrated stackings are strongly first order:
the probability distribution of the energy is strongly bimodal
at the transition unless J⊥/J � 1. The discontinuity in the
energy at the transition decreases with decreasing J⊥, and
for J⊥ � 0.05J the order of the transition is not discernible
from the simulations. Differences in transition temperature
between the two frustrated stackings are very small for
J⊥/J � 1. Our results for the abc stacking at J⊥ = J can
be compared with earlier work on the fcc lattice, and are in
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FIG. 5. Distributions P (E) of energy E for the abc stacking
with J⊥ = 0.1J . Top: temperatures in the range 0.4J � T � 0.65J .
Middle: temperatures T = 0.50J , 0.51J , and 0.52J close to the
transition. System size L = 72, Lz = 12. The distribution closest
to the transition is solid red outlined in black, centered around
E = −1.011 in the top panel, and is the middle temperature in
the middle panel. Its bimodal form indicates a first-order transition.
Bottom: finite-size effects, illustrated for L = 96 and T = 0.52J .

good agreement with the transition temperature of Tc ≈ 1.72J

found in Refs. [26,27].
Examples of the energy distribution at different temper-

atures are shown in Fig. 5. We monitor the overlap of
distributions at adjacent temperatures in the parallel tempering
scheme, as substantial overlap is a requirement for effective
exchange of replicas. The top panel demonstrates that this is the
case in our simulations. At a first-order transition, the energy
distribution is bimodal. The middle panel illustrates this.
Finite-size shifts in our estimates of the transition temperature
are a few percent, as indicated by a comparison of the middle
and lower panels.
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FIG. 6. Cross sections of structure factor at constant qz in a system with abc stacking. For each qz, sharp maxima in S(q) occur near
the Brillouin zone boundary, which is shown as a green dashed line. As qz increases, the maxima precess around the zone corners without
significant change in intensity, indicating that they form helices in the three-dimensional reciprocal space. Parameter values are J⊥ = 0.2J ,
T = 0.8J , L = 72, Lz = 12; for this value of J⊥, Tc = (0.68 ± 0.01)J .

B. Correlation functions

A characteristic feature of classical spin liquids is the
presence of strong correlations and a large correlation length,
without long-range order or proximity to a critical point. In
this section we present correlation functions and correlation
lengths for TLIAFMs with frustrated stackings, determined
from Monte Carlo simulations.

1. The abc stacking

The behavior of the structure factor for a system with abc

stacking in the classical spin-liquid regime is illustrated in
Fig. 6. Combining information from the series of slices in
reciprocal space that are shown in this figure, it is apparent that
maxima in S(q) lie on helices in reciprocal space. The axes
of these helices pass through corners of the triangular-lattice
Brillouin zone.

To analyze this behavior quantitatively, we extract a
reciprocal-space radius Q for the helix and a correlation length
ξ⊥ by fitting data for S(q) near the maxima to a sum of in-plane
Lorentzians

S(q) = I

ξ 2
⊥[q⊥ − q0

⊥(qz)]2 + 1
(10)

from each helix. Provided any dependence of |q0(qz)| on qz

is weak, we can make the identification Q = |q0(qz)|. (See
Appendix B for further discussion.)

Results are shown in Fig. 7. The correlation length ξ⊥ in-
creases rapidly with decreasing T for T � J , as demonstrated
in Fig. 7(a). It reaches large values within the paramagnetic
phase if J⊥/J is small. Its dependence on J⊥ at fixed T is very
weak because its value is determined by the density of vortices
in the height field (see Sec. V) and for J⊥ � J this in turn is
controlled mainly by the value of T/J . The variation of the
helix radius Q with J⊥ and T is illustrated in Fig. 7(b). Its value
is given quite accurately by the SCGA [Eq. (6)] for T � J ,
and shows a small increase with decreasing temperature.

In the ordered phase, Bragg peaks are expected in the
structure factor, in place of a continuous distribution of weight
on helices. We probe the evolution between the two behaviors

by computing

Savg(qz) = 1

L2

∑
qx ,qy

S(q). (11)
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FIG. 7. (a) Correlation length ξ⊥ and (b) helix radius Q, as a
function of temperature for various values of J⊥ in the abc stacking.
ξ⊥ is measured in units of lattice spacing, Q in units of inverse lattice
spacing. Horizontal lines are SCGA predictions for Q from Eq. (6).
Results were obtained in a system of size L = 72, Lz = 12. Data
for each value of J⊥ extend to the lowest temperature employed in
parallel tempering that was above Tc.
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Results in Fig. 8 show the rapid development of Bragg peaks
as temperature is lowered through the transition. Although
we believe that the transition is first order for the value of
J⊥/J studied here, discontinuities are not apparent in the
temperature dependence of Savg(qz), presumably because of
finite-size rounding. Indeed, since evaluation of correlation
functions is more computationally demanding than calculation
of energy distributions, the results presented in Fig. 8 are for
smaller system size than those in Fig. 5; we find (data not

shown) that the energy distribution at the transition is not
bimodal for the smaller size.

2. The abab stacking

Because the abab-stacked lattice has two sites in a primitive
unit cell, the relation between fluctuations and correlations
is less direct than for the abc stacking, in which the unit
cell has a single site. More specifically, the form of S(q) is
affected by interference between contributions from the two
sites. Within the SCGA, this is apparent from Eq. (3), where
contributions involving a given eigenvalue εl

q of the interaction
matrix are weighted by a sum

∑
α,α′ ul∗

q (α)ul
q(α′) that includes

both site-diagonal (α = α′) and interference (α = α′) terms.
In order to eliminate these interference effects and expose
fluctuations in the abab stacking in a simple way, we compute
the structure factor using contributions only from one of the
two sites in each unit cell, by restricting the sum in Eq. (8) to
this set of sites.

We expect from Eq. (7) that this single-sublattice structure
factor will have its maxima lying on closed loops in the qz = 0
plane. An overview of our data, illustrating this behavior, is
given in Fig. 9.

A simple way to extract a correlation length ξ⊥ is by fitting
data for qz = 0 and qx,qy close to a selected Brillouin zone
corner to the functional form

S(q) = I

ξ 2
⊥(Q − |q⊥ − K|)2 + 1

, (12)

where K denotes the location of the Brillouin zone corner and
Q specifies the reciprocal-space radius of the ring of intensity.
This fitting function provides a good description of the data
for small values of J⊥/J , where the maximum in the structure
factor lies on a circle, but it does not capture the triangular
distortions for larger J⊥/J that are apparent in the leftmost
panel of Fig. 9. As shown in Fig. 10, and as for the abc stacking,
the resulting values of ξ⊥ increase rapidly with decreasing
temperature but vary little with J⊥.

3. Self-consistent Gaussian approximation

As discussed in Sec. II, the SCGA provides a useful
description of frustrated magnets in the strongly correlated
regime. In particular, it offers a simple theoretical prediction
for S(q), which we now show to be a good representation of
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FIG. 9. Cross sections of structure factor at qz = 0 for systems with varying J⊥ in the abab stacking. Intensity is maximum on a closed
loop, which is approximately circular for small J⊥/J but develops triangular distortions with increasing J⊥/J . Data (from left to right) are for
T = 1.14J , 0.71J , 0.64J , 0.57J , obtained in systems of size L = 72, 90, 90, 204 and Lz = 12, 12, 30, 6. Note the changing intensity scale
and increasing maximum intensity as J⊥ and T decrease. The ordering temperatures are Tc/J = 0.99 ± 0.008, 0.680 ± 0.014, 0.602 ± 0.007,
and 0.502 ± 0.01.
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functional form given in Eq. (12).

our simulation data. We use the functional form of Eq. (3) in
two ways, which are distinct in principle but yield very similar
results. One of these treats the variable λ as a fitting parameter
with respect to simulations; the other fixes its value using the
SCGA condition 〈|σi |2〉 = 1.

The SCGA form for S(q) is especially helpful at larger
values of J⊥/J , when detailed lattice effects are important.
The results of these lattice effects for the abc stacking include
a dependence of the helix radius [q0

⊥(qz) in Eq. (10)] on qz.
For the abab stacking they generate correlations that are not
represented using the circular maximum in S(q) implied by
the fitting function given in Eq. (12). The SCGA gives a
good description of this physics. Most notably, for the abab

stacking the SCGA fits are effective in capturing the triangular
distortion of the rings, as demonstrated in Fig. 11.

Once the value of λ is obtained from the fit, the correlation
length can be extracted from the model. The results for ξ⊥ are
shown in Fig. 12. They agree to ∼10% with those obtained
by fitting the functional forms given in Eqs. (10) and (12)
for the abc and abab cases, respectively [see Figs. 7(a) and
10]. Alternatively, the value of λ can be determined without

SCGA Simulations
 0
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 3

FIG. 11. Comparison of SCGA and simulation results for S(q) in
the abab stacking. J⊥ = 0.4J, T = 1.36J .
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FIG. 12. Correlation length ξ⊥ as a function of temperature for
various values of J⊥ as obtained from the SCGA. Top: abc stacking.
Bottom: abab stacking. The data labeled SCGA have been derived
by imposing the condition 〈|σ |2〉 = 1 while the variable λ is used as a
fitting parameter in the other curves. For clarity, results from the first
of these approaches are shown only at one value of J⊥; agreement is
similar at other values of J⊥.

reference to simulations, using the SCGA condition, yielding
a theoretical prediction for ξ⊥. From Fig. 12, it is apparent that
both approaches to determining λ yield very similar results.

IV. HEIGHT MODEL

We now turn to an analytical treatment of stacked triangular-
lattice Ising antiferromagnets. Although the SCGA, as demon-
strated, provides a good approximate description, it is formally
correct only for n-component spins in the large-n limit. It is
therefore not a natural starting point for a systematic approach.
By contrast, the height model provides a representation of a
single-layer TLIAFM that is known to capture exactly the
physics at low temperatures and long distances. Here, we use
the height model to construct a description of the multilayer
system that allows for a controlled treatment of weak interlayer
interactions.

Following Blöte et al. [7] and Zeng and Henley [8], we
map ground states of a single-layer Ising model onto states of
a height model in such a way that spin configurations with
long-range three-sublattice order correspond to flat height
configurations. Because of frustration, domain walls can be
introduced without energy cost between regions with different
types of three-sublattice order. These domain walls correspond
to steps in the height field. In a coarse-grained description,
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TABLE I. Heights (all modulo 6) defined at triangle centers
(column 1) and at triangle corners (columns 2–4), for each ground-
state spin configuration (columns 5–7) of the triangle. The spin
configuration determines the height configuration up to a global shift.
The sublattice labeling is illustrated in Fig. 13(b).

h = 1
3 (hA + hB + hC) hA hB hC σA σB σC

0 0 1 5 + − −
1 0 1 2 + − +
2 3 1 2 − − +
3 3 4 2 − + +
4 3 4 5 − + −
5 0 4 5 + + −

steps are represented by a gradient in the height field, and a
large value for this gradient carries an entropy penalty.

The mapping is conveniently described in two stages. First
we define heights at the sites of the triangular lattice, as in
Ref. [7]. Second, following Ref. [8], we average these site
heights to define heights at the centers of triangles, obtaining
a height model that is easily coarse grained.

To map from a spin configuration to heights at lattice sites,
we first assign height zero to a reference site. The heights on
all other sites of the lattice are then fixed by the requirement
that the height difference between the neighboring sites i and
j is +2 if σi = σj , and −1 if σi = −σj going anticlockwise
around an up triangle (or clockwise around a down triangle)
[see Fig. 13(a)]. Heights at triangle centers are defined as
the averages of site heights at vertices. The advantage of
this locally averaged height field is that ground states with
three-sublattice order are exactly flat in these variables [see
Fig. 13(c)]. In the following, we use the term “height field”
exclusively for the locally averaged quantity.

This mapping is summarized for a single triangle in Table I.
Here, the sites of the triangular lattice are divided into three
sublattices, labeled A, B, C and indicated by the three colors of
dots at the vertices in Fig. 13(b). With this convention, the six
ground states of each triangle are specified by the orientation
of the spin on sublattice A and the location of the frustrated
bond. The ground-state spin configuration of a triangle fixes
the value of the height h at its center modulo 6.

The mapping is unique up to labeling conventions. Per-
muting the choice of A, B, and C sublattices (which results
from lattice translations or rotations by 2π/3 about the center
of a triangle) corresponds to a global shift h → h + 2. (By
contrast, rotations about an axis passing through a site leave
the labeling and hence the height field invariant.) Shifting
h → h + 3 corresponds to a global spin-flip operation. The
remaining possibilities (shifting h by 1 or 5) correspond to a
combination of the global spin flip and reassignment of the
three sublattices.

The inverse mapping, from a height configuration to a spin
configuration, can be expressed in terms of a function f (h) and
a constant sα . The function f (h) ≡ f (h + 6) takes the values
f (h) = +1 for h = −1,0,1 and f (h) = −1 for h = 2,3,4.
The constant sα takes values sA = 0, sB = 2, and sC = −2 on
sublattices α = A, B, or C. The spin orientation is then given
by

σα = f (h + sα) ≡ fα(h). (13)

For integer h we can represent this function as f (h) =
4
3 cos πh

3 − 1
3 cos πh. Note that since each spin is part of

six triangles, to fully specify the mapping we must choose
which triangle’s height dictates which spin. Reassuringly, one
can verify that this choice is unimportant: when the height
configurations are integers, and can change by at most 1
between any pair of adjacent triangles, every convention yields
the same spin configuration.

Excitations of the spin model consist of triangles in which
all spins are up, or all are down. They are represented by
vortices in the height field, which is multivalued in their
presence: it increases by 6 on going anticlockwise around an
upward-facing excited triangle, and decreases by 6 around
a down-facing triangle. An excited state produced from a
ground state by reversing a single spin necessarily contains
a vortex-antivortex pair, which may be separated by additional
spin flips without further energy cost.

A. Height-model analysis for a single layer

Before discussing stacked TLIAFMs, it is instructive
to review how the height model captures the physics of
a single triangular layer. The relative entropic weights of
different height configurations are represented by the effective
Hamiltonian [7]

H = K

2

∫
d2r |∇h(r)|2 +

∫
d2r Ṽ (h) . (14)

We can determine the value of K [and verify that (14) captures
the correct physics] by comparing the correlation functions of
this model with Ṽ (h) = 0 to those of the exact solution for the
2D TLIAFM. Stephenson [28] has shown that at long distances

〈σα(r)σβ(r′)〉 ∼ ωs

√|r − r′| + c.c., (15)

where s = (sα − sβ)/2 and ω = ei2π/3. The dominant terms
in the expression for the intrasublattice spin-spin correlation
function in terms of the height fields are

〈σα(r)σβ(r′)〉 ∼ 〈ei π
3 [h(r)−h(r′)]〉ωs + c.c.

∼ exp

[
− 2π

36K
ln |r − r′|

]
(ωs + ω−s)

∼ |r − r′|− 2π
36K (ωs + ω−s). (16)

Hence, at zero temperature, to reproduce the long-wavelength
properties of the exact solution, we take K = π/9.

What about the potential term, which we ignored in the
above calculation? Microscopically, the heights are integers;
we can account for this by including the potential Ṽ (h) =
−v cos(2πh). At short distances, v is large and positive. At
longer length scales, the effective value of v is determined by
the scaling dimension of the operator cos 2πh, which can be
deduced from the two-point function

〈cos(2πhr) cos(2πhr′)〉 ∼ |r − r′|− 2π
K

implying
∫

d2r cos(2πhr′) ∼ L2− π
K . (17)

This yields the scaling dimension 2 − π
K

= −7 at T = 0;
hence, the effective value of the coefficient v decreases rapidly
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as we probe the system at longer length scales, and its effect
on the long-wavelength correlations is negligible.

Finally, we can ask about behavior at finite temperature. To
describe the system at finite temperature we must include the
possibility of vortices in the height field. Dropping Ṽ (h) in
Eq. (14) but including vortices, we recover the physics of the
2D xy model at an effective temperature that is set by the value
of K . The scaling dimension of the vortex can be computed
by estimating its free energy: for v = 0 the entropic cost of the
gradients in the height field required to insert a single vortex
into a triangular layer of side length L is δH = 9K

π
ln L/a,

where a is the lattice constant. The number of ways to place
the vortex in the system is L2/a2. Together, these contributions
to the free energy of a single vortex are

δF =
(

9K

π
− 2

)
ln

(
L

a

)
. (18)

For K = π/9 this grows more negative with increasing L. We
are therefore in the high-temperature phase of the xy model,
where vortices are unbound. The vortex density, determined
by the fugacity associated with the vortex excitation energy
4J , sets the correlation length. This reflects the fact that the
triangular layer, which is critical at T = 0, is a paramagnet at
any finite temperature.

Hence the height model (14) correctly reproduces the phase
diagram and correlations of an isolated triangular layer. The
potential Ṽ (h) is an irrelevant operator and can be dropped
from the long-wavelength analysis; however, the vortices
arising at finite temperature are relevant, making the system
paramagnetic for any T > 0.

B. Coupled layers in the height-model description

We now turn to the situation of interest, in which spins in
triangular layers are coupled to their nearest neighbors in the
planes directly above and below. We will derive expressions
for these couplings in the height language, and discuss their
effect on the physics of the system.

FIG. 14. Energetically preferred domain-wall stacking. Arrows
at sites of a triangular lattice represent the spin configuration in one
layer. The height in this layer increases by 1 moving from the blue
region to the white region. The dashed parallel green and red lines
indicate the energetically favorable domain walls in a neighboring
layer, with spin orientations as illustrated. The height difference
between adjacent layers determines the orientation of the domain
walls.

Frustrated interlayer coupling favors domain walls in the
three-sublattice order that is represented by flat configurations
of the height field. To minimize the interlayer exchange energy,
these domain walls should stack in such a way that a domain
wall consisting of up spins sits in the adjacent layer to a domain
wall consisting of down spins, as shown in Fig. 14.

To find the functional form of the interlayer coupling
in height language, we use Eq. (13) to express it in terms
of the height fields. We then find the scaling dimensions
of the various contributions to determine which of these
play an important role in the long-wavelength physics. We
will show that, as in the SCGA treatment, for frustrated

(a) (b) (c)

FIG. 13. Mapping from Ising spins to heights on the triangular lattice. (a) The height field decreases by 1 (increases by 2) along an
unfrustrated (frustrated) bond as an upward-facing triangle is traversed in the counterclockwise direction. This ensures that the net change in
height field around each triangle is zero provided the triangle is in one of its ground states. (b), (c) Sample patterns of frustrated bonds and
height fields. Green (red) edges on the triangular lattice represent frustrated bonds between pairs of up (down) spins; blue edges correspond
to unfrustrated bonds. The number at the center of each triangle indicates the value of the corresponding height variable; the different shades
highlight regions with different heights. (b) Shows a maximally tilted configuration (height variables at triangle centers decrease as rapidly as
possible from left to right), corresponding to the true ground state for the abc and abab stackings; (c) shows a flat, three-sublattice ordered
configuration with a single domain wall (height variables differ only along the domain wall). Our convention for the three sublattices of Table I
is indicated by the colored circles: A = solid blue; B = yellow with dashed border; C = open white.
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FIG. 15. Two stacked layers, with sublattice labels and definitions
of the vectors e1, e2, and e3.

stackings the relevant terms in the nearest-neighbor model
lead to one-parameter sets of degenerate ground states in the
height models, whose symmetry can be broken by including
further-neighbor couplings.

1. Unfrustrated stacking

It is instructive to begin by studying the unfrustrated
stacking. For the aaa stacking, the interlayer coupling is

J⊥(σA,zσA,z+1 + σB,zσB,z+1 + σC,zσC,z+1)

= 8J⊥
3

cos
π

3
(hz+1 − hz)

+ J⊥
3

cos πhz cos πhz+1 + . . . , (19)

where . . . represents terms of quadratic and higher order in
the derivatives, which we drop as they are irrelevant in the
scaling sense. The most relevant term is cos π

3 (hz+1 − hz),
which has a scaling dimension of 3

2 for K = π/9. The term
cos πhz cos πhz+1 has scaling dimension − 5

2 and can be
neglected. Hence, the effective Hamiltonian of the height
model for the aaa stacking is

H(aaa) = K

2

∑
z

∫
d2r

{
|∇hz(r)|2

+ κ3 cos
π

3
(hz+1 − hz)

}
, (20)

with κ3 = 16βJ⊥/3K . The ground states

hz(r) = γ (21)

of this effective model have a U(1) symmetry under changes
of the constant γ . This symmetry is broken down to a sixfold
discrete symmetry by the interaction Ṽ (h), which is irrelevant
in the scaling sense at the fixed point describing uncoupled
layers, and dangerously irrelevant at the three-dimensional
ordering transition [19].

2. Frustrated stackings

For both the abc and the abab stackings, we consider two
neighboring layers as shown in Fig. 15. There is a coupling
between each site on the black lattice and the three sites around
it from an up triangle on the red lattice, or equivalently between
each site on the red lattice and the three sites around it from
a down triangle on the black lattice. We denote heights on the
black lattice by hz+1(r) and ones on the red lattice by hz(r).
The coupling is

H⊥ = J⊥
∑
r∈A

σA(r)[σa(r + e1) + σb(r + e2) + σc(r + e3)] + symmetry-related terms

= J⊥
∑
r∈A

fA[hn+1(r)]{fa[hn(r + e1)] + fb[hn(r + e2)] + fc[hn(r + e3)]} + symmetry-related terms, (22)

where “symmetry-related terms” have B or C in place of A, and a corresponding permutation of the vectors ei . These are defined
in terms of the lattice vectors [Eq. (4)] by e1 = 2

3 a2 − 1
3 a1, e2 = 2

3 a1 − 1
3 a2, and e3 = − 1

3 a1 − 1
3 a2, and are illustrated in Fig. 15.

Expanding h(r) in a Taylor series, we obtain

H⊥ = −4πJ⊥
9
√

3

∑
r

(
cos

π

3
[hz+1(r) − hz(r)]∂xhz(r) − sin

π

3
[hz+1(r) − hz(r)]∂yhz(r)

)
+ . . . , (23)

where . . . indicates renormalization group (RG) irrelevant terms. Thus, keeping only the relevant interlayer couplings leads to
the effective Hamiltonian for the abc stacking

H(abc) = K

2

∑
z

∫
d2r

{(
∂xhz − κ⊥ cos

π

3
(hz+1 − hz)

)2

+
(

∂yhz + κ⊥ sin
π

3
(hz+1 − hz)

)2

−
(

κ⊥
K

)2}
(24)

with κ⊥ ∝ βJ⊥.
For the abab stacking, the derivation is identical except that the vertical unit cell contains two layers, with the layers above

and below offset in opposite directions. We use integer z to label unit cells in the vertical direction and μ = 1,2 to label layers
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within each unit cell. The effective Hamiltonian is

H(abab) = K

2

∑
z

∫
d2r

{∑
μ

|∇hz,μ|2 − κ⊥

{
∂x(hz,1 + hz,2) cos

π

3
(hz,2 − hz,1) − ∂y(hz,1 + hz,2) sin

π

3
(hz,2 − hz,1)

+ ∂x(hz+1,1 + hz,2) cos
π

3
(hz,2 − hz+1,1) − ∂y(hz+1,1 + hz,2) sin

π

3
(hz,2 − hz+1,1)

}}
. (25)

C. Symmetries and further-neighbor couplings

For both frustrated stackings, emergent continuous sym-
metries not present in the lattice models are displayed by the
effective Hamiltonian of Eqs. (24) and (25) if terms irrelevant
at the J⊥ = 0 fixed point are omitted. Both models have a
U(1) × U(1) symmetry. One U(1) symmetry is associated with
global shifts in the height field. It results from the discrete
symmetry of the microscopic model related to global shifts in
h, which, as for the single-layer height model, is enhanced to
become a continuous symmetry because the pinning potential
Ṽ (h) is RG irrelevant and has been omitted. As in the
unfrustrated case [see Eq. (21)] we parametrize it with γ . The
second U(1) symmetry is associated with real-space rotations
and is reduced to the discrete rotational symmetry of the lattice
by irrelevant terms. We parametrize it with θ .

In detail, these symmetries take the following form. Let Rθ

denote a rotation in the xy plane through the angle θ and write
r′ = Rθ (r). Then, H(abc) is invariant under the transformation

hz(r) → h′
z(r) = hz(r′) + 3zθ

π
+ γ. (26)

Similarly, H(abab) is invariant under hz,μ(r) → h′
z,μ(r) with

h′
z,1(r) = hz,1(r′) − 3θ

2π
+ γ

and h′
z,2(r) = hz,2(r′) + 3θ

2π
+ γ. (27)

Ground-state configurations of the height model for the abc

stacking have the form

hz(r) = κ⊥(x cos θ − y sin θ ) + 3zθ

π
+ γ. (28)

For the abab stacking the ground states are

hz,1(r) = κ⊥(x cos θ − y sin θ ) − 3θ

2π
+ γ,

hz,2(r) = κ⊥(x cos θ − y sin θ ) + 3θ

2π
+ γ, (29)

together with a second symmetry-related set.
The symmetry under continuous changes of θ is not a

feature of the microscopic model: it is broken by the leading
irrelevant terms in Eq. (23). For the abc stacking, these have
the form

Hb = κb

∑
z

∫
d2r{[[∂xhz(r)]2 − [∂yhz(r)]2] cos δhz(r)

+ 2∂xhz(r)∂yhz(r) sin δhz(r)}, (30)

where we introduce the notation δphz(r) = π
3 [hz+p(r) −

hz(r)] and δhz(r) ≡ δ1hz(r). (The form for the abab stacking
follows the obvious equivalent pattern.)

Significantly, it may also be broken by relevant further-
neighbor couplings, if these are present microscopically, or
are generated under renormalization. For the abc stacking,
some relevant and marginal couplings that are not included in
Eq. (24) are

Hm = Km

2

∑
z

∫
d2r ∇hz(r) · ∇hz+m(r),

H2 = κ2

∑
z

∫
d2r

{
∂xhz(r) cos

π

3
(hz+2 − hz)

+ ∂yhz(r) sin
π

3
(hz+2 − hz)

}
, (31)

H3 = κ3

∑
z

∫
d2r cos

π

3
(hz+3 − hz).

H3 is the most relevant of these three: it breaks the degeneracy
of Eq. (28), selecting ground states for which 3θ = 0 (π ) for
κ3 < 0 (κ3 > 0). H2 has the same scaling dimension as the
bare interlayer coupling. It also breaks the symmetry, again
favoring states for which 3θ = 0 (π ) for κ2 < 0 (κ2 > 0). Hm

is marginal, and does not break the degeneracy between the
ground states identified above, all of which have the same
in-plane gradients in each layer.

Therefore, as well as potentially being broken sponta-
neously at low temperature, the emergent U(1) spiral symmetry
of the abc model can be broken explicitly at a scale set by the
coefficients κ2 and κ3. We discuss this scenario in Sec. V.

For the abab stacking, the perturbations of interest are
interlayer gradient couplings similar to Hm, and also

H3 = κ3

∑
z,μ

∫
d2r cos

π

3
(hz+1,μ − hz,μ), (32)

the unfrustrated coupling between spins two layers apart. In
contrast to the abc case, H3 is not expected to be important
in determining the ordering temperature: the minimum-energy
solutions of the abab model have a definite value of hz+1,μ −
hz,μ, and so this term does not lift the ground-state degeneracy.
Instead, symmetry is broken by the irrelevant coupling Hb

[Eq. (30)].

V. BEHAVIOR OF THE HEIGHT MODEL

To understand the phase diagrams of these coupled-layer
height models, we take two successive steps. First, we make
a perturbative renormalization group (RG) analysis of the
behavior of weakly coupled layers, as described in Sec. V A.
Depending on the values of T and J⊥, the model under scaling
may remain weakly coupled: this happens in the weakly
correlated paramagnetic regime. Alternatively, it may flow to
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strong interlayer coupling. In that case, a separate analysis is
necessary of the influence of vortex pairs, which is presented
in Sec. V B. We find that the minimal models with exact
U(1) × U(1) symmetry have anomalously soft excitations. For
this reason, vortex pairs destroy long-range order, establishing
instead a paramagnetic regime with strong interlayer corre-
lations. Symmetry-breaking or “locking” interactions act in
competition to vortex pairs, and stabilize the ordered phase
when they dominate.

A. Perturbative RG

Our perturbative analysis follows the standard renormal-
ization group techniques of Refs. [29,30]. For small J⊥ and
low T , this allows us to use arguments similar to those of
Sec. IV A regarding the phase diagram of these models. If
unbound vortices proliferate, the interlayer coupling flows
to zero at long distances, while if the coefficient of one of
the cosine terms grows large, a strong-coupling analysis is
necessary.

The leading-order behavior of the RG equations is simply
determined by the scaling dimensions of the relevant interlayer
couplings and vortices. (The intraplane and interplane gradient
terms flow only at higher order.) For the interlayer couplings,
these can be calculated either from the two-point functions
as described in Sec. IV A, or (as is more appropriate for
operators involving derivatives of the height field) using a
standard momentum-shell RG (see Appendix C 1). Using � to
denote the short-distance cutoff and following the notation of
Eqs. (24), (25), and (31), this gives

∂κ⊥
∂ ln �

= (1 − β1)κ⊥,

∂κ3

∂ ln �
= (2 − β1)κ3, (33)

and
∂y

∂ ln �
= (2 − α1)y.

Here, κ⊥ is the frustrated interlayer coupling that acts between
neighboring layers in the abc and abab stackings, and κ3 is
the unfrustrated interlayer coupling, which couples nearest-
neighbor layers in the aaa stacking, second neighbors in the
abab stacking, and third neighbors in the abc stacking. Finally,
y is the vortex fugacity, which dictates the unbound vortex
density. For weakly coupled layers we have

β1 = π

18K
and α1 = 9K

π
. (34)

For the unfrustrated stacking, the bare value of κ3 is κ3,0 ∼
βJ⊥. For the frustrated stackings, the bare value of the
interlayer coupling κ⊥ is κ⊥,0 ∼ βJ⊥. In both cases, the bare
value of the vortex fugacity is y0 ∼ e−4βJ . The initial value of
� is the lattice spacing, which we set to unity.

Let us now consider what we learn from these scaling
dimensions about behavior in the three different models,
keeping only nearest-neighbor interactions and the intralayer
gradient interaction K . Using the value K = π

9 appropriate
for decoupled triangular layers, we have α1 = 1, β1 = 1

2 , and
single-layer vortices are more relevant than their multilayer

counterparts. Solving the RG equations (33) gives

y = y0�, κ⊥ = κ⊥,0�
1/2, and κ3 = κ3,0�

3/2.

The calculation reaches its limit of validity at the scale � where
the largest coupling is of order unity, and the physical state
of the system is signaled by which coupling first crosses this
threshold. If y ∼ 1 with κ⊥ and κ3 � 1, the system is a weakly
correlated paramagnet. If either κ⊥ ∼ 1 or κ3 ∼ 1 with y � 1,
layers are strongly coupled. We turn next to this regime.

B. Strongly coupled layers

To understand behavior of the height models at large
interlayer coupling, we examine the effective Hamiltonian for
each type of stacking at quadratic order in an expansion about
the ground states given in Eqs. (21), (28), and (29).

For orientation, consider first the aaa stacking. Let ϕz(r)
denote the deviation of hz from a ground-state configuration
and introduce its Fourier transform via

ϕz(r) = 1

(2π )3

∫
d3q ϕ(q)ei(q⊥r+qzz). (35)

The energy cost at quadratic order of this deviation from a
ground state is

δH = K

2(2π )3

∫
d3q E(q)|ϕ(q)|2 (36)

with

E(q) = q2
x + q2

y + κ̃(1 − cos qz), (37)

where κ̃⊥ = (π2/9)|κ3|. Thus, for this unfrustrated stacking,
excitations have a dispersion E(q) that is conventional in the
sense that it is quadratic in wave vector for all orientations of
q.

An equivalent calculation for the abc stacking (for fluctu-
ations around the ground state with θ = 0) yields the quite
different dispersion relation

E(q) = q2
x + (qy − κ̃⊥ sin qz)

2 + κ̃2
⊥(1 − cos qz)

2, (38)

where κ̃⊥ = (π/3)κ⊥. This is anomalously soft, being quartic
in wave vector along the line qy = κ̃⊥qz. The soft modes do
not give rise to divergent harmonic fluctuations since

〈[hn+1(r) − hn(r)]2〉 = 1

K

∫
d3q

(1 − cos qz)2

E(q)
(39)

is finite provided κ⊥ = 0.
For the abab stacking, since there are two layers within

a unit cell, it is necessary to introduce two fields ϕz,μ(r),
with μ = 1,2. The resulting quadratic Hamiltonian has two
eigenvalues, which for θ = 0 are

E±(q) = q2
x + q2

y + 2κ̃2
⊥ ± 2κ̃⊥| cos(qz/2)|

√
q2

y + κ̃2
⊥. (40)

In this case as well, the dispersion relation is quartic for one
direction since E− = q2

x + (κ̃2
⊥q2

z + q4
y/κ̃

2
⊥)/4 for small |q|,

but harmonic fluctuations are bounded for κ⊥ = 0.

C. Destruction of order by defects

Our discussion of harmonic height-field fluctuations around
ground states of the multilayer model accounts for spin
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fluctuations within the ground-state manifold of each trian-
gular layer, but a separate treatment is required to understand
the effect of excitations out of this ground-state manifold. That
is the subject of this section.

The excitations are represented by vortices and antivortices.
These are unbound in a single layer, as discussed in Sec. IV A,
but acquire a linear confining potential within ordered states
of the multilayer systems. More specifically, suppose that
the height field in a layer containing a widely separated
vortex-antivortex pair has a step of height 6 and width w:
its energy cost per unit length is ∼ Kw(w−2 + κ2

⊥) and is
minimized by the choice w ∼ κ−1

⊥ . Pairs are therefore bound
with typical separation w when interlayer correlations are
strong. Remarkably, although in other settings bound vortex
pairs are typically irrelevant at large scales, we find that they
exert a controlling influence in multilayer height models with
frustrated stackings.

Height fields in the presence of vortices are in general
multivalued, but can be taken to be single valued in a domain
that excludes a core around each vortex-antivortex pair. The
presence of these pairs influences the height field far from
the cores. A convenient alternative to an explicit treatment of
multivalued height fields is to impose a potential that couples
linearly to the height field and has the same effect on the
far field as a vortex-antivortex pair. In order to demonstrate
the required form of this potential, consider a single layer
containing a pair centered at the origin with separation vector
b. This pair is described by the height-field configuration

h(r) = 3

π

[
arctan

(
2x + b · x̂

2y + b · ŷ
)

− arctan

(
2x − b · x̂

2y − b · ŷ

)]
.

For |r| 	 |b| we have

h(x,y) ≈ 3

π

ẑ · (b × r)

r2
(41)

or equivalently

h(q) ≈ 6i
ẑ · (q × b)

q2
. (42)

The same far-field height configuration can be induced by
adding a potential term v(q) to the effective Hamiltonian for
the height field. Specifically, for an isolated layer, the effective
Hamiltonian (K/[2π ]2)

∫
d2q[ 1

2E(q)|ϕ(q)|2 − ϕ(−q)v(q)]
has the minimum energy configuration

ϕ(q) = v(q)

E(q)
(43)

with E(q) = q2 for a single layer. Thus, choosing a potential

v(q) = 6iẑ · (q × b), (44)

we recover the desired far-field configuration.
To examine the effect of many pairs j with locations rj ,zj

and separations bj , we impose on the multilayer system the
potential

vtot(q) = 6i
∑

j

ẑ · (q × bj ) e−i(q⊥rj +qzzj ). (45)

The ground state in the presence of these pairs is again given by
(43), but now with the multilayer form for E(q). We compute

the mean-square amplitude of the fluctuations these pairs
generate, averaged over bound pair positions with a Poisson
distribution at a density ρ, obtaining

〈[ϕz(r)]2〉 = ρ

(2π )3

∫
d3q

〈|v(q)|2〉
E2(q)

, (46)

where 〈. . .〉 indicates an average over pair separations b. This
integral is convergent at small q for the unfrustrated stacking
but divergent for the frustrated systems. Moreover, corrections
to a Poisson distribution arising from correlations between
pairs appear only at higher order in ρ. Vortex-antivortex pairs
in the absence of locking interactions therefore destroy long-
range order in the frustrated systems.

We can estimate the correlation length in this disordered
state by determining the small wave-vector cutoff for which
〈[ϕz(r)]2〉 ∼ 1. We write 〈|b|2〉 ∼ �2, where � is the cutoff scale
at which the system reaches the strong-coupling regime with
κ⊥ ∼ 1. This scale is � ∼ (βJ⊥)−2. Then, for the abc stacking
the correlation lengths in the in-plane and z directions are

ξ⊥ ∼ κ−1
⊥ (�2ρ)−2 and ξz ∼ (�2ρ)−1. (47)

For the abab stacking, the corresponding expressions are

ξ⊥ ∼ κ−1
⊥ (�2ρ)−1/2 and ξz ∼ (�2ρ)−1/2. (48)

The phase transition to a long-range ordered state involves
a competition between this disordering effect of bound
vortex pairs, and the opposite tendency produced by locking
interactions. A simple estimate for the location of the phase
boundary is obtained demanding that the locking interaction at
the scale �, integrated over the correlation volume, is of order
unity.

The most RG relevant locking interaction for the abc

stacking is κ3 [see Eq. (31)]. As this is a coupling between
layers three apart, it is not present in the bare description of a
system with only nearest-neighbor interactions. It is, however,
generated under the first steps of RG, so that the initial value
can be taken to be κ3,0 ∼ (βJ⊥)7 (see Sec. VI). At the scale
� the locking interaction is hence κ3 ∼ (βJ⊥)4. Note that an
important role is played by the fact that κ3 is generated only at
high order: if instead one had κ3,0 ∼ (βJ⊥)3 as might naively
have been expected for a third-neighbor coupling, then the
value of κ3 at scale � would be O(1) and independent of J⊥.
This would leave no scope for a regime with strong interlayer
correlations but no long-range order.

For the abab stacking, we have not found locking inter-
actions that are RG relevant. The leading (least irrelevant)
locking term in this case is κb, given in Eq. (30). At the scale
� it is of order βJ⊥�−1/2 ∼ (βJ⊥)2.

D. Phase diagram

Combining results from our discussion of RG for weakly
coupled layers with our results on the effect of defects
in strongly coupled layers, we can determine regimes of
behavior and phase boundaries for systems with each type
of stacking, in the limit J⊥ � J . The phase boundaries
determined theoretically in this section are compared with
Monte Carlo results in Sec. VII.

For the unfrustrated stacking, bound vortex pairs have no
important effects. The phase boundary is the point at which
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y ∼ κ3 ∼ 1. From the results of Sec. V A, this implies � ∼ e4βJ

and βJ⊥e6βJ ∼ 1. Solving approximately in the limit J⊥ � J ,
the phase boundary is at J⊥ ≈ Je−6βJ . Interlayer correlations
are weak for J⊥ � Je−6βJ while the system has long-range
order for J⊥ 	 Je−6βJ . Within the minimal model of Eq. (20),
the set of ordered states has a U(1) symmetry, as displayed
in Eq. (21). This is broken by the (RG irrelevant) interaction
Ṽ (h), introduced for a single layer in Eq. (14). It selects integer
values of the height field, corresponding to six possible types
of three-sublattice spin order.

In contrast, for both types of frustrated stacking, the condi-
tion y ∼ κ⊥ ∼ 1 implies J⊥ ≈ Je−2βJ . Interlayer correlations
in this case are weak for J⊥ � Je−2βJ . The paramagnetic
regime with only weak interlayer correlations therefore ex-
tends to parametrically lower temperatures and larger values
of J⊥ in these systems than in the unfrustrated stacking.
Moreover, because of the effect of bound vortex pairs in
systems with frustrated stacking, long-range order appears at
still lower temperatures or larger values of J⊥ than strong
interlayer correlations.

In the case of the abc stacking, if long-range order is
stabilized by generation of the RG relevant third-neighbor
coupling κ3 the condition κ3ξ

2
⊥ξz ∼ 1 implies order for J⊥ �

Je−5βJ/3. Alternatively, order may be stabilized by residual
contributions from the RG irrelevant coupling κb. Specifically,
RG flow stops on the scale at which κ⊥ ∼ 1. At this scale,
interactions (whether RG relevant or RG irrelevant) that break
the U(1) × U(1) symmetry of Eq. (26) down to a discrete
one will act coherently over a correlation volume. This
ordering tendency competes with the disordering effect of
bound vortex-antivortex pairs. Since κ3 is generated rather
slowly under RG, RG irrelevant interactions turn out to be the
dominant cause of locking if microscopic interactions are just
nearest neighbor [31]. The condition κbξ

2
⊥ξz ∼ 1 implies order

for J⊥ � Je−20βJ/11.
For the abab stacking, locking is driven only by irrelevant

interactions. Taking into account the dependence of ξ⊥ and
ξ‖ on ρ for the abab stacking, the condition (βJ⊥)2ξ 2

⊥ξz ∼ 1
yields a boundary for long-range order at J⊥ ≈ Je−5βJ/3.

In summary, with J⊥ � J , the classical spin-liquid regime,
in which correlations are strong both within and between
layers, extends for both types of frustrated stacking over the
interval

e−2βJ � J⊥/J � e−cβJ (49)

with c = 20
11 for the abc stacking and c = 5

3 for the abab

stacking.

E. Spin correlations from the height model

In the classical spin-liquid regime, in which interlayer
correlations are strong but there is no long-range order,
the system is approximately ordered within each correlation
volume ξ 2

⊥ξz but different correlation volumes are essentially
independent. We can compute correlations approximately in
this regime as an average over all ground states. The starting
point for this calculation is the expression (13) for spin
variables in terms of height fields, and the expressions (28)
and (29) for ground states of the minimal height models in the
systems with frustrated stackings.

We require Fourier components of the spin density at wave
vectors that are close in plane to either of the corners K
and K′ of the triangular-lattice Brillouin zone. To obtain the
leading contribution at long distance, it is sufficient to use
the approximation σj,z ∼ cos π

3 [hz(rj ) + sα], omitting higher
harmonics in hz(rj ).

Recalling that sα = 0, ± 2 on the three sublattices, we have
for the aaa stacking eiK·rj,z = eiπsα/3 and eiK′ ·rj,z = e−iπsα/3.
The same result holds for the abab stacking on one of the two
layers in the unit cell, but for the abc stacking it is necessary
to take account of the relative displacement e1 of neighboring
sites on the same sublattice in successive layers. We have
(modulo 2π )

(K + n1A1 + n2A2) · rj,z

= π

3
sα − z(K + n1A1 + n2A2) · e1 = π

3
(2pz + sα)

with p = n1 + n2, and

(K′ + n1A1 + n2A2) · rj,z = π

3
(2p′z − sα)

with p′ = 2 + n1 + n2. Retaining only smoothly varying
contributions, we can then write for q⊥ small but qz arbitrary

∑
j

σj,ze
i(K+q)·rj,z ∼

∫
d2r e−i π

3 hz(r) ei(q⊥·r+[qz+ 2π
3 p]z)

and ∑
j

σj,z ei(K′+q)·rj,z ∼
∫

d2r ei π
3 hz(r) ei(q⊥·r+[qz

2π
3 p′]z),

where we can include the aaa and the a layers of the abab

stacking by setting p = p′ = 0 in these cases.
We use these expressions to evaluate

S(K + q) =
∑
j,z

〈σ0,0σj,z〉ei(K+q)·rj,z (50)

and the equivalent with K′ in place of K, computing the average
〈. . .〉 over ground states [Eqs. (28) and (29)]. For the abc

stacking this gives

S(K + q) ∝ δ

(
qx − π

3
κ⊥ cos

[
qz + 2π

3
p

])

× δ

(
qy + π

3
κ⊥ sin

[
qz + 2π

3
p

])
(51)

and

S(K′ + q) ∝ δ

(
qx + π

3
κ⊥ cos

[
qz + 2π

3
p′

])

× δ

(
qy + π

3
κ⊥ sin

[
qz + 2π

3
p′

])
. (52)

For the abab stacking, following our discussion in Sec. III B 2,
we focus on the contribution to the structure factor from sites
on only one of the two sublattices by restricting

∑
z,μ to the

layer μ = 1. This gives

S(K + q) = S(K′ + q) ∝ δ(qz)δ
(2)

(
q2

⊥ −
[
π

3

]2

κ2
⊥

)
.

(53)
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It is reasonable to expect that the main consequence of finite
correlation lengths ξ⊥ and ξz will be broadening of the delta
functions in these expressions for S(q). Making that allowance,
we see that the height-model calculation produces results
similar to the ones from the SCGA and from Monte Carlo
simulations.

VI. RENORMALIZATION GROUP FLOWS BEYOND
LEADING ORDER

Our calculation of RG flow is perturbative in interlayer
coupling and vortex fugacity. We can improve the estimates
of the previous section by including terms to higher order.
Qualitatively, this has two potentially important consequences.
First, the in-plane stiffness K becomes scale dependent and
interlayer gradient couplings are generated under the RG flow.
This in turn modifies the dimensions of the various operators
discussed above. Second, for the abc stacking, the relevant
further-neighbor couplings that break the U(1) symmetry
under spatial rotations are generated from the irrelevant con-
tribution to the nearest-neighbor interlayer coupling, Eq. (30).

A. Simply stacked triangular layers

To set the stage, it is instructive to consider the case of
aaa-stacked triangular layers. The model [Eq. (20)] is simply
a 3D XY model, in which the coupling between neighboring
layers is much weaker than the intralayer coupling. For small
interlayer couplings there is a regime where the RG flows
are well described by those of a system of coupled 2D XY

models [32,33]. Although this treatment is not adequate to
describe the transition between the low-temperature ordered
phase and the high-temperature paramagnet, which is in the
3D XY universality class, it represents behavior well so long
as the renormalized interlayer coupling is not strong.

For uncoupled layers, two different ways exist to derive
RG equations. The original work by Kosterlitz and Thouless
[29,34] on the 2D XY model used a real-space calculation,
integrating out vortex-antivortex pairs separated by less than a
minimum length scale �, and this method has been extended to
include models analogous to (20) with vortices [35]. Somewhat
later, the momentum-shell RG approach was applied to these
systems [36] and we use this second approach, which is
more transparent in the case of the frustrated abc and abab

stackings. We review the method and give technical details of
our calculations in Appendix C; here we discuss the physical
implications of the results.

Including the most relevant interlayer couplings, the
marginal gradient couplings introduced in Eq. (31), and a
new second-layer coupling term cos π

3 [hz+2(r) − hz(r)] with
coefficient g2, the RG equations additional to (33) to quadratic
order in κ3 and y are

∂K

∂ ln �
= c1κ

2
3 − y2K2,

∂K1

∂ ln �
= −c1κ

2
3 , (54)

∂g2

∂ ln �
= g2

(
2 − π

18K

)
− c2κ

3
3 .

Here, we have allowed for the effect of fluctuating bound
vortex pairs on the stiffness. A deficiency of the momentum-
space approach is that this correction cannot be evaluated
easily, and so we take the result computed in the real-space
RG using Coulomb gas methods [37]. The constants c1 and c2

are given in Eq. (C37).
The RG flow described by Eqs. (33) and (54) includes

several important effects. First, at this order the stiffness K

flows towards smaller values if vortices dominate. As the
interlayer coupling κ3 is irrelevant if K is sufficiently small,
this ensures that the paramagnetic phase is stable to weak
interlayer coupling. Second, new interlayer couplings are
generated from κ3: the marginal gradient coupling K1 and the
relevant second-neighbor coupling g2. The latter contributes
to stabilizing long-range order if vortices are not dominant.

Interlayer gradient couplings change the scaling dimensions
of other interlayer couplings and of the fugacity for multilayer
complexes of vortices. The scaling dimensions of Eq. (34)
become more generally

β1 = π

18

∫ π

−π

dkz

2π

[
1 − cos kz

K0 + ∑
p Kp cos pkz

]
,

α1 = 9

π

∑
i,j

σiσjK|i−j |, (55)

where σi is the vortex strength in layer i.
A striking consequence of interlayer gradient couplings

that follows from these results for scaling dimensions is the
possibility of a sliding phase [38], in which for appropriate
values of {Kp} neither vortices nor interlayer cosine couplings
are relevant. The window of stability of this phase is, however,
quite narrow, and it does not seem likely that it would be
reached by RG flow starting from stacked TLIAFMs with
only nearest-neighbor interactions, whether frustrated or not.

B. abc stacking

We now consider the abc stacking. As for the aaa stacking,
under RG at second order the stiffness K flows and further-
neighbor interactions are generated. The most important of
these are shown in Eq. (31) with coupling constants denoted
by κ2 and κ3. As they break the spatial U(1) symmetry ofH(abc)

[see Eq. (24)], their generation involves the RG irrelevant
nearest-neighbor interaction κb appearing in Eq. (30). The
coupled RG equations

∂K

∂ ln �
= c3κ

2
⊥ − y2K2,

∂K1

∂ ln �
= −c4κ

2
⊥,

∂κb

∂ ln �
= − π

18K
κb, (56)

∂κ2

∂ ln �
= κ2

(
1 − π

18K

)
+ c5κ⊥κb,

∂κ3

∂ ln �
= κ3

(
2 − π

18K

)
+ c6κ⊥κ2

and values of the constants c3, c4, c5, and c6 are given in
Eq. (C37); both c5 and c6 are proportional to K1 for small K1.
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For each coupling, we have included the flow due to its scaling
dimension, as well as (for those not initially present in the
nearest-neighbor model) the leading-order term that generates
it. Flow of the vortex fugacity y is given in Eq. (33). For
the in-plane stiffness K , we have included the leading-order
nonvanishing contributions to its RG flow, demonstrating that
this is slow.

The most important physical effect captured by this second-
order calculation is the generation of the locking interaction κ3

from κb (which appears microscopically in a nearest-neighbor
model) via the coupling κ2. Since κ3 is more strongly RG
relevant than κ2 (which has the same scaling dimension as κ⊥),
it is the key interaction. It is generated only in the presence
of nonzero K1, itself produced from the nearest-neighbor
interaction κ⊥. Combining these steps, we find for a system
with initial values κ⊥ = κ⊥,0, κb ∼ κ⊥,0, and K1 = κ2 = κ3 =
0, that κ3 ∼ (κ⊥,0)7 is generated after an RG scale change of
order one. As discussed in Sec. V D, this locking interaction
stabilizes long-range order if it dominates over the disordering
effects of vortex-antivortex pairs.

We have not examined RG for the abab stacking in
detail beyond leading order since we have not identified RG
relevant interactions that break the continuous ground-state
symmetry of the minimal model. Symmetry is instead broken
by RG irrelevant nearest-neighbor interactions that are present
microscopically, as discussed in Sec. V D.

VII. DISCUSSION

The results from the three approaches we have presented—
the self-consistent Gaussian approximation, Monte Carlo
simulations, and analysis of height models—establish a
consistent picture. They show that triangular-lattice Ising
antiferromagnets with frustrated stackings exhibit classical
spin-liquid behavior over an extended temperature range if
interlayer coupling is weak. In this regime, there are strong
correlations within and between layers, but without long-range
order.

The most significant weakness of the SCGA is that it
fails to capture the ordering transition, giving instead a finite
correlation length at all nonzero temperatures. The SCGA also
predicts a temperature-independent value for the helix radius
Q, while within the height model Q is a function of βJ⊥. Small
increases in Q with decreasing T at fixed J⊥ are apparent in
Fig. 7(b), although the anticipated continuum behavior is not
fully developed.

Some more detailed comparisons between Monte Carlo
simulations and height-model calculations are possible. The
prediction of Sec. V D that the ordering transition is at
larger values of J⊥ and smaller temperatures in systems
with frustrated stacking compared to the unfrustrated case
(J⊥ ≈ Je−20βJ/11 or J⊥ ≈ Je−5βJ/3 compared with J⊥ ≈
Je−6βJ ) is clearly consistent with simulation results shown
in Fig. 4. For a quantitative test, we fit the phase boundaries
determined in simulations to the form J⊥ = AJe−cβJ . We
obtain c = 1.90 ± 0.08 for the abc stacking, c = 1.63 ± 0.11
for the abab stacking, and c = 5.44 ± 0.2 for the unfrustrated
case, in striking agreement with analytical results. Values of
the other fitting parameter are A = 2.87 ± 0.2, 2.16 ± 0.27,
and 6.43 ± 0.5, respectively.
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APPENDIX A: RECIPROCAL-SPACE FORM
OF INTERACTION

In this appendix, we discuss the reciprocal-space form
of the interaction. This is input for SCGA calculations and
is illustrated in Fig. 3. Definitions of the lattice vectors,
reciprocal-lattice vectors, and K , K ′ points are given in
Eqs. (4) and (5).

The contribution for all three stackings from in-plane
couplings is

J2D(q) = J [cos(qx) + 2 cos(qx/2) cos(
√

3qy/2)]. (A1)

For the aaa stacking, the interplane interactions contribute
J⊥(q) = cos qz and the combined minima of J(q) ≡ J2D(q) +
J⊥(q) are isolated points in reciprocal space, at ( 4π

3 ,0,π ) and
( 2π

3 , 2π√
3
,π ).

For the abc stacking, setting ζ = 1 + eiq·a1 + eiq·a2 , we can
write the interplane coupling as J⊥(q) = J⊥(ζe−iq·δ + c.c.)/2.
The in-plane coupling can also be expressed in terms of ζ , as
J2D(q) = J (|ζ |2 − 3)/2. The combined interaction can hence
be put into the form

J(q) = J

2
|ζe−iq·δ + J⊥/J |2 − 3J

2
− J 2

⊥
2J

. (A2)

From this it is clear that the minima of J(q) lie on the lines
ζ = −(J⊥/J )eiq·δ . If J⊥ � J , these lines are helixes with axes
passing through K points [Eq. (5)] of the triangular-lattice
Brillouin zone: for J(k) with k = K + n1A1 + n2A2 + q, the
line is

qx ≈ 2J⊥√
3J

cos

(
qz + 2π

3
p

)
,

qy ≈ − 2J⊥√
3J

sin

(
qz + 2π

3
p

)
, (A3)

where p = n1 + n2, as in Sec. V E. For k = K′ + n1A1 +
n2A2 + q the line is

qx ≈ − 2J⊥√
3J

cos

(
qz + 2π

3
p′

)
,

qy ≈ − 2J⊥√
3J

sin

(
qz + 2π

3
p′

)
, (A4)

where p′ = 2 + n1 + n2. At larger values of J⊥/J , the helix
is deformed, acquiring triangular projection in the x-y plane,
but the degeneracy of the line of minima is not lifted.

As the abab stacking has two sites per unit cell, the
combined interaction in this case is represented by a matrix

J(q) =
(

J2D(q) Jab
⊥ (q)

Jba
⊥ (q) J2D(q)

)
(A5)
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FIG. 16. Illustration of power-law behavior without interlayer
coupling: line has slope − 3

2 ; system parameters are L = 72 and
T = 0.31J .

with Jab
⊥ (q) = ζ cos(qz/2)eiq·δ and Jba

⊥ (q) = [Jab
⊥ (q)]∗. The

eigenvalues are

ε±
q = J

2
(|ζ |2 − 3) ± J⊥ cos(qz/2)|ζ |. (A6)

Minima lie on the line qz = 0, |ζ | = J⊥/J . For J⊥ � J ,
they form circles around the K points of the triangular-lattice
Brillouin zone, as shown in Fig. 3.

APPENDIX B: ANALYSIS OF MONTE CARLO RESULTS

In this appendix, we discuss in further detail our Monte
Carlo results for S(q) and the fitting procedures used to
analyze them. As a simple check, we start by considering
uncoupled layers, which are expected to display power-law
correlations at low temperature with S(K + q) ∝ q−3/2. The
behavior illustrated in Fig. 16 matches this quite accurately.
Interlayer interactions produce significant changes in S(q), and
no clear remnant of the 3

2 power law is identifiable even for
the smallest values of J⊥/J that we have investigated. Instead,
we find for nonzero J⊥ that S(q) is well represented using
Lorenztian functions of wave vector.

1. Correlations for the abc stacking

The data displayed in Fig. 6 show helices of high intensity
with axes passing through the K points of the triangular-lattice
Brillouin zone. In broad terms, we extract the correlation
length ξ⊥ and the helix radius Q by analyzing simulation
results for S(q) separately at each qz, and fitting data near the
maximum to a sum of Lorentzian contributions, one from each
helix that intersects the plane.

In detail, we consider values of S(q) at fixed qz with (qx,qy)
spanning one Brillouin zone. To focus on the maxima, we
retain the N largest values of S(q) from a total of L2 points
within each qz plane. If N is too large, some points are included
that are too far in reciprocal space from the helix to be well
represented by the fitting function; if N is too small, statistical

FIG. 17. Brillouin zone for the triangular lattice, with K points
labeled a–f .

accuracy is sacrificed. Results are insensitive to the choice of
N in the range 20 � N � 200, and we use N = 50. Referring
to Fig. 17, the form of S(q) near the K points labeled a and b

should be dominated by helices with their axes passing through
these K points, but may also be influenced by helices with axes
passing through the four K points c–f if the helix radius is
large. Our fitting function

F4nn(q⊥) =
∑

i

I

ξ 2
⊥(q⊥ − q⊥,i)2 + 1

(B1)

therefore includes six terms, labeled by i. Since the different
values of q⊥,i are related by symmetry, it contains four real
scalar fitting parameters. The quality of fit we obtain in this
way is illustrated in Fig. 18.

In principle, one expects S(q) to be characterized by two
distinct correlation lengths ξ⊥ and ξz, as discussed in Sec. V. In
practice, we have been unable to extract a second correlation
length from our Monte Carlo data for the abc stacking,
for reasons we now discuss. Consider first the ideal form
of correlations, reached in the limit of divergent correlation

FIG. 18. Comparison of F4nn with data for L = 72, Lz = 12,
J⊥ = 0.2J , T = 0.8J in the abc stacking.
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FIG. 19. S(q) vs qz for fixed qx , qy in the abc stacking, comparing
data and fitting function. J⊥ = 0.1J , L = 36, Lz = 48, T = 0.56J .

lengths:

Sideal(q) = δ
(
qx − q0

x (qz)
)
δ
(
qy − q0

y (qz)
)
. (B2)

The consequences of finite correlation lengths can be rep-
resented by convolving Sideal(q) with a form factor that is
characterized by its width in two directions transverse to the
line q0

x (qz), q0
y (qz). The fitting function F4nn(q⊥) corresponds

to a choice for this form factor that has circular contours
in the qx-qy plane. More general possibilities have elliptical
contours; we have made fits of this type, but find they do not
show significant in-plane anisotropy. As a demonstration that
the form F4nn(q⊥) is an adequate representation of our data,
we show in Fig. 19 a comparison of it with Monte Carlo data,
as a function of qz at fixed qx , qy , on a line passing through
the helix. The close match indicates that the broadening within
the qx-qy plane that is contained in F4nn(q⊥) also accounts for
the broadening of the helix along qz.

2. Correlations for the abab stacking

For the abab stacking, our fitting of S(q) as a function of
qx and qy follows similar steps to the ones used for the abc

stacking, but analysis of the dependence on qz has new features.
For this stacking, the peak width of S(q) as a function of qz

yields directly the interlayer correlation length ξz. An example
of a fit is shown in Fig. 20 and the resulting values of ξz are
displayed as a function of J⊥ and T in Fig. 21.

FIG. 20. S(q) vs qz, for fixed qx,qy passing through the maxi-
mum, in the abab stacking: data (red); fit to SCGA (green); sum of
Lorentzians (black). J⊥ = 0.20J, T = 0.73J .

FIG. 21. ξz vs T for different values of J⊥ in the abab stacking.
The unit of length is the spacing between successive a layers.

APPENDIX C: RG CALCULATIONS

Here, we present technical aspects of our RG calculations,
following a standard momentum-shell approach [30]. The
general method is as follows. Our objective is to evaluate
correlation functions or the partition function

Z =
∫

D[h]e−(H0+H1) (C1)

with an initial momentum cutoff � = 1/�, where � is the lattice
constant. Here, H0 is a quadratic effective Hamiltonian, which
may include both in-plane and interplane gradient terms:

H0 = 1

2

∑
z

∫
d2r

[
K[∇hz(r)]2

+
∑
p>0

Kp∇hz(r) · ∇hz+p(r)

]
. (C2)

We divide the height field into short-wavelength and long-
wavelength modes by writing

h>
z (r) =

∫
�/s<|q|<�

d2q hz(q)eiq·r,

h<
z (r) =

∫
|q|��/s

d2q hz(q)eiq·r. (C3)

A new effective Hamiltonian Heff with a reduced cutoff �/s is
obtained by integrating out the short-wavelength modes, and
then rescaling all in-plane lengths by s. Note that we retain the
layer index z as a discrete variable, and coarse grain only the
in-plane coordinates. Expanding in powers of H1

e−Heff =
∫ ∏

z

D[h>
z ]e−(H0+H1)

≈
∫ ∏

z

D[h>
z ]e−H0

{
1 − H1 + 1

2
H2

1 + . . .

}
. (C4)

To quadratic order, the effective Hamiltonian with the reduced
cutoff �/s is

Heff = H′
0 + 〈H1〉0 − 1

2

〈
H2

1

〉
0 + . . . , (C5)
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where all terms are functions of only the long-wavelength
fields h<

z (r), the average 〈. . .〉0 is over short-wavelength fields
with weight e−H0 , and H′

0 is obtained from H0 by omitting the
short-wavelength fields. As a final step, lengths in H′

0, and in
the expectation values on the right are rescaled according to
r → sr.

1. First-order calculation

We derive the first-order RG equations as follows. Consider
the interlayer coupling

H1 = κ⊥
∫

d2r[∂xhz(r) cos δhz(r) − ∂yhz(r) sin δhz(r)]

= κ⊥Im

[∫
d2r ∂ζ z

eiδhz(r)

]
, (C6)

where we have introduced ζz = xz + iyz, and z denotes the
layer with which the coordinates x,y are associated. We have

〈H1〉0 = κ⊥Im

[∫
d2r ∂ζz

eiδh<(r,z)〈eiδh>(r,z)〉0

]
. (C7)

Defining

Fn ≡ 〈h>(r,z)h>(r,z + n)〉
= γn

4π2K

∫
�>|q|>�/s

d2q
1

q2
= γn

2πK
log s (C8)

with

γn = 1

2π

∫ 2π

0
dkz

K cos nkz[
K + ∑

p>0 Kp cos pkz

]
and βn = π

18K
(γ0 − γn), (C9)

we obtain

〈eiδnh(r,z)〉 = exp

[
−π2

18
〈δnh(r,z)2〉

]

= exp

[
−π2

9
(F0 − Fn)

]
= s−βn . (C10)

The rescaling r → sr gives

Heff = κ⊥
∫

d2r Im[∂ζz
eiδh<(r,z)]s1−β1 . (C11)

In the continuum limit s → 1 we have
∂κ⊥
∂ ln �

= (1 − β1)κ⊥. (C12)

Scaling dimensions of the other operators can be deduced in a
similar way.

2. Second-order calculation

At second order, we must evaluate the quadratic terms in
Eq. (C5). It is useful to introduce some notation. Let Hn(z)
denote a contribution to interlayer coupling involving the
height differences δphz(r) ≡ π

3 [hz+p(r) − hz(r)] and define

�m,n,z−z′ = 〈Hm(z)Hn(z′)〉0 − 〈Hm(z)〉0〈Hn(z′)〉0.

We are primarily interested in two types of such term: those that
contribute to the most relevant interlayer couplings, and those
that contribute corrections to the marginal gradient couplings.

a. Corrections to gradient couplings

We first compute corrections to the gradient couplings that
are generated by �n,n,0 for various n. An example is

�3,3,0 = 〈H3(z)H3(z)〉0 − 〈H3(z)〉0〈H3(z)〉0

= (κ3)2

2

∫
d2r d2r′{cos(δ3h

<
z (r) + δ3h

<
z (r′))(〈eiδ3h

>
z (r)eiδ3h

>
z (r′)〉0 − s−2β3 )

+ cos(δ3h<(r,z) − δ3h<(r′,z))(〈eiδ3h>(r,z)e−iδ3h>(r′,z)〉 − s−2β3 )}. (C13)

We write

〈eiδ3h
>
z (r)eiδ3h

>
z (r′)〉0 − s−2β3 = s−2β3 (e−4πβ3G(r−r′) − 1), (C14)

where

G(r) =
∫

�/s<|q|<�

d2q
4π2

eiq·r

q2
. (C15)

Assuming that (e4πβ3G(r−r′) − 1) is small unless |r − r′| � 1, we expand the long-wavelength height fields in R = r − r′ to
obtain

�3,3,0 = (κ3)2

2

∫
d2r d2r′[cos(2δ3h

<
z (r)) + (r − r′) · ∇δ3h

<
z (r) sin(2δ3h

<
z (r)) + . . .]s−2β3 (e−4πβ3G(r−r′) − 1)

+ 1

2

∫
d2r d2r′

{
1 − 1

2
((r − r′) · ∇δ3h

<
z (r))2s−2β3 (e4πβ3G(r−r′) − 1)

}
. (C16)

The terms in the first line are new, less relevant couplings between spins three layers apart, and can be ignored. The first term
in the second line is a constant, and the second term in the second line is the contribution to the gradient energy that we are
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interested in. After performing the angular integration, only terms of the form (∇δh<)2 remain and we obtain

�3,3,0 = − (κ3s
−β3 )2

8
B

∫
d2r |∇[δ3h

<
z (r)]|2 + const + . . . , (C17)

where the ellipsis represents the less relevant interlayer couplings, and

B =
∫

d2R R2(e4πβ3G(R) − 1). (C18)

The other important corrections to the gradient energy come from �1,1,0 and �2,2,0. These contain two types of terms, with
the forms

�1,1,0(+) = −(κ⊥)2
∫

d2r d2r′ [〈∂ζ z
∂ζ ′

z
ei[δhz(r)+δhz(r′)]〉0 − 〈∂ζ z

eiδhz(r)〉0〈∂ζ ′
z
eiδhz(r′)〉0 + c.c.

]
,

�1,1,0(−) = (κ⊥)2
∫

d2r d2r′ [〈∂ζ z
∂ζ ′

z
ei[δhz(r)−δhz(r′)]〉0 − 〈∂ζ z

eiδhz(r)〉0〈∂ζ ′
z
e−iδhz(r′)〉0 + c.c.

]
. (C19)

Terms of the first type generate new (but irrelevant) interlayer couplings that do not lift the helical degeneracy; they are not
important for our analysis. We are interested in terms of the second type, which reduce to

�1,1,0(−) = (κ⊥)2

2

∫
d2r d2r′∂ζ z

∂ζ ′
z
{cos(δh<

z (r) − δh<
z (r′))s−2β1 (e4πβ1G(r−r′) − 1)}. (C20)

Differentiating both slow and fast fields, and expanding for small R, we obtain the four terms

�1,1,0(−) = (κ⊥)2

2
s−2β1

∫
d2r {C0|∇h<

z (r)|2 − C1(∇h<
z (r)) · (∇δh<

z (r)) + C2|∇δh<
z (r)|2 + C3} + irrel., (C21)

where

C0 =
∫

d2R(e4πβ1G(R) − 1), C1 = 4πβ1

∫
d2R [R · ∇RG(R)]e4πβ1G(R) = −C0,

C2 = −1

4

∫
d2R R2[∇2

Re4πβ1G(R) − 8π2β2
1 |∇RG(R)|2e4πβ1G(R)] = −1

4
C0 + π2

9K
(γ1 + γ0)

∫
d2R R2∇2

RG(R)e4πβ1G(R),

C3 =
∫

d2R
(

π2

9K
γ0∇2

RG(R) + 2πβ2
1 |∇RG(R)|2

)
e4πβ1G(R) (C22)

and we have exploited symmetries in the integration over R.
Summing over layers, the contribution to the gradient energy is

δH = (κ⊥s−β1 )2

2

∑
z

∫
d2r{2C2|∇h<

z (r)|2 − (2C2 − C0)(∇h<
z (r)) · (∇δh<

z+1(r))}. (C23)

A similar contribution arises from �2,2,0. Although the leading irrelevant terms in the interlayer coupling also renormalize the
gradient energy, we will neglect their effect here as it influences only the initial part of the RG flow.

b. Generation of new interlayer couplings

We now turn to the most important part of our RG calculation, which is to determine at what order in κ⊥ the relevant interlayer
coupling H3 is generated in a microscopic theory with only nearest-layer couplings. [Recall from Eq. (31) that H3 couples layers
three apart in the abc stacking.] Importantly, we show that although one might expect H3 to be produced at order κ3

⊥, in fact this
is not the case: generating this interaction requires K1 = 0, and it consequently appears at order κ7

⊥.
If H3 is absent, then to generate it we must keep the leading irrelevant term that breaks the U(1) symmetry, which is the

interlayer coupling Hb(z) of Eq. (30). Then, H2 [Eq. (31)] is generated by the bilinear

�b,1,1 = 〈H1(z)Hb(z + 1)〉 − 〈H1(z)〉〈Hb(z + 1)〉 (C24)

and H3 is generated by

�2,1,1 = 〈H1(z)H2(z + 1)〉 − 〈H1(z)〉〈H2(z + 1)〉. (C25)

Other cross terms, such as 〈H1(z)H1(z + 1)〉 and 〈H3(z)H1(z)〉 also generate new interlayer couplings. However, for our purposes
these can be ignored: they are either less relevant than the terms listed above, or equally relevant but appear at a higher order
in κ⊥.
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We have

�2,1,1 = −κ⊥κ2

∫
d2r d2r′ [〈∂ζ z

∂ζ ′
z+1

ei[δhz(r)+δ2hz+1(r′)]〉 − 〈∂ζ z
eiδhz(r)〉〈∂ζ ′

z+1
eiδ2hz+1(r′)〉 + H.c.

] + . . .

≈ −(κ⊥s−β1 )(κ2s
−β2 )C3(2)

∫
d2r cos(δ3hz(r)) + less relevant terms, (C26)

where + . . . represents a contribution that generates terms of the form exp{i π
3 [hz+3(r′) + hz(r) − hz+1(r′) − hz+1(r)]}, which

produce interlayer couplings less relevant than the terms of interest, which have been neglected in the second line. Additionally,
in the second line we have kept only terms in which all derivatives are applied to the fast height fields, as these generate the most
relevant interlayer coupling, and neglected all but the leading-order term in a derivative expansion of the argument of the cosine
term for small R = r − r′. The coefficient is

C3(n) = π2

9K

∫
d2R

{
− γ1∇2

RG(R) + π2

9K
(γ1 − γn+1)(γ1 − γ0)|∇RG(R)|2

}
e

π2

9K
(γ0−γ1+γn+1−γn)G(R). (C27)

The frustrated second-layer coupling is generated by

�b,1,1 = −4κ⊥κb

∫
d2r d2r′ [〈∂ζ z

eiδhz(r)(∂ζ ′
z+1

eiδhz+1(r′)/2)2〉 − 〈∂ζ z
eiδhz(r)〉〈(∂ζ ′

z+1
eiδhz+1(r′)/2)2〉 + H.c.

] + . . . ,

where again, + . . . generates interlayer couplings of the form exp[i π
3 (hz+2 + hz − 2hz+1)], which we omit as they are less

relevant. In this case, because H2 involves one derivative of the slow height fields, we must calculate two terms. First, applying
all three of the derivatives to h> gives the terms

κ⊥κb

∫
d2r d2r′ei(δh<

z (r)+δh<
z+1(r′)) lim

r′′→r′
∂ζ z

∂ζ ′
z+1

∂ζ ′′
z+1

〈eiδh>
z (r)eiδh>

z+1(r′)/2eiδh>
z+1(r′′)/2〉 + H.c.

= (κ⊥s−β1 )(κbs
−β1 )

(
π2

9K

)3

[(γ1 − γn+1)(γ1 − γ0)2]

×
∫

d2r d2r′[ei(δh<
z (r)+δh<

z+1(r′))∂ζz
G(r − r′)[∂ζ ′

z′
G(r − r′)]2 + H.c.]e− π2

9K
(γ0+γ2−2γ1)G(R).

Next, we Taylor expand for small R = r − r′. After integrating over R, the leading-order term vanishes, and the most relevant
term that we are left with is

(κ⊥s−β1 )(κbs
−β1 )C4

∫
d2r[∂xδ2h

<
z (r) cos(δ2h

<
z (r)) + ∂yδ2h

<
z (r) sin(δ2h

<
z (r))], (C28)

where

C4 =
(

π2

9K

)3

[(γ1 − γn+1)(γ1 − γ0)2]
∫

d2R Rx∂xG(R)|∇G(R)|2e− π2

9K
(γ0+γ2−2γ1)G(R). (C29)

Second, applying one derivative to h< in Eq. (28) generates the contribution to H2

4κ⊥κb

∫
d2r d2r′ [eiδh<

z+1(r′)/2∂ζ ′
z
eiδh<

z+2(r′)/2〈∂ζ z
eiδh>

z (r)(eiδh>
z+1(r′)/2∂ζ ′

z
eiδh>

z+1(r′)/2)〉 + H.c.
]

= κ⊥κb

∫
d2r d2r′ [∂ζ ′

z
eiδh<

z+1(r′)〈∂ζ z
eiδh>

z (r)∂ζ ′
z
eiδh>

z+1(r′)〉 + H.c.
]

≈ (κ⊥s−β1 )(κbs
−β1 )C3(1)

∫
d2r{∂xh

<
z (r) cos(δ2h

<
z (r)) + ∂yh

<
z (r) sin(δ2h

<
z (r))} (C30)

with C3(n) as defined in Eq. (C27). The remaining contributions, which come from applying two or three derivatives to h<,
necessarily produce irrelevant couplings, and are safely omitted from our RG calculation. In total, we therefore obtain

�b,1,1 = (κ⊥s−β1 )(κbs
−β1 )

∫
d2r

[(
C3(1) − π

3
C4

)
{∂xh

<
z (r) cos(δ2h

<
z (r)) + ∂yh

<
z (r) sin(δ2h

<
z (r))}

+ π

3
C4{∂xh

<
z+2(r) cos(δ2h

<
z (r)) + ∂yh

<
z+2(r) sin(δ2h

<
z (r))}

]
+ irrelevant terms. (C31)

Although the first terms in the second line are just as relevant as the terms in the first line, they do not contribute to generating
H3 until interlayer kinetic terms Kn are generated for n > 1 [see Eq. (C2)]. Hence, we have neglected them in our discussion, as
their impact on the other couplings in the RG is very weak. We will also see presently that the coefficient C4 is negligibly small
compared to C3(1).
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We emphasize that both C3(1) and C4 are of order at least κ2
⊥, since for K1 � K and Kn = 0,n > 1, we have

γ0 = 1√
1 − (

K1
K

)2
≈ 1, γ1 = K

K1

(
1 − 1√

1 − (
K1
K

)2

)
≈ K1

2K
, γn = 0, n > 1 (C32)

and K1 is generated only at order κ2
⊥. Therefore, in summary, κ3 is generated not at order κ3

⊥, as one might naively have expected,
but at order κ7

⊥. A similar effect was noted for frustrated couplings in Ref. [39].

3. Evaluation of coefficients

To proceed further, we must evaluate the coefficients B, C0, C1, C2, and C3(n). In order to compute the relevant integrals,
we expand the exponentials for small G(r). (We will justify this expansion presently.) To ensure that all integrals are absolutely
convergent, we take our system to have a finite size Lx = Ly = L, and use periodic boundary conditions. In this case, the
first-order terms vanish after integration since∫

d2r G(r) = 1

L2

∫
d2r

∑′
�/s<q<�

eiq·r

q2
= 1

L2

∑′
�/s<q<�

1

q2

∫
d2r eiq·r =

∑′
�/s<q<�

{
1 ifq = 0,

0 else.

A similar derivation applies for derivatives of a single power of G, which also vanish. The leading-order contributions are
therefore quadratic in G. Keeping only these terms, the integrals of interest are

I0 =
∫

d2r[G(r)]2, I1 =
∫

d2r r2[G(r)]2, I2 =
∫

d2r r2G(r)∇2G(r), and I3 =
∫

d2r G(r)∇2G(r) −
∫

d2r|∇G(r)|2.

The two integrals not involving explicit powers of r are easily evaluated as

I0 =
∫

d2r [G(r)]2 = 1

L4

∫
d2r

∑
q,k

ei(q+k)·r

q2k2
= 1

L2

∑′
q

1

q4
≈ 1

4π2

∫ �

�/s

d2q
q4

= 1

2π�2

s2 − 1

2
≈ ds

2π�2
,

I3 =
∫

d2r [G(r)∇2
r G(r)] = 1

L4

∫
d2r

∑′
q,k

ei(q+k)·r

q2
≈ 1

(2π )2

∫ �

�/s

d2q
q2

= log(s)

2π
≈ ds

2π
.

We note, somewhat surprisingly, that it is the terms quadratic in G(r), rather than the linear terms, that are proportional to ds.
Our Taylor expansion is nevertheless justified: for higher powers of G, the δ-function constraint takes the form δ(

∑n
i=1 ki). In

practice, this means that nonzero contributions to momentum integrals require both that |ki | is within the momentum shell for
each i and also that |∑n−1

i=1 ki | lies in this shell. This leads to a strong phase-space suppression of the relevant angular integrals
for n > 2, justifying the quadratic approximation used here.

Evaluating I1 and I2, we encounter a second difficulty: the resulting integrals retain an explicit dependence not only on the
cutoff �, but also on the system size L. This stems from the factors of r2 in the integrands, which arise from Taylor expansions
of the type

f [h<(R) − h<(R + r)] ≈ f [r · ∇h<(R)] + . . . (C33)

followed by an expansion of f for small r . The expansion is justified if G(r) falls off sufficiently quickly in r that only small
values of r contribute; however, in the cases at hand this is not so.

To circumvent this difficulty, we instead expand the function f to quadratic order in the difference h<(R) − h<(R + r) of the
height fields, without making a Taylor expansion of the height fields in powers of r. The approach amounts to the substitution∫

d2 q q2h<
q h<

−q

∫
d2r r2F (r) ≈

∫
d2q h<

q h<
−q

∫
d2r 2(1 − cos q · r)F (r).

Using this, we obtain

q2I1 = 2
∫

d2r (1 − cos q · r)[G(r)]2 = 1

L4

∑
k1,k2

∫
d2r

(
2
ei(k1+k2)·r

k2
1k

2
2

− ei(k1+k2+q)·r

k2
1k

2
2

− ei(k1+k2−q)·r

k2
1k

2
2

)

≈ 1

4π2

∫
d2k
k2

(
2

k2
− 1

|k + q|2 − 1

|k − q|2
)

≈ −q2 ds

π�4
, (C34)

where in the last line we have kept terms only to quadratic order in q, as higher-order terms are RG irrelevant. Similarly, we may
evaluate

q2I2 = 2
∫

d2r (1 − cos q · r)G(r)∇2
r G(r) = 1

L4

∑
k1,k2

∫
d2r

(
2
ei(k1+k2)·r

k2
1

− ei(k1+k2+q)·r

k2
1

− ei(k1+k2−q)·r

k2
1

)

≈ 1

4π2

∫
d2k

(
2

k2
− 1

|k + q|2 − 1

|k − q|2
)

≈ −q2 ds

π�2
. (C35)
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Note that in both of these evaluations, we have ignored an important constraint, which is that for the terms involving q, we must
have �/s � |k + q| � �, in addition to �/s � k � �. However, this constraint, if included, will modify the result by a factor
of order unity, provided that q is not large compared to � − �/s. The final results are

B = −16πβ2
3

ds

�4
, C0 = 1

2
(4πβ1)2I0 = 4πβ2

1
ds

�2
, C4 = 0, (C36)

C2 = −C0

4
+ π2

9K
(4πβ1)(γ1 + γ0)I2 = −π

[
β2

1 + 8

(
π

18K

)2(
γ 2

0 − γ 2
1

)] ds

�2
,

C3(n) = −
(

π2

9K

)2

[γ1(γ0 − γ1 + γn+1 − γn) + (γ1 − γn+1)(γ1 − γ0)]I3 = ds

2π

(
π2

9K

)2

[γ1γn − γ0γn+1].

Here, the factors of � in each coefficient reflect the total engineering dimension of the couplings involved; these factors can
be eliminated by defining appropriate dimensionless couplings. From these expressions, we can extract values for the constants
appearing in Eqs. (54) and (56), obtaining

c1ds = −1

8
B, c2ds = 2πβ2

3
ds

�2
,

c3ds = C2, c4ds = C0

2
− C2,

c5ds = −1

2
C3(1), c6ds = 1

2
C3(2). (C37)
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[7] H. W. J. Blöte and H. J. Hilhorst, J. Phys. A: Math. Gen. 15,
L631 (1982); B. Nienhuis, H. J. Hilhorst, and H. W. Blöte, ibid.
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