
PHYSICAL REVIEW B 94, 224411 (2016)

Anisotropic long-range spin systems
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We consider anisotropic long-range interacting spin systems in d dimensions. The interaction between the
spins decays with the distance as a power law with different exponents in different directions: We consider an
exponent d1 + σ1 in d1 directions and another exponent d2 + σ2 in the remaining d2 ≡ d − d1 ones. We introduce
a low energy effective action with nonanalytic power of the momenta. As a function of the two exponents σ1

and σ2 we show the system to have three different regimes at criticality, two where it is actually anisotropic and
one where the isotropy is finally restored. We determine the phase diagram and provide estimates of the critical
exponents as a function of the parameters of the system, in particular considering the case where one of the two
σ ’s is fixed and the other varying. A discussion of the physical relevance of our results is also presented.
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I. INTRODUCTION

Anisotropic interactions are present in a variety of physical
systems. They are characterized by the property that the
interaction energy V among two constituents of the system
located in �r1 and �r2 depends on the relative distance �r12 =
�r1 − �r2 so that V (�r12) assumes different values (possibly a
different functional form) for �r12 in different directions. A
typical instance is provided by dipolar interactions (see [1] in
[2]). For example, with a fixed direction of the dipoles, say ẑ,
as it happens for ultracold dipolar gases [3], there is repulsion
if the two dipoles have �r12 in the x-y plane and attraction if
�r12 is parallel to ẑ, with V (�r12) ∝ 1 − 3 cos2 θ and θ being the
angle between �r12 and ẑ.

Anisotropy is one of the fundamental features of molecular
interactions, and it is responsible for phase transitions between
tilted hexatic phases in liquid-crystal films [4]. Liquid crystals
can be described using low energy theories [5], where the
order parameter represents the bond angle between molecules.
At particular points of the phase diagram liquid crystals are
efficiently described by the so-called Lifshitz point effective
action [6,7].

Another major example of anisotropic systems is pro-
vided by layered superconductors. The layered structure can
be described by the Lawrence-Doniach model which has
different masses in different directions [8] (typically m‖ in
the x-y plane and m⊥ in the ẑ direction). Layered systems
can occur naturally or be artificially created. Examples of
artificial structures are alternating layers of graphite and alkali
metals [9] or samples with layers of different metals [10]. On
the other hand layered superconductors range from compounds
of transition-metal dichalcogenide layers intercalated with
organic insulating molecules [11] to cuprates [8]. Vortex
dynamics in magnetically coupled layered superconductors
was studied [12] by a multilayer sine-Gordon type model [13].
Layered ultracold superfluids can be induced by using a deep
optical lattice in one spatial direction for fermions [14] or
bosons [15].

A simple way of studying the effect of layering (and
anisotropy in general) is to consider statistical mechanics
models with different couplings in different directions. A

typical case is provided by the study of the XY model in
three dimensions with a coupling between nearest neighbors
sites i and j equal to J‖ if i,j belong to the same x-y plane
and to J⊥ if i,j belong to nearest neighbor planes in the ẑ

direction [16]. This model has been studied also in relation to
layered superconductors and cuprates [17]. Depending on the
value of the ratio J⊥/J‖ the behavior of the system can pass
from being 3D to effectively 2D [16].

The main point of these and similar studies of anisotropic
spin systems with short-range (SR) couplings is that, far from
the critical point, anisotropy induces a series of very interesting
effects, but for general reasons at the critical point isotropy
is restored and strictly speaking an isotropic critical point is
found for any finite value of the J⊥/J‖ ratio (different is the
case of a finite number of 2D systems). This is a consequence
of the divergence of the correlation length, so that the system
does not see any longer the anisotropy at criticality. As another
example, for fermions in the BCS-BEC crossover [18] in the
presence of layering the anisotropy is strongly depressed at
the unitary limit [14] even though there is no phase transition,
but the system is scale invariant due to the divergence of the
scattering length.

Therefore a general interesting question is to study the
conditions under which one can have genuinely anisotropic
critical points. A main observation of this paper is that, in
the presence of anisotropic long-range (LR) interactions, the
interplay between the divergence of the correlations and the LR
nature of the couplings may induce such anisotropic critical
behavior.

The interest in the statistical physics of systems with
LR interactions is in general motivated by a large number
of possible applications, ranging from plasma physics to
astrophysics and cosmology [2,19]. The shape of LR inter-
actions is typically considered as decaying as a power law
of the distance r−d−σ , where r is the distance between two
elementary components of the system, d is the dimensionality,
and σ is a real parameter determining the range of the
interactions. Simple considerations show that for σ < 0 the
mean-field interaction energy diverges and the system is
ill defined. It is still possible to study this case using the
so-called Kac rescaling [20], leading to many interesting
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results such as ensembles inequivalence and inhomogeneous
ground states [21,22].

For σ > 0 the thermodynamics is well defined and spin
systems may present in general a phase transition at a certain
critical temperature Tc. In the isotropic case, as a function of
the parameter σ , three regions are found [23]. For σ � d

2 the
universal behavior is the one obtained at mean-field level, for σ

larger than a critical value σ ∗ the system behaves as a SR one at
criticality and for d/2 < σ � σ ∗ the system has peculiar non-
mean-field critical exponents. The precise determination of σ ∗
has been the subject of perduring interest [24–26]. Moreover,
recent results on conformal invariance in LR systems are
also available [27]. The theoretical interest for these systems
is also supported by the recent exciting progresses in the
experimental realization of quantum systems with tunable LR
interactions [28–34].

The goal of the present paper is to introduce and study
anisotropic spin models with LR interactions having different
decay exponents in different directions: σ1 in d1 dimensions
and σ2 in the remaining d2 ≡ d − d1 ones. The SR limit is
provided by such decay exponents going to infinite. Clearly,
when both σ1 and σ2 go to infinity the isotropic SR limit
is retrieved, while when only one of the two—say σ2—is
diverging the model is SR in the corresponding d2 directions.
It is expected that when one of the two exponents, σ1 or
σ2, is larger than some threshold value, say σ ∗

1 or σ ∗
2 , the

corresponding directions behave as if only SR interactions
were present at criticality.

Apart from the already mentioned interest in investigating
anisotropic fixed points, three other motivations underly our
work. From one side we think it is interesting to study a
problem in which rotational invariance is broken at criticality
due to the division of the system in two subspaces, which is
somehow the simplest global form in which such rotational
invariance can be broken. From the other side in a natural
way quantum systems with LR couplings are an example of
the systems under study: Indeed, if one considers a quantum
model in D dimensions with LR interactions or couplings,
then at criticality one can map it on an anisotropic classical
system in dimension d = D + 1, with the interactions along
the imaginary time direction being of SR type [35]. This is
of course the generalization of what happens for SR quantum
systems: As an example in which the mapping can be worked
out explicitly [36,37] we mention the mapping of the SR Ising
chain in a transverse field on the classical SR Ising model,
with the second dimension corresponding to the imaginary
time. Therefore generically a D-dimensional quantum spin
system with LR interactions can be seen as an example of
an anisotropic classical system where the interaction is LR
in D dimensions and SR in the remaining one. A similar
situation would occur for LR quantum systems in the models
in which two extra-time dimensions are added and the time can
be regarded as a complex variable [38]. Finally, experiments
of quantum systems with tunable LR interactions provide an
experimental counterpart to implement and test the results we
present in the following.

To study anisotropic LR spin systems we introduce a
model, whose low energy behavior is well described by an
anisotropic Lifshitz point effective action with nonanalytic
momentum terms in the propagator. At variance with the usual

Lifshitz point case in our system a standard second order phase
transition is found, and there is no additional external field to
tune in order to reach criticality.

Using functional renormalization group (RG) methods we
study in the following the critical behavior of anisotropic LR
spin systems determining the independent critical exponents
and depicting the phase diagram in the parameter space of σ1

and σ2, mostly focusing on the case σ1,σ2 � 2.

II. THE MODEL

The model we consider is a lattice spin system in dimension
d, with an arbitrary number of spin components N . The spins
are classical but comments on quantum spin systems with LR
interactions will also be presented.

The interactions among the spins are LR with different
exponents depending on the spatial directions. The system
is divided into two subspaces of dimension d1 and d2 with
d1 + d2 = d. In the first subspace the interaction between the
spins decays with the distance as a power law with exponent
d1 + σ1, while in the other subspace it decays with exponent
d2 + σ2.

This formally amounts to write the position of a spin, �r =
(r1, · · · ,rd ), as �r ≡ �r‖ + �r⊥ with �r‖ = (r1, · · · ,rd1 ,0, · · · ,0)
and �r⊥ = (0, · · · ,0,rd1+1, · · · ,rd ). The ith spin is located in
�ri = (r1,i , · · · ,rd,i), so that �r‖,i = (r1,i , · · · ,rd1,i ,0, · · · ,0) and
�r⊥,i = (0, · · · ,0,rd1+1,i , · · · ,rd,i) with d = d1 + d2.

Given the two spins in �ri and �rj we define �rij as �rij = �ri − �rj

and similarly we put �r‖,ij = �r‖,i − �r‖,j and �r⊥,ij = �r⊥,i − �r⊥,j .
The couplings between two spins in �ri and �rj decay with power
law exponent d1 + σ1 if �rij is parallel to �r‖,ij and with power
law exponent d2 + σ2 if �rij is parallel to the �r⊥,ij direction.

The model we consider then reads

H = −
∑
i �=j

J‖
2

�Si · �Sj

r
d1+σ1
‖,ij

δ(�r⊥,ij ) −
∑
i �=j

J⊥
2

�Si · �Sj

r
d2+σ2
⊥,ij

δ(�r‖,ij ), (1)

where the �Si are classical N component vectors (normalized
to 1). The distance r‖,ij is calculated on the d1-dimensional
subspace, to which both spins �Si and �Sj belong, as ensured
by the presence of the δ(�r⊥,ij ). On the same ground r⊥,ij

measures the distance between two spins i,j belonging to the
same d2-dimensional subspace. Thus any spin of the model
interacts only with the spins sitting on the same subspace. For
example, given an Ising model in two dimensions for variables
Si = ±1, setting i ≡ (i1,i2) we are considering couplings
nonvanishing only if i1 = j1 (and interactions decaying as
|i2 − j2|−d2−σ2 , with d2 = 1, in the same column) and if i2 = j2

(and interactions decaying as |i1 − j1|−d1−σ1 , with d1 = 1, in
the same row).

When one of the two exponents goes to infinite the inter-
action becomes SR in the corresponding subspace. However,
in analogy with the isotropic LR case, two threshold values
σ ∗

1 and σ ∗
2 exist such that for σ1 > σ ∗

1 or σ2 > σ ∗
2 the systems

behaves as if only SR interactions were present at criticality
in, respectively, the d1 or d2 dimensional subspace.

In (1) we disregard for simplicity interactions between
spins if their relative distance �rij is not perpendicular or
parallel to �r⊥,ij (or �r‖,ij ). Notice that, although it is chosen
as a simplifying assumption, this is the case for a d1
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dimensional quantum spin system with LR interactions, e.g.,
of transverse Ising type, when mapped to a classical system
(couplings along the imaginary time are among same column
discretized points). Additional finite-range interactions for
spins of different columns or rows do not qualitatively affect
our results. The assumption of absence of LR interactions
between spins belonging to different subspaces is very useful
to simplify the treatment of anisotropy, otherwise it would
be necessary to introduce explicit angular dependences. We
expect that, if the multisubspace interactions are well peaked
around the intrasubspace interactions, then only quantitative
modifications are found. When all the angles give a significant
contribution to the energy the treatment is considerably more
involved, also for SR systems, and as a future work one could
perform a study of the RG flow also of the angular dependence
of the couplings. Nevertheless our model already well shows
how the presence of anisotropy can radically modify the
standard behavior of LR interactions.

To discuss a specific example, we consider the ferromag-
netic quantum Ising model in dimension D in the presence of
LR interactions

H = −J

2

∑
i �=j

σ
(z)
i σ

(z)
j

|i − j |d1+σ1
− h

∑
i

σ
(x)
i , (2)

where σ (z),(x) are the z,x components of the quantum spin �σ
and J is a positive magnetic coupling. In the thermodynamic
limit a quantum spin system can be mapped onto a classical
analog [35,39,40]. The quantum phase transition at zero
temperature of a SR quantum spin system in dimension D

lies in the same universality class of a classical system in
dimension d = D + 1. Then we can map a quantum Ising
model on a classical analog in d = D + 1. A similar result
is generally also valid with LR interactions and the mapping
is between the quantum Ising model described in (2) and the
anisotropic classical model (1) with d1 = D, d2 = 1, and SR
interactions along the d2 direction, which amounts to taking
for our purposes σ2 > σ ∗

2 . Also for N > 1 we expect in general
that a quantum spin system in a dimension d1 ≡ D with LR
interactions decaying with exponent σ1 has a phase transition
which lies in the same universality class as the one found in
the classical system (1) with d1 + d2 > D and σ2 > 2. To this
respect we point out that in our treatment d1 and d2 may be
considered continuous variables.

III. EFFECTIVE FIELD THEORY

In order to study the critical behavior of anisotropic LR
O(N ) models, we introduce the following low energy effective
field theory:

S[φ] = −
∫

ddx
(
Zσ1φi(x)�

σ1
2

‖ φi(x)

+Zσ2φi(x)�
σ2
2

⊥ φi(x) − U (ρ)
)
, (3)

where ρ = φiφi/2 and the summation over the index i ∈
[1,2, · · · ,N ] is implicit. The effective field theory in equa-
tion (3) is obtained by the low momentum expansion of the
bare propagator of Hamiltonian (1). The higher order analytic

terms �‖ and �⊥ were neglected and this expansion is valid
only as long as σ1 � 2 and σ2 � 2.

In the following we mostly choose the convention σ2 < σ1

and d1 � d2, if not differently stated. To make the presentation
of the results more compact we will also adopt the symbol ∨
standing for “or” or, according to the context, “or respectively.”

It is worth noting that along different spatial directions
physical properties essentially differ and this difference cannot
be removed by a simple rescaling of the theory. Accord-
ingly, the d-dimensional coordinate space is split into two
subspaces Rd1 and Rd2 . Each position vector x ≡ (x1,x2) ∈
Rd1 × Rd2 has a d1-dimensional parallel component x1 and
d2-dimensional perpendicular ones, x2.

The laplacian operators �‖ and �⊥ act respectively in Rd1

and Rd2 . When the dimension of one of the subspaces, say
d1 ∨ d2 [i.e., d1 or, respectively, d2] shrinks to zero we retrieve
an isotropic LR O(N ) model in dimension d2 ∨ d1 [i.e., d2

or, respectively, d1] with the upper critical dimension d∗
2,1 =

2σ2,1 [i.e., d∗
2 = 2σ2 or, respectively, d∗

1 = 2σ1] and the critical
behavior described in Refs. [25,26].

In the following we derive general results which are valid
for every value of d1, d2, σ1, and σ2, but more attention will
be paid to the special cases d2 = 1 and σ2 > σ ∗

2 which is the
interesting case for quantum spin chains with LR interactions.
Using the notation ∨, in the special case σ1 ∨ σ2 = 2 and
σ2 ∨ σ1 = 4, expression (3) reduces to the fixed point effective
action of a d1 ∨ d2 axial anisotropic Lifshitz point. However, in
the standard Lifshitz point case, the SR analytic terms cannot
be neglected, outside the fixed point, as in effective action (3)
since they are relevant with respect to the σ2 ∨ σ1 = 4 kinetic
term. Thus the usual Lifshitz point behavior is only found in
multicritical universality classes, where diverse fields are at
their critical value. On the other hand the critical behavior
described by the low energy action (3) is a standard second
order one, and it is found in anisotropic LR systems for some
critical value of the temperature.

IV. DIMENSIONAL ANALYSIS

The scaling hypothesis for the Green function in the
asymptotic long wavelength limit reads

G(q1,q2) = q
−σ1+δη1
1 G

(
1,q2q

−θ
1

) = q
−σ2+δη2
2 G

(
q1q

− 1
θ

2 ,1
)
,

(4)
where the anisotropy index

θ = σ1 − δη1

σ2 − δη2

has been defined. In latter formula we introduced the quan-
tities δη1 and δη2, i.e., the eventual anomalous dimension
corrections, with respect to the mean field result, to the low
energy behavior of the system propagator. Through the paper
we will often refer to the two anomalous dimensions η1 and
η2 calculated with respect to the mean field behavior of the
SR propagator, according the relations η1 ≡ 2 − σ1 + δη1 and
η2 ≡ 2 − σ2 + δη2.

The system possesses two different correlation lengths
ξ1 and ξ2, both diverging at the same critical temper-
ature Tc, but following in general two different scaling
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laws:

ξ1 ∝ (T − Tc)−ν1 , (5)

ξ2 ∝ (T − Tc)−ν2 . (6)

The latter equations also define the correlation length expo-
nents ν1 and ν2.

One could expect to have four independent critical expo-
nents (δη1,δη2,ν1,ν2). However in analogy with the standard
anisotropic Lifshitz point treatment [41], we can derive the
following scaling relation

σ1 − δη1

σ2 − δη2
= ν2

ν1
= θ (7)

which leaves us with only three independent exponents. Rela-
tion (7) can be obtained generalizing the standard argument for
the Fisher scaling law [42] to the scaling hypothesis introduced
in equation (4): By equating the results for the critical exponent
γ by the scalings of q1 and q2 one gets (7).

Due to spatial anisotropy, we define two momentum scales
in our renormalization procedure [43,44]

[x1] = k−1
1 (8)

[x2] = k−1
2 , (9)

and both these scales must vanish in order to reach the
thermodynamic limit. As it will become clear in the following,
in order to enforce scale invariance at the critical point we must
require both kinetic terms in effective action (18) to have the
same scaling dimension. Consequently the following relation
between the two momentum scales emerges

k2 = kθ
1 = kθ , (10)

where k ≡ k1. The choice k ≡ k1 is arbitrary but consistent
with the former choice of θ . All the physical results in this
model are evidently invariant under the simultaneous exchange
of dimensions and exponents d1 → d2 and σ1 → σ2. The last
operation is equivalent to exchanging the definitions of θ and
k (k = k2 and θ → θ−1).

It is possible to develop the local potential as

U (ρ) =
∑

i

λiρ
i, (11)

where the latter equation defines the couplings λi . The scaling
dimensions of the field and the couplings are expressed in
terms of the general scale k as

φ = kDφ φ̃ (12)

λi = kDλi λ̃i , (13)

with the scaling dimensions

Dφ = d1 + θd2 − σ1 + ησ1

2
, (14)

Dλi
= d1 + θd2 − i(d1 + θd2 − σ1), (15)

In order to draw the phase diagram of the system we can
rely on canonical dimension arguments, studying the relevance

of the coupling at bare level. This is equivalent to using the
Ginzburg criterion to predict the range of validity of the mean-
field approximation [45]. We then impose δη1 = δη2 = 0 and
the system develops a nontrivial ith-order critical point when
the coupling λi is relevant (i.e. diverges) in the infrared limit
(k → 0). From the condition Dλi

< 0 we obtain

d1

σ1
+ d2

σ2
<

i

i − 1
. (16)

When this condition is fulfilled the system presents i − 1
universality classes, with the ith-order universality class
describing an i phases coexistence critical point [46–48].
Since each new fixed point branches from the Gaussian
one, the assumption of vanishing anomalous dimension is
consistent and the existence of multicritical anisotropic LR
O(N ) universality classes can be extrapolated to be valid in
the full theory.

In the following we will focus only on the Wilson-Fisher
(WF) universality class which appears in φ4 theories. We then
consider the case i = 2,

d1

σ1
+ d2

σ2
< 2, (17)

which is the condition for having a non-mean-field second
order phase transition.

When σ1 = σ2 = 2 we recover the usual lower critical
dimension of the Ising and O(N ) models in dimension d,
i.e., 4. At variance the case d2 = 0 reproduces the result for a
d1 dimensional LR O(N ) model (d1 < 2σ1). It is worth noting
that while the numerical results we report in the following
are calculated in the specific i = 2 case, most of the analytic
results are valid also in the general i case.

V. EFFECTIVE ACTION AND RG APPROACH

To further proceed with the analysis of the critical behavior
of LR anisotropic O(N ) models we use the functional RG
approach [49,50]. We should choose a reasonable ansatz for
our effective action in such a way that we can project the
exact Wetterich equation [51,52]. We then consider the same
functional form of action (3) including also highest order
analytic kinetic terms in order to efficiently describe the
boundary regions:


k[φ] = −
∫

ddx
(
Zσ1φi(x)�

σ1
2

‖ φi(x) + φi(x)�‖φi(x)

+Zσ2φi(x)�
σ2
2

⊥ φi(x) + φi(x)�⊥φi(x) − Uk(ρ)
)
,

(18)

where the summation over repeated indices is again assumed.
The two wave-function renormalization terms Zσ1,σ2 are
running and we are considering anomalous dimension effects
for the analytic momentum powers, including them directly
into the field scaling dimension, as in Ref. [52].

As already discussed in Ref. [26], the two wave-
function renormalization flows vanish, since the RG evo-
lution of the propagator does not contain any nonanalytic
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term:

k∂kZσ1 = 0, (19)

k∂kZσ2 = 0, (20)

where k is the isotropic scale already introduced in equa-
tion (12).

In order to extract the critical behavior of the system, we
study the functional RG equations in terms of the scaled
variables. We then define the scaled wave functions Z̃σ1

and Z̃σ2 , as it was done for the field and the couplings in
equations (12) and (14).

Transforming equations (19) and (20) to scaled variables,
the flow of the scaled wave functions is an eigendirection of
the RG evolution

k∂kZ̃σ1,σ2 = Dσ1,σ2Z̃σ1,σ2 . (21)

In order to explicitly calculate the scaling dimension of the
two wave functions it is necessary to define the dimension of
the field. In the case of expression (18) we choose the analytic
kinetic terms as reference for the field dimension rather than
the nonanalytic terms we considered in the bare action (3). The
dimension of the field becomes

Dφ = d1 + θd2 − 2 + η1

2
, (22)

where θ = 2−η1

2−η2
and η1, η2 are, respectively, the anomalous

dimensions of the analytic terms in the Rd1 and Rd2 subspaces.
The assumption of two different anomalous dimensions is the
obvious consequence of anisotropy.

At the fixed point all the β functions of the scaled couplings
vanish. We thus impose

Dσ1 = 2 − σ1 − η1 = 0 or Z̃σ1 = 0, (23)

Dσ2 = 2 − σ2 − η2 = 0 or Z̃σ2 = 0, (24)

where one of the conditions (23) shall be true to enforce
the vanishing of k∂kZ̃σ1 , while the same shall occur in
conditions (24) to ensure k∂kZ̃σ2 = 0.

From the two equations (23) and (24) we derive the
existence of two thresholds values σ ∗

1 and σ ∗
2 . For σ1 <

σ ∗
1 ∨ σ2 < σ ∗

2 we have η1 = 2 − σ1 ∨ η2 = 2 − σ2 and the
left condition in (23) ∨ (24) is fulfilled, conversely for
σ1 > σ ∗

1 ∨ σ2 > σ ∗
2 we have to impose Z̃σ1 = 0 ∨ Z̃σ2 = 0.

The two conditions are independent; then four regimes exist
in the system, obtained by the four possible combinations of
σ1 smaller or larger than σ ∗

1 and σ2 smaller or larger than σ ∗
2 .

At mean-field level (see Appendix A for additional details)
we have the following results for the critical exponents of the
system

δη1 = 0, δη2 = 0,

η1 = 2 − σ1, η2 = 2 − σ2, (25)

ν1 = 1

σ1
, ν2 = 1

σ2
.

The threshold values at this approximation level are then
simply σ ∗

1 = σ ∗
2 = 2, as shown in Appendix A.

However, when the inequality (17) holds, we know that the
latter results do not reproduce the correct critical exponents,
and we shall then consider renormalization effects. The
complete phase diagram has therefore the structure reported in
Fig. 1. Region I (σ1 < σ ∗

1 , σ2 < σ ∗
2 ) is the pure anisotropic LR

region, where the saddle point of the effective action (18) is
valid. In regions IIA∨B the exponent σ1 ∨ σ2 is larger than
σ ∗

1 ∨ σ ∗
2 and the correct effective field theory is given by

expression (3) in the absence of the corresponding nonanalytic
term. In region III both kinetic terms are irrelevant compared
to the SR kinetic terms, and the model becomes equivalent to
a d = d1 + d2 dimensional isotropic SR system. The shaded
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FIG. 1. In panel (a) we plot the parameter space of a anisotropic LR spin system for d1 = d2 = 1. In the cyan shaded area fluctuations are
unimportant and the universal quantities are correctly reproduced by the mean-field approximation. The solid curves are the boundary regions
σ ∗

1 and σ ∗
2 where the nonanalytic kinetic term becomes irrelevant. We show results for N = 1,2,3, respectively, in red, blue, green. The dashed

lines are the mean-field results for the boundary curves. In panel (b) we show the parameter space of the model in d1 = 2 and d2 = 1. In the
light cyan shaded area fluctuations are unimportant and the universal quantities are again correctly reproduced by mean-field approximation.
The solid curves are the boundary regions σ ∗

1 and σ ∗
2 . In the inset we show the boundaries in an enlarged scale.
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areas in Fig. 1 correspond to the region where inequality (17)
is fulfilled only for i = 1 and then mean field is valid,
hence the mean-field subscript MF . We finally observe that
for comparison the mean-field phase diagram is reported in
Appendix A as Fig. 8.

The obtained regions have the same structure obtained in
Sec. IV with naive scaling arguments, see the mean-field Fig. 8
in Appendix A. However when we are focusing on nontriv-
ial fixed points the competition between the renormalized
couplings of different kinetic terms is ruled by the dressed
value of the scaling dimension. It is then necessary to consider
renormalized values also for the boundary lines. These lines
will not be at σ ∗

1 = σ ∗
2 = 2, as in the mean-field Fig. 8, but

they are now one-dimensional curves with nontrivial shape
σ ∗

1 (σ2) = 2 − η1(σ2) and σ ∗
2 (σ1) = 2 − η2(σ1).

VI. THE PURE NONANALYTIC REGION

The values of σ ∗
1 and σ ∗

2 and their actual location is in
general different from the mean-field values σ ∗

1 = σ ∗
2 = 2, as

it happens for isotropic LR systems [23]. For the discussions
in this section the precise values of σ ∗

1 and σ ∗
2 are not essential

and we defer the study of σ ∗
1 and σ ∗

2 to Sec. VII.
Let us focus on the case σ1 < σ ∗

1 and σ2 < σ ∗
2 where

the dominant kinetic terms are nonanalytic. The two condi-
tions (23) and (24) are both satisfied on their left side. We thus
have η1 = 2 − σ1 and η2 = 2 − σ2.

At a renormalized level the two analytic kinetic terms
become equal to the nonanalytic ones, as happens in the usual
isotropic LR case [26]. Eventually analytic terms give only
small contributions to the numerical value of the universal
quantities and will be discarded in this section.

We focus on the pure nonanalytic effective action:


k[φ] = −
∫

ddx
(
Zσ1φi(x)�

σ1
2

‖ φi(x)

+Zσ2φi(x)�
σ2
2

⊥ φi(x) − Uk(ρ)
)
. (26)

To proceed with the functional RG calculation we introduce
an infrared cutoff function Rk(q1,q2), which plays the role of
a momentum dependent mass of the excitations [51,52]. This
artificial mass should be vanishing for excitations with mo-
mentum q1 ∨ q2 � k, while it should prevent the propagation
of low momentum q ∨ q2 
 k ones. We then introduce the
function

Rk(q1,q2) = (
Zσ1

(
k

σ1
1 − qσ1

) + Zσ2

(
k

σ2
1 − qσ2

))
× θ

(
Zσ1

(
k

σ1
1 − qσ1

) + Zσ2

(
k

σ2
1 − qσ2

))
, (27)

obtained by generalizing the so-called optimized cutoff [50].
With this explicit choice for the cutoff we can explicitly

evaluate the form of the potential flow equation

∂t Ūk = (d1 + θd2)Ūk(ρ̄) − (d1 + θd2 − σ1)ρ̄ Ū ′
k(ρ̄)

− σ1

2
(N − 1)

1

1 + Ū ′
k(ρ̄)

−σ1

2

1

1 + Ū ′
k(ρ̄) + 2ρ̄ Ū ′′

k (ρ̄)
, (28)

where t = − log(k/k0) is the RG time and k0 is some
ultraviolet scale. The flow equation (28) has been obtained
using functional RG techniques, the procedure being outlined
in Appendix B. For convenience sake we removed a geometric
coefficient using scaling invariance of the field [52]. The wave
functions still obey equations (19) and (20), but, in the absence
of SR terms, they are dimensionless and then they do not have
any flow.

A. Effective dimension

Comparing expression (28) with the one reported in
Ref. [26] we have an equivalence between the ν1 exponent of
this model and the one of an isotropic LR model in dimension

deff = d1 + θd2. (29)

From ν1 we can calculate ν2 using scaling relation (7), with
the anisotropic index which is stuck to its bare value θ = σ1

σ2
.

Similar effective dimension results already appeared in
different treatments of the isotropic LR O(N) models [24–
26,53] and can be recovered using standard scaling arguments.
Using functional RG approach such effective dimension
relations naturally appear without further assumptions, but
they are found to be valid only within our approximations [26].
Anyway effective dimension arguments proved able to provide
very good quantitative agreement with numerical simula-
tions [25,26]. We can thus rely on them to calculate the
correlations length exponents ν1 and ν2 as a function of the
two parameters σ1 and σ2.

Since the wave-function renormalization terms are not run-
ning we have δη1 = δη2 = 0, and the momentum dependence
of the propagator is the same at the bare and at the renormalized
level. This result is evident at this approximation level, but it
is conjectured to be valid also in the full theory as it happens
for the usual LR case. In the latter case this result was verified
at higher approximation levels both in the perturbative and
nonperturbative RG approaches [54,55] (in agreement with
very recent numerical simulations [56]). We are thus able to
derive all the critical exponents in the pure LR region (region
I in Fig. 1), but since we do not know exactly the threshold
values σ ∗

1 and σ ∗
2 we have to extend our analysis to the mixed

analytic nonanalytic kinetic terms ranges (regions IIA∨B).

B. The N = ∞ limit

For isotropic interactions the spherical model is obtained
in the large components limit N → ∞ of the O(N ) spin
systems. This model is exactly solvable [53], and in this limit
the approximated flow equation (28) provides exact universal
quantities.

The results for the critical exponents with anisotropic LR
couplings are the following:

ν1 = σ2

σ2d1 + σ1d2 − σ2σ1
, (30)

ν2 = σ1

σ2d1 + σ1d2 − σ2σ1
. (31)

In the d2 → 0 ∨ d1 → 0 limit the exponent ν1 ∨ ν2 reduces
to the one of the spherical LR model in dimension d1 [53],
ν1 = 1

d1−σ1
∨ ν2 = 1

d2−σ2
, while ν2 = θν1 ∨ ν2 = ν1

θ
looses
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any significance. Also in the σ1 = σ2 = 2 limit the expressions
become equal to the exact SR case.

Due to vanishing anomalous dimension in the spherical
model limit we can apply the results of this section even to
the case of higher analytic powers in the kinetic term of, say,
the Rd2 subspace. This is the case σ2 = 2L with L ∈ N+: we
notice that our results for the Ising and O(N ) models (with
finite N ) are in general not valid in the case L �= 1, which
is the case of the anisotropic next nearest neighbor (ANNNI)
model.

In the case of the ANNNI model the fixed point is the usual
axial anisotropic Lifshitz point. It is different from the case
depicted in this work, since it is a multicritical fixed point.
Indeed next nearest neighbors interaction is subleading with
respect to the usual SR interaction and needs an additional
external field to act on the system to become relevant.

However, we are interested only in the fixed point quantities
of the ANNNI model in order to make a consistency check
of our N → ∞ results. It is then sufficient to assume to be
at the Lifshitz point and make the substitutions σ1 → 2 and
σ2 → 2L ignoring the presence of further more relevant kinetic
terms. We then immediately retrieve the N → ∞ ANNNI
case [57]:

ν1 = L

(d1 − 2)L + d2
, (32)

ν2 = 1

(d1 − 2)L + d2
. (33)

The ANNNI model is paradigmatic in the physics of spin
systems, and it would be interesting to have results also
in the N < ∞ case. This is however beyond the scope of
present analysis, since we would need to explicitly consider
SR analytic terms in our ansatz (18). This will be the subject
of future work.

VII. THE MIXED REGIONS

When one of the two exponents overcomes its threshold, say
σ1 > σ ∗

1 ∨ σ2 > σ ∗
2 , the correspondent analytic term in (18)

becomes relevant and condition (23)∨(24) shall be satisfied
on its right side. We have then Zσ1 = 0 ∨ Zσ2 = 0, and the
system is purely analytic in one of the two subspaces.

In this case it is necessary to use ansatz (28) without
the nonanalytic term in the Rd1 ∨ Rd2 subspace, since it has
become irrelevant with respect to the corresponding analytic
term. In addition we also disregard the SR analytic term in the
Rd2 ∨ Rd1 subspace since it is subleading with respect to the
LR one. This will introduce a bias in our computation close to
the boundary σ1 � σ ∗

1 ∨ σ2 � σ ∗
2 resulting in a discontinuity

in the critical exponents. In the following it will be shown
that such discontinuity is very small (of the same order
of the error committed by the LPA approximation itself)
and does not affect the accuracy of our result. Let us also
note that the correct computation involving all the terms
in ansatz (18) is possible, but would not lead to explicit
expressions for the flow equations as the ones given in the
following.

Due to the SR dominant term we have now finite anomalous
dimension effects. Let us focus on the σ1 = 2 case, since the
σ2 = 2 case can be obtained trivially exchanging the subspaces
dimensions d1 ↔ d2. The flow equation for the potential
becomes

∂t Ūk = (d1 + θd2)Ūk(ρ̄) − (d1 + θd2 − 2 + η1)ρ̄ Ū ′
k(ρ̄)

− (N − 1)
1 − η1

d1+2 − 2η1d2

d1σ2+2(d2+σ2)

1 + Ū ′
k(ρ̄)

−
1 − η1

d1+2 − 2η1d2

d1σ2+2(d2+σ2)

1 + Ū ′
k(ρ̄) + 2ρ̄ Ū ′′

k (ρ̄)
. (34)

1.0 1.2 1.4 1.6 1.8 2.0
σ2

0.0

0.01

0.02

0.03

0.04

0.05

ηSR

η 1

0.8 1.0 1.2 1.4 1.6 1.8 2.0
σ2

0.0

0.05

0.1

0.15

0.2

ηSR

0.25

η 1

(a) (b)

FIG. 2. In the left panel (a) we plot for σ1 > σ ∗
1 the anomalous dimension η1 as a function of σ2 in d1 = d2 = 1 for field component numbers

N = 1,2,3, respectively, in red, blue, and green from the top. In the right panel (b) the anomalous dimension in d1 = 1 ∨ 2,d2 = 2 ∨ 1, again
in the case σ1 > σ ∗

1 , for the field component numbers N = 1,2,3, respectively, in red, blue, and green is shown (the solid ∨ dashed lines
are for d1 = 2 ∨ 1 and d2 = 1 ∨ 2). In this case the lack of analytic term in the Rd2 subspace produces two different results for the isotropic
limit σ2 → σ ∗

2 between the two cases d2 = 2,1 solid and dashed lines, respectively. The gray dashed lines represent the correct values of the
anomalous dimension in the isotropic SR Ising model in the considered approximation for d = 2, panel (a), and d = 3, panel (b).
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The anisotropy index is now given by θ = 2−η1

σ2
. The anoma-

lous dimension is then given by

η1 = f (ρ̃0,Ũ
(2)(ρ̃0))(σ2d1 + 2d2 + 2σ2)

2d2f (ρ̃0,Ũ (2)(ρ̃0)) + σ2d1 + 2d2 + 2σ2
, (35)

where the function f (ρ̃0,Ũ
(2)(ρ̃0)) is the expression for the

anomalous dimension of the correspondent SR range O(N )
model

f (ρ̃0,Ũ
(2)(ρ̃0)) = 4ρ̃0Ũ

(2)(ρ̃0)2

(1 + 2ρ̃0Ũ (2)(ρ̃0))2 (36)

as is found in Ref. [47] after rescaling an unimportant geomet-
ric coefficient. Another possible definition of equation (36) is
given in Ref. [58]. The two definitions are found depending
on whether we calculate this quantity respectively from the
Goldstone or the Higgs excitation propagator. In the following
we always use result (36) in the numerical computation of the
critical exponents.

One could be tempted to conclude that in regions IIA∨B the
system is equivalent to a SR system in dimension d1 + θd2 but
this is not actually the case, since the value of the anomalous
dimension η1 is different from the one in the isotropic case.

The results for the anomalous dimension η1 in region IIB

as a function of σ2 for the d1,d2 = 1,1 or 1,2 or 2,1 cases are
reported in Figs. 2(a) and 2(b), respectively.

In d = 2 the SR system is exactly solvable for N = 1
and ηSR = 1

4 , however at lowest order in derivative expansion
the isotropic SR Ising approximated result is ηSR ≈ 0.2336,
which is shown as a gray dashed line in Figs. 2(a) and 2(b).
Our approximation level is, however, not able to recover this
result, since for σ1 > σ ∗

1 we are not including for σ2 < σ ∗
2

any SR term in the Rd2 subspace. This is not a crucial issue
of the method; indeed our result differs from the usual SR
result by only 0.0058 which is smaller than the isotropic SR
approximation error |ηLPA − ηexact| � 0.0164, where ηLPA is
the value of the anomalous dimension for the SR Ising model
obtained using LPA′ (see appendix B). Thus the threshold

d
2

σ∗
SR σ∗

1 2

σ1

0

η∗1

ηSR

4−d1

2

η 1

σ2 < σ∗
2

σ2 > σ∗
2

FIG. 3. Anomalous dimension η1 as a function of σ1.

0.0 0.5 1.0 1.5 2.0
d2

0.00

0.05

0.10

0.15

0.20

η
2

FIG. 4. Anomalous dimension η2 for d1 = 1 and general d2

when σ1 = 1 and σ2 > σ ∗
2 for field component numbers N = 2,3,4,

respectively, in blue, green, and red from the top. These results may
be used for studying phase transitions in quantum LR spin systems.

value σ ∗
2 = 2 − ηSR does not directly appear in our treatment,

since we do not include any SR correction to the nonanalytic
term in theRd2 subspace. However, for σ2 > σ ∗

2 , the isotropy is
restored and then the anomalous dimensions in both subspaces

0 1 2
σ1

0

1

2

3

d
2

MF

WF

FIG. 5. The phase space of a LR anisotropic spin system with
dimension d1 = 1 as a function of d2 with σ2 > σ ∗

2 for general σ1.
The cyan shaded region represents the mean-field validity region
while in the white region WF type universality is found. The gray
dashed line is the mean-field threshold above which SR behavior is
recovered. The solid colored lines represent the dressed threshold
values for the N = 1,2,3 cases in red, blue, and green, respectively.
The gray area is the region where we expect the critical behavior to
disappear and only a single phase is found.
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ν
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σ2 = 1.2

σ2 = 1.6

σ2 > 2.0

0 1 2
σ1

0

1

2

ν
−1 2

0 1 2
0

1

2

ν
−1 1

σ2 = 0.4

σ2 = 0.8

σ2 = 1.2

σ2 = 1.6

σ2 > 2.0

0 1 2
σ1

0

1

2

ν
−1 2

(a) N = 1, d1 = d2 = 1 (b) N = 2, d1 = d2 = 1

(c) N = 3, d1 = d2 = 1

FIG. 6. In panel (a) the inverse of the correlation length exponents for the critical point of an anisotropic spin system for dimensions
d1 = d2 = 1 are reported. The two exponents are shown for three values of the number of components N = 1,2,3 in panels (a), (b), and (c),
respectively. For different values of σ2 we report the behavior of the inverse exponents as a function of σ1.

should coincide: η1 = η2. The threshold σ ∗
1 at a fixed σ2 < 2

is then readily evaluated by the equation

σ ∗
1 = 2 − η1(σ ∗

1 ), (37)

where η1(σ ∗
1 ) is of course evaluated at the considered value of

σ2. A similar result holds for σ ∗
2 .

In order to clarify the above result we plot the value of the
anomalous dimension η1 in the Rd1 subspace as a function of
σ1, Fig. 3. For σ2 < σ ∗

2 the anomalous dimension has linear
behavior η1 = 2 − σ1 until a boundary value σ ∗

1 = 2 − η1(σ2)
which depends on the value σ2. Otherwise for σ2 > σ ∗

2 the
boundary value is equal to σ ∗

1 = 2 − ηSR where ηSR is the
anomalous dimension of the d = d1 + d2 dimensional SR
system.

We observe that using a procedure based on Eq. (37) we
do not exactly reproduce the expected boundary value in
the mixed regions σ ∗

1 = 2 − ηSR , with ηSR the anomalous
dimension of the SR isotropic case in d = d1 + d2 dimensions.
However as explained in the caption of Fig. 2 the difference

between the two results is small and the approximation of
neglecting the analytic term in the Rd2 subspace appears to be
well justified.

In Fig. 4 we report the result for the anomalous dimension
η2 as a function of d2 for a one dimensional chain (d1 = 1)
with σ1 = 1 and σ2 > σ ∗

2 (of course, for σ2 < σ ∗
2 , η2 would

be just 2 − σ2 independent from d2). In Fig. 5 we plot the
phase diagram for d1 = 1 in the d2-σ1 space with σ2 > σ ∗

2 .
The results in Figs. 4 and 5 could be used for a quantum LR
spin chain.

A. The threshold values σ ∗
1 and σ ∗

2

We have now all the information necessary to identify the
correct values for the boundaries. Considering the results ob-
tained both in the case of σ1 < σ ∗

1 and σ1 > σ ∗
1 we can deduce

the existence of two fixed points in the full theory described
by ansatz (18). One of these fixed points occurs at Zσ1 �= 0,
while the other at Zσ1 = 0. However this second fixed point is
unstable in region I since any infinitesimal perturbation of the
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0 1 2
0

1

2

ν
−1 1

σ2 = 0.4

σ2 = 0.8

σ2 = 1.2

σ2 = 1.6

σ2 > 2.0

0 1 2
σ1

0

1

2

ν
−1 2

0 1 2
0

1

2

ν
−1 1

σ2 = 0.4

σ2 = 0.8

σ2 = 1.2

σ2 = 1.6

σ2 > 2.0

0 1 2
σ1

0

1

2

ν
−1 2

0 1 2
0

1

2

ν
−1 1

σ2 = 0.4

σ2 = 0.8

σ2 = 1.2

σ2 = 1.6

σ2 > 2.0

0 1 2
σ1

0

1

2

ν
−1 2

(a)N = 1, d1 = 2 and d2 = 1 (b)N = 2, d1 = 2 and d2 = 1

(c)N = 3, d1 = 2 and d2 = 1

FIG. 7. Plot of the inverse of the correlation length exponents for the critical point of an anisotropic spin system with dimensions d1 = 2
and d2 = 1. The two exponents are shown for three values of the components number N = 1,2,3 in panels (a), (b), and (c), respectively. For
different values of σ2 we report the behavior of the inverse exponents as a function of σ1.

Zσ1 value around zero generates a nonvanishing flow which
increases Zσ1 itself.

Looking at condition (23) it is evident that this happens
when σ1 < σ ∗

1 , with σ ∗
1 defined by equation (37). However

when σ1 > σ ∗
1 the nonanalytic term vanishes and, then, the

value of η1 is actually independent of σ1. The value of η1 is
thus equal to its value in region IIB, i.e., η1 = η1(σ ∗

1 ).
As shown in equation (35) the value of η1 in region IIB is

actually a function of σ2 and the boundary between region I
and IIB is a curve in the (σ1,σ2) parameter space. Applying the
same argument to the boundary between region I and IIA we
can deduce that σ ∗

2 = 2 − η2(σ ∗
2 ), where also here η2 has to be

evaluated at the considered value of σ1. The final picture for the
phase space of our theory is depicted in Fig. 1. For d1 = d2 = 1
and N � 2 the curves all terminate at the point σ1 = σ2 = 2,
due to the presence of the Mermin-Wagner theorem, which
prevents symmetry breaking for SR interactions and which
is correctly described by functional RG truncations [59], as
is shown in Fig. 1(a). For N = 1 the system shows discrete

symmetry and the anisotropic region terminates at the point
σ ∗

1 = σ ∗
2 = 2 − ηSR . In Fig. 1(b) we show results for N =

1,2,3 with d1 = 2 and d2 = 1, respectively, in red, blue, and
green. In this case the boundaries are different from 2 even
at the intersection where the system behaves as an isotropic
classical SR system in dimension d = d1 + d2. The difference
between the anomalous dimensions in the cases N = 1,2,3 is
so small that the different boundaries cannot be distinguished.

We are now able to compute the correlation length expo-
nents of the system for different values of σ1 and σ2, using
the procedure outlined in Ref. [48]. In region I we can rely
on the effective dimension relation (29) to compute them.
Indeed, the correlation length exponent ν1 is the same of an
isotropic LR system of exponent σ1 in dimension (29). The
correlation length exponent ν2 is determined from ν1 using the
scaling relation (7) with θ = σ1

σ2
.

In the regions IIA∨B the effective dimension is strictly not
valid and one should in principle compute the correlation
length exponent ν1 by studying the stability equation around
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the fixed points, as described in Ref. [48]. It is still possible
to reintroduce the effective dimension (29) neglecting the
anomalous dimension terms in equation (28).

The procedure of neglecting the anomalous dimension in
the potential flow is commonly employed to solve functional
RG equations [49]. Indeed the dependence of the potential
equation of anomalous dimension is only due to small cutoff
dependent coefficients, which have a small effect on the
universal quantities, at least at this approximation level.

Once these coefficients are neglected we can impose the
fixed point condition ∂t Ũk = 0, and dividing equation (28) by
θ one obtains

(d2 + θ ′d1)Ūk(ρ̄) − (d2 + θ ′d1 − σ2)ρ̄ Ū ′
k(ρ̄)

− (N − 1)
σ2

2 + 2Ū ′
k(ρ̄)

− σ2

2 + 2Ū ′
k(ρ̄) + 4ρ̄ Ū ′′

k (ρ̄)

= 0, (38)

where θ ′ = θ−1 = σ2
2−η1

in the region IIB .
It is worth noting that regions IIA∨B are interesting for

possible applications to quantum LR systems since they
represent the case of anisotropic SR plus LR interactions as it
happens, e.g., for the quantum LR Ising model.

B. Correlation length exponent

In Figs. 6 and 7 we show the results for the correlation
length exponents for various values of σ1 as a function of the
exponent σ2 in dimensions d2 = 1 (Fig. 6) and d2 = 2 (Fig. 7)
with d1 = 1 in both cases in the trivial region, equation (17);
the relevant exponents in each subspace are independent of the
presence of the other subspace and are ν1 = σ−1

1 and ν2 = σ−1
2 .

Then in the pure LR region the exponents become nontrivial
curves as a function of σ1. For some value of σ1 we will
cross the boundary region σ ∗

1 (σ2) which is a function σ2. For
σ1 > σ ∗

1 the exponents both become constant. When σ2 > 2
we are in the region where SR interactions are dominant in
the subspace Rd2 (this is the relevant case for LR quantum
rotor models), and the exponents are shown by a solid line. In

this case the exponents are nontrivial functions of σ1 for σ1 <

σ ∗
1 = 2 − ηSR , where ηSR is the anomalous dimension of the

isotropic SR system in dimension d1 + d2, while they become
constant for σ1 > σ ∗

1 and both equal to the correlation length
exponent of the isotropic SR systems ν1 = ν2 = νSR. These
results, together with the anomalous dimensions in the regions
IIA∨B , complete the characterization of the phase diagram of
LR anisotropic spin system.

VIII. CONCLUSIONS

Anisotropic long-range (LR) spin systems have a rich phase
diagram as a function of the two exponents σ1 and σ2 and of
the two dimensions d1,d2. In the σ1 − σ2 plane two boundary
curves exist, namely σ ∗

1 = σ ∗
1 (σ2) and σ ∗

2 = σ ∗
2 (σ1), where

the LR interactions in the subspaces Rd2 and Rd1 become
irrelevant. At mean-field level the two boundaries are straight
lines, σ ∗

1 = σ ∗
2 = 2, as shown in Fig. 8. Beyond mean field

these boundaries become nontrivial curves, see Fig. 1. At the
intersection between the boundaries the system recovers both
short-range (SR) and isotropic behaviors and then the intersec-
tion point is simply given by σ1 = σ2 = 2 − ηSR , with ηSR the
anomalous dimension of an isotropic SR system in dimension
d1 + d2, as is found for isotropic LR systems [23–26].

In the pure LR region, denoted by I in Fig. 1, the low energy
behavior can be described by the effective action (18). The field
dynamics is characterized by two nonanalytic powers of the
momentum excitations with, respectively, real exponents σ1

and σ2 in the two subspacesRd1 andRd2 . In this case the system
universality class is equivalent to an isotropic LR system in an
effective dimension deff = d1 + θd2, defined in equation (29).

When one of the two exponents σ1 ∨ σ2 becomes larger
than its threshold value σ ∗

1 ∨ σ ∗
2 the corresponding nonanalytic

kinetic term in the effective action (18) becomes subleading
with respect to the analytic term, and LR interactions lie in
the same universality of SR ones. The system enters then in
the mixed regions IIA∨B where the subspace Rd1∨d2 effectively
behaves as if only SR interactions were present.

(a) (b)

FIG. 8. The mean-field parameter space of a LR anisotropic spin system with dimensions d1 = d2 = 1, panel (a), and d1 = 2,d2 = 1,
panel (b).
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In regions IIA∨B the system is described by the effective ac-
tion (18) with σ1 ∨ σ2 = 2. We observe that in such regions the
system is not equivalent to a SR system in dimension d1 + θd2,
since the value of the anomalous dimension η1∨2 is different
from the one in the isotropic case. In these regions we can study
the model with equation (34) and the anomalous dimension
defined by (35). The result for the anomalous dimension in
regions IIA∨B is given in Fig. 2. Once the anomalous dimension
of the analytic term in the presence of nonanalytic anisotropic
terms is known, we can calculate the threshold curves, which
are σ ∗

2 (σ1) = 2 − η2(σ ∗
2 ,σ1) and σ ∗

1 (σ2) = 2 − η1(σ ∗
1 ,σ2), as

given in equation (37) and depicted in Fig. 1.
Regions IIA∨B are relevant also because the quantum

critical points at zero temperature of a quantum spin system
with LR couplings lie in these regions. In particular the
effective action (18) describes the universality of a quantum
system in dimension d1 = D, when one of the two subspaces
has dimension d1 with power-law decay exponent σ1 and the
other subspace, with the dimension d2 = 1, contains only SR
interactions.

Anisotropic LR systems have two different correlation
length exponents which are connected by scaling relation (7).
The exponent ν1 can be obtained by studying the stability
around the fixed points of equation (28) in region I or of
equation (34) in regions IIA∨B . On the other hand ν1 is also
equal to the correlation length exponent of an isotropic LR
system in dimension deff , equation (29). In regions IIA∨B the
effective dimension relation (29) is not strictly valid, but we can
reintroduce it neglecting small anomalous dimension terms in
equation (34).

Using the effective dimension relations (29) it is then
possible to compute the critical exponents for the anisotropic
LR O(N ) models for general values of the dimensions d1 and
d2 and for different values of the field components N . An
interesting case is the one with a one dimensional subspace
(d1 ∨ d2 = 1). The results are reported in Figs. 6 and 7.

The analysis of ansatz (18) also leads to exact results in the
N → ∞ limit, where only the correlation length exponents
are different from zero in all the regions, see equations (30)
and (33). The validity of ansatz (18) in the N → ∞ limit also
resulted in the reproduction of the correct result for the ANNNI
models, equations (32) and (33).

This work provides a step forward in the comprehension
of LR interaction effects in the critical behavior of spin
systems. Since anisotropic interactions are widely present
in condensed matter systems, it would be interesting to
investigate whether anisotropic LR critical behavior could
be responsible for various phase transitions occurring in the
presence of multiaxial anisotropy. Our results can also be
useful for the study of quantum LR systems via the quantum-
to-classical correspondence. It would be interesting to extend
our results to LR quantum spin chains and also to fermionic
and bosonic models with LR interactions, in particular to
determine the effects of anisotropy in the presence of LR
couplings for which a nontrivial topology of the Fermi surface
occurs [60]. Our results also call for further investigations
of the critical behavior of anisotropic LR systems both in
the numerical simulations and in experiments, in order to
confirm the reliability of field theory description used in this
paper.

Finally it is worth noting that we focused only on the
sharp anisotropy case, where the interaction between two
spins occurs only when their distance is parallel to one of
the main system axes, and we did not consider the case of
angular dependent interactions. Moreover we do not address
the description of the higher order phase transitions occurring
in these models for σ1∨2 > 2 as in the standard Lifshitz point
critical behavior. Both of these very interesting studies are left
for future work.
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APPENDIX A: MEAN-FIELD RESULTS

In this appendix we discuss the mean-field treatment of LR
anisotropic systems. For any value of σ1 ∨ σ2 larger than 2,
the behavior reduces to the case of only SR interactions in
the subspace Rd1 ∨ Rd2 . Thus the (σ1,σ2) parameter space can
be divided into four areas, as shown in Fig. 1. Notice that
the mean-field phase diagram in Fig. 8 and discussed in the
following should be compared with the one presented in Fig. 1
and obtained by the RG analysis of Sec. V.

At the mean-field level one has two thresholds (dashed
lines) at σ1 = 2 and σ2 = 2, dividing the parameter space
into four regions. The region I (σ1 < 2, σ2 < 2) is the pure
anisotropic LR region, where the saddle point of effective
action (3) is valid. In regions IIA∨B the exponent σ1 ∨ σ2

is larger than two and the correct effective field theory is
given by expression (18) with σ1 = 2 ∨ σ2 = 2. In region III
both kinetic terms are irrelevant compared to the SR kinetic
terms and the model becomes equivalent to a d = d1 + d2

dimensional isotropic SR system. The shaded areas correspond
to the region where inequality (17) is fulfilled only for i = 1
and then mean field is valid; here the region names the
mean-field subscript MF . In region I (σ1,σ2 < 2) the system
is LR in both subspaces. The cyan shaded area in Fig. 1(a) is
the gaussian region in d1 = d2 = 1 and light cyan in Fig. 1(b)
is for d1 = 1 and d2 = 2. In region IIA∨B the system is SR
in the subspace of dimension d1 ∨ d2 and LR in the other.
Summarizing, when mean field is valid, one has the following
results for the critical exponents of the system

ησ1 = 0, ησ2 = 0,
(A1)

ν1 = 1

σ1
, ν2 = 1

σ2
.

It should be noted that for the d1 = d2 = 1 case, shown in
Fig. 1(a), regions IIA∨B are completely equivalent since the
system is invariant under the exchange of the two exponents.
This is not true in the case d1 �= d2, Fig. 1(b), where d1 = 1
and d2 = 2. Finally in region III(σ1,σ2 > 2) the system is in
the same universality class of an isotropic SR system.

As discussed in the main text, the previous analysis is valid
at mean-field level, but, when fluctuations are relevant, one
has to take into account the competition between analytic
and nonanalytic momentum terms close to the boundaries
σ1 ∨ σ2 ≈ 2. Indeed, while nonanalytic terms do not develop
anomalous dimensions, the SR analytic terms normally do, and

224411-12



ANISOTROPIC LONG-RANGE SPIN SYSTEMS PHYSICAL REVIEW B 94, 224411 (2016)

at the renormalized level the boundaries of the nonanalytic
regions σ ∗

1 and σ ∗
2 could be different from the canonical

dimension result σ ∗
1 = σ ∗

2 = 2, as happens in usual LR
systems [23–26].

Regarding the case of quantum rotor Hamiltonians it
is possible to use mean-field arguments to dig out the
nontrivial phase transition region. Denoting the dimension of
the quantum system by D and the exponent of the decay of the
coupling by D + σ1, we should then substitute d1 = D and
σ2 = 2 into relation (17) for general d2 to obtain

d2 < 4 − 2D

σ1
, (A2)

where one has to take d2 = 1. Then, a quantum spin system in
dimension D with LR interactions decaying with exponent σ1

develops a nontrivial phase transition when equation (A2) is
satisfied. This region is reported with the WF label in Fig. 5
for the d1 = 1 case.

APPENDIX B: FUNCTIONAL RENORMALIZATION
GROUP APPROACH

In this appendix we summarize the main results of func-
tional RG needed in the main text. We start from the effective
action for a N component vector field with O(N ) symmetry:


[φ] = −
∫

ddx
{
Zσφi(x)�

σ
2
1 φi(x) + Zτφi(x)�

τ
2
1 φi(x)

+Z2φi(x)�1φi(x) − Ut (ρ)
}
. (B1)

An ansatz with a similar shape for the effective action is often
called a local potential approximation (LPA) ansatz. Indeed
equation (B1) has a local potential term U (ρ). In the following
we will introduce expressions containing two field independent
wave-function renormalization terms Zσ and Zτ , providing
for the considered case the counterpart of the so-called LPA′

ansatz.
The propagator in this scheme is the inverse second

derivative of the action with respect to the fields. This
derivative is diagonal in the field indexes when evaluated in a
constant state of the field; it reads



(2)
t (−p,p) = Zσpσ

1 + Zτp
τ
2 + Z2p

2
1 + μg,m, (B2)

where μ is the mass of the excitation,

μm = U (1)(ρ) + 2ρU (2)(ρ), (B3)

μg = U (1)(ρ), (B4)

and

q1 =
⎛
⎝ d1∑

μ=1

q2
μ

⎞
⎠

1
2

(B5)

q2 =
⎛
⎝ d∑

μ=d1+1

q2
μ

⎞
⎠

1
2

(B6)

are the moduli of the momentum in each subspace. Obviously
the index (g,m) depends if the derivation is taken in the

component on the field which has zero or nonzero average. The
propagator of the theory where a smooth momentum cutoff has
been inserted can be written as

G(q) = (
(q,−q) + Rt (q))−1, (B7)

where the inverse as to be intended in the matrix sense. The
time derivative of the two point function is

∂t

(2)
t (−p,p) = ∂tZσ pσ

1 + ∂tZτp
τ
2 + ∂tZ2p

2
1 + ∂tμt , (B8)

where the value of the μ depends on the index of the field
with respect, which we are taking the derivation of in the
above expression. Using the Wetterich equation for the LPA′

truncation level we obtain

∂t

(2)
t (−p,p) = 2

∫
ddq

(2π )d
∂tRt (q)Gg(q)2
(3)(ρ)2Gm(p+q);

(B9)

for the flow of the two wave-function renormalizations we use
the definitions,

∂tZσ = lim
p→0

d

dpσ
1

∂t

(2)
t (−p,p). (B10)

∂tZτ = lim
p→0

d

dpτ
2

∂t

(2)
t (−p,p). (B11)

∂tZτ = 1

2
lim
p→0

d2

dp2
1

∂t

(2)
t (−p,p). (B12)

When we apply the derivatives on the right end side of
equation (B9), they go under the integral sign and act in the
only part of the integrand which depends on p, i.e., G(p + q),
thus we get,

∂tZσ =
∫

ddq

(2π )d
∂tRt (q)Gg(q)2
(3)(ρ)2 d

dpσ
1

Gm(p + q)

∣∣∣∣
p=0

,

(B13)

∂tZτ =
∫

ddq

(2π )d
∂tRt (q)Gg(q)2
(3)(ρ)2 d

dpτ
Gm(p + q)

∣∣∣∣
p=0

,

(B14)

∂tZ2 =
∫

ddq

(2π )d
∂tRt (q)Gg(q)2
(3)(ρ)2 d2

2dp2
Gm(p + q)

∣∣∣∣
p=0

.

(B15)

Introducing into latter formulas the explicit expression derived
from ansatz (B1) we obtain the flow equations (19), (20), (34),
and (35) reported in the main text. The anomalous dimension
has been obtained solving differential equation (34) iteratively
until self consistency with equation (35) is reached. Substi-
tuting into the flow equations for the effective potential (28)
or (34) the expression Ũk(ρ̃) = Ũ ∗(ρ̃) + uk(ρ̃)eyt , obtaining
an equation for the linear perturbation uk(ρ̃) and the eigenval-
ues spectrum y as is done in Ref. [48]. By solving the equation
for the perturbation around the fixed point solution Ũ ∗(ρ̃) the
correlation length exponent ν is readily obtained following the
procedure outlined in Ref. [48].
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Université de Lausanne, 1998).

[18] The BCS-BEC Crossover and the Unitary Fermi Gas, edited by
W. Zwerger (Heidelberg, Springer, 2012).

[19] A. Campa, T. Dauxois, D. Fanelli, and S. Ruffo, Physics of Long-
Range Interacting Systems (Oxford University Press, Oxford,
2014).

[20] M. Kac, G. Uhlenbeck, and P. Hemmer, J. Math. Phys. 4, 216
(1963).
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