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Magnon Kerr effect in a strongly coupled cavity-magnon system
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We experimentally demonstrate magnon Kerr effect in a cavity-magnon system where magnons in a small
yttrium iron garnet (YIG) sphere are strongly but dispersively coupled to the photons in a three-dimensional
cavity. When the YIG sphere is pumped to generate considerable magnons, the Kerr effect yields a perceptible
shift of the cavity’s central frequency and more appreciable shifts of the magnon modes. We derive an analytical
relation between the magnon frequency shift and the drive power for the uniformly magnetized YIG sphere and
find that it agrees very well with the experimental results of the Kittel mode. Our study paves the way to explore
nonlinear effects in the cavity-magnon system.
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I. INTRODUCTION

Hybridizing two or more quantum systems can harness the
distinct advantages of different systems to implement quantum
information processors (see, e.g., Refs. [1,2]). Recently, a
cavity-magnon system has attracted considerable attention
[3–9] because of the enhanced coupling between magnons
in a yttrium iron garnet (YIG) single crystal and microwave
photons in a high-finesse cavity. This hybrid system involves
magnon polaritons [10,11]. Thus, a series of phenomena
realized in other polariton systems [12,13], including the
Bose-Einstein condensation of exciton polaritons [14,15] and
the optical bistability in semiconductor microcavities [16], can
be explored using the magnon polaritons. Based on the strongly
coupled cavity-magnon system, coherent interaction between
a magnon and a superconducting qubit was realized [17],
and magnon dark modes in a magnon gradient memory [18]
were utilized to store quantum information. When combined
with spin pumping techniques, this cavity-magnon system
provides a new platform to explore the physics of spintronics
and to design useful functional devices [7,9]. Potentially
acting as a quantum information transducer, microwave-to-
optical frequency conversion between microwave photons
generated by a superconducting circuit and optical photons of
a whispering gallery mode supported by a YIG microsphere
was also explored [19–22]. Furthermore, coherent phonon-
magnon interactions relying on the effect of magnetostrictive
deformation in a YIG sphere was demonstrated [23]. Now, a
versatile quantum information processing platform based on
the coherent couplings among magnons, microwave photons,
optical photons, phonons, and superconducting qubits is being
established.

In this paper, we report an experimental demonstration of
the magnon Kerr effect in a strongly coupled cavity-magnon
system. The magnons in a small YIG sphere are strongly
but dispersively coupled to the microwave photons in a
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three-dimensional (3D) cavity. When considerable magnons
are generated by pumping the YIG sphere, the Kerr effect
gives rise to a shift of the cavity’s central frequency and yields
more appreciable shifts of the magnon modes, including the
Kittel mode [24], which holds homogeneous magnetization,
and the magnetostatic (MS) modes [25–27], which have in-
homogeneous magnetization. We derive an analytical relation
between the magnon frequency shift and the pumping power
for a uniformly magnetized YIG sphere and find that it agrees
very well with the experimental results of the Kittel mode. In
contrast, the experimental results of MS modes deviate from
this relation, which confirms the deviation of the MS modes
from homogeneous magnetization. To enhance the magnon
Kerr effect, the pumping field is designed to directly drive the
YIG sphere, and its coupling to the magnons is strengthened
using a loop antenna. Moreover, this pumping field is tuned
very off-resonance with the cavity mode to avoid producing
any appreciable effects on the cavity. Our paper is a convincing
study of a cavity-magnon system with magnon Kerr effect and
paves the way to experimentally explore nonlinear effects in
this tunable cavity-magnon system.

II. EXPERIMENTAL SETUP

The experimental setup is diagrammatically shown in
Fig. 1. The 3D cavity is made of oxygen-free copper with
inner dimensions of 44.0 × 20.0 × 6.0 mm3 and contains
three ports labeled as 1, 2, and 3 (here ports 1 and 2 are
used for transmission spectroscopy, and port 3 is for loading
the drive field). The frequency of the cavity-mode TE102

that we use is ωc/2π = 10.1 GHz. A samll YIG sphere of
diameter 1 mm is glued on an inner wall of the cavity
at the magnetic-field antinode of the TE102 mode (cf., the
magnetic-field intensity distribution of this mode marked by
colored shades in Fig. 1). We apply a static magnetic field
generated by a superconducting magnet to magnetize the YIG
sphere. This bias magnetic field is tunable in the range of 0
to 1 T, so the given frequency of the Kittel mode (i.e., the
ferromagnetic resonance mode) ranges from several hundreds
of megahertz to 28 GHz. The cavity is placed in a BlueFors
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FIG. 1. Schematic of the experiment setup. The 3D cavity is
placed in the uniform magnetic field created by a superconducting
magnet. Ports 1 and 2 are used for transmission spectroscopy, and port
3 is for driving the YIG sphere via a superconducting microwave line
with a loop antenna at its end. The total attenuation of the input port
is 99 dB. The right part shows the magnetic-field distribution of the
cavity-mode TE102. The bias magnetic field, the drive magnetic field,
and the magnetic field of the TE102 mode are mutually perpendicular
at the site of the YIG sphere where the magnetic field of the TE102

mode is maximal.

LD-400 dilution refrigerator under a cryogenic temperature of
22 mK. The spectroscopic measurement is carried out with
a vector network analyzer by probing the transmission of
the cavity. A drive tone supplied by a microwave source can
directly drive the YIG sphere via a superconducting microwave
line going through port 3. Moreover, a loop antenna is attached
to the end of the superconducting microwave line near the YIG
sphere (see Appendix A), so as to strengthen the coupling
between the drive field and the YIG sphere. Here the driving
magnetic-field Bd, the bias magnetic-field B0 (which is aligned
along the hard magnetization axis [100] of the YIG sphere),
and the magnetic-field Bc of the TE102 mode are orthogonal
to each other at the site of the YIG sphere. Also, a series of
attenuators and isolators is used to prevent thermal noise from
reaching the sample, and the output signal is amplified by two
low-noise amplifiers at the stages of 4 K and room temperature,
respectively.

III. STRONG-COUPLING REGIME

We first measure the transmission spectrum of the cavity
containing the YIG sphere without applying a drive field on
the YIG sphere. The transmission spectrum as a function
of the probe microwave frequency and B0 are recorded by
vector network analyzer [see Fig. 2(a)]. At the point where
the Kittel mode is resonant with the cavity-mode TE102,
a distinct anticrossing of the two modes occurs, indicating
strong coupling between them. Some other small splittings
are due to the couplings between the cavity mode and the
MS modes in the YIG sphere. The coupling strength between
the Kittel mode and the cavity-mode TE102 is found to be
gm/2π = 42 MHz from the magnon polariton splitting at the
resonance point [see the red curve in Fig. 2(b)]. By fitting

FIG. 2. (a) Transmission spectrum for the normal-mode splitting
measured as a function of the bias magnetic field and the probe
microwave frequency. The large anticrossing indicates strong cou-
pling between the Kittel mode and the cavity-mode TE102. The small
splittings are due to the MS modes coupled with the cavity mode.
(b) Transmission spectrum at three values of the bias magnetic field.
The curves are offset vertically for clarity.

the measured transmission spectrum [8], the cavity-mode
linewidth κ/2π ≡ (κ1 + κ2 + κint)/2π and the Kittel-mode
linewidth γm/2π are determined to be 2.87 and 24.3 MHz,
respectively. Here κ1 (κ2) is the loss rate due to port 1 (2),
and κint is due to the intrinsic loss of the cavity. The obvious
increase in the Kittel mode damping rate compared with the
previous work [4,5] is due to the antenna close to the YIG
sphere, which acts as an additional decay channel. Note that
all the linewidths throughout the paper are defined as the
full width at half maximum. Because gm > κ,γm, the hybrid
system falls in the strong-coupling regime with a cooperativity
C ≡ 4g2

m/κγm = 101.

IV. RESULTS AND ANALYSIS OF THE DISPERSIVE
MEASUREMENT

A. Dispersive measurement

We tune the static bias magnetic-field B0 to 346.8 mT,
yielding about 9.55 GHz for the frequency of the Kittel mode.
As shown in Fig. 3(a), we first measure the transmission
spectrum of the cavity (i.e., the black curve) by tuning the
frequency of the probe field but without the drive field on
the YIG sphere. The measured central frequency of the cavity
mode is 10.1035 GHz, which has a frequency shift of about
3 MHz compared with the intrinsic frequency of 10.1003 GHz
of the TE102 mode of an empty cavity. This cavity mode has a
detuning of �/2π ≈ 550 MHz from the Kittel mode. Because
� > 10gm, the coupled hybrid system is in the dispersive
regime. We then measure the transmission spectrum of the
cavity by both tuning the frequency of the probe field and
applying a drive field on the YIG sphere in resonance with
the Kittel mode. The measured red curve corresponds to the
drive power of 11 dBm. This transmission spectrum has a
central frequency of 10.1042 GHz with a frequency shift of
about 0.7 MHz from the measured central frequency without
applying a drive field.

Figures 3(b) and 3(c) show the measured transmission
spectra by tuning the frequency of the drive field where the
frequency of the probe field is fixed at the central frequency
of 10.1035 GHz of the cavity containing the YIG sphere. The
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FIG. 3. (a) Central frequency shift of the cavity-mode TE102 when
the drive field is on (red curve) and off (black curve), respectively.
(b) Transmission spectrum of the cavity measured as a function of
the drive-field frequency. The blue arrow indicates the response of
the Kittel mode, whereas the orange and purple arrows indicate the
MS modes 1 and 2, respectively. (c) Transmission spectrum of the
cavity measured as a function of the drive frequency by successively
increasing the driving power. The probe field is fixed at 10.1035 GHz
in both (b) and (c).

probe field power is −129 dBm. The corresponding average
cavity probe photon number can be estimated by [28]

n̄ = κ1Pp

�ωp
[
�2

p + (κ/2)2
] , (1)

where Pp is the probe field power and �p = ωp − ωc. In
our experiment, it is measured that κ1/2π = 0.70 MHz, i.e.,
κ1 ∼ κ/4. Also, the probe field frequency ωp is tuned in
resonance with the cavity-mode TE102. Then, the average
cavity probe photon number is reduced to n̄ = Pp/(�ωpκ) ≈ 1.
Here the probe tone is chosen extremely weak so as to avoid

producing any appreciable effects on the system. In Fig. 3(b),
the power of the drive field is 11 dBm. It can be seen that,
when the frequency of the drive microwave field is resonant
with the Kittel mode, the transmission coefficient has a large
decrease at 9.59 GHz (see the main dip indicated by a blue
arrow), caused by the shift of the central frequency of the
cavity mode. The dips indicated by orange and purple arrows
correspond to two different MS modes. In addition, we vary
the power of the drive field from −5 to 10 dBm in Fig. 3(c)
and observe two interesting features, i.e., when increasing the
drive power, the main dip becomes deeper successively, and it
simultaneously shifts rightwards. This reveals that the Kittel
mode has a blueshift with the increase in the drive power. The
responses of MS modes are similar.

B. Origin of the Kerr term

For a YIG sphere uniformly magnetized by an external
magnetic field along the z direction, when the magnetization is
saturated, the induced internal magnetic field includes the de-
magnetizing field [29] Hde = −M/3 and the anisotropic field
[30,31] Han = −(2Kan/M

2)Mz, where M ≡ (Mx,My,Mz) is
the magnetization, M is the saturation magnetization, and
Kan is the first-order magnetocrystalline anisotropy constant
of the YIG sphere. When both the Zeeman energy and
the magnetocrystalline anisotropic energy are included (see
Appendix B), the Hamiltonian of the YIG sphere in the
magnetic-field B0 is given by (setting � = 1)

Hm = −γB0Sz − μ0γ
2Kan

M2Vm
S2

z , (2)

where γ /2π = 28 GHz/T is the gyromagnetic ratio, μ0 is
the vacuum permeability, and Sz = MzVm/γ is a macrospin
operator of the YIG sphere with Vm being the volume of
the YIG sample. The macrospin operator Sz is related to the
magnon operators via the Holstein-Primakoff transformation
[32]: Sz = S − b†b, where b† (b) is the magnon creation
(annihilation) operator.

When including the drive field, the cavity mode, and
the interaction between the cavity photon and the magnon,
the total Hamiltonian of the coupled hybrid system is (see
Appendix B)

H = ωca
†a + ωmb†b + Kb†bb†b

+ gm(a†b + ab†) + �d(b†e−iωdt + beiωdt ), (3)

where â† (â) is the creation (annihilation) operator of the cavity
photons at frequency ωc, Kb†bb†b represents the Kerr effect
of magnons owing to the magnetocrystalline anisotropy in the
YIG sphere with K = μ0Kanγ

2/(M2Vm), �d (i.e., the Rabi
frequency) denotes the strength of the drive field, and ωd is the
drive-field frequency. Thus, our experimental setup provides a
strongly coupled cavity-magnon system with the magnon Kerr
effect, which is an extension of the cavity-magnon system
without the nonlinear effect [33]. Note that K is inversely
proportional to Vm so the Kerr effect can become important
when using a small YIG sphere.

224410-3



YI-PU WANG et al. PHYSICAL REVIEW B 94, 224410 (2016)

C. Cavity and magnon frequency shifts

Below we study the case of considerable magnons gener-
ated by the drive field. Because the coupled hybrid system is in
the dispersive regime, its effective Hamiltonian can be written
as (see Appendix C)

Heff =
[
ωc + g2

m

�
+ 2g2

m

�2
K〈b†b〉

]
a†a

+
[
ωm − g2

m

�
+

(
1 − 2g2

m

�2

)
K〈b†b〉

]
b†b

+�′
d(b†e−iωdt + beiωdt ), (4)

with the effective Rabi frequency �′
d given by

�′
d =

[
1 − 1

2(ωc − ωd)

(
g2

m

�
+ 2g2

m

�2
K〈b†b〉

)]
�d, (5)

where � = ωc − ωm. Due to the coupling between the cavity
and the YIG sphere, the cavity frequency shifts from the
intrinsic cavity-mode frequency ωc to ωc + g2

m/� with g2
m/�

being the dispersive shift. The measured central frequency
of 10.1035 GHz corresponds to ωc + g2

m/�. When pumping
the YIG sphere with a drive field, the magnon number 〈b†b〉
increases. Then the cavity frequency has an additional blueshift
of �c = (2g2

m/�2)K〈b†b〉 due to the Kerr effect. Also, the
Kerr effect yields a blueshift to the magnon frequency �m =
(1 − 2g2

m/�2)K〈b†b〉 ≈ K〈b†b〉. Both cavity frequency shift
and magnon frequency shift due to the Kerr effect have a
similar trend depending on 〈b†b〉, which is related to the drive
power.

V. RELATION BETWEEN THE MAGNON FREQUENCY
SHIFT AND THE DRIVE POWER

In Fig. 4, we extract the Kerr-effect-induced frequency
shifts of the magnon as well as the central frequency shift of
the cavity mode at each given drive power P . From Fig. 4(a),
it is clear that both the Kittel-mode frequency shift and the
cavity central frequency shift indeed have similar behaviors
depending on the drive power as predicted above. We also
see that all the frequency shifts exhibit nonlinear dependence
on the drive power. As given in Appendix D, we derive an
analytical relation between the magnon frequency shift �m

and the drive power P using a Langevin equation approach,
[
�2

m +
(

γm

2

)2]
�m − cP = 0, (6)

where c is a characteristic parameter reflecting the coupling
strength of the drive field with the magnon mode. For the
Kittel mode, we have already measured its linewidth γm/2π =
24.3 MHz. We use Eq. (6) to fit the experimental results of the
Kittle mode. As shown in Fig. 4(a), the obtained theoretical
(blue) curve fits very well with the experimental data, where
c = (2π )3 × 4.7 × 1024 kg−1 m−2.

For the MS modes, we have two unknown parameters, the
MS mode linewidth γm and the parameter c. We manage to fit
the experimental data in Fig. 4(b) with γm = 15 MHz and c =
(2π )3 × 1.35 × 1024 kg−1m−2 for MS mode 1 (orange curve)
and with γm = 30 MHz and c = (2π )3 × 6 × 1024 kg−1 m−2

for MS mode 2 (purple curve). Note that the theoretical
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FIG. 4. (a) Frequency shift of the Kittel mode (blue square) and
the central frequency shift of the cavity mode TE102 (red circle)
measured at various values of the drive power. The blue fitting
curve for the Kittel mode is obtained using Eq. (6). (b) Frequency
shifts of MS mode 1 (orange up-triangle) and MS mode 2 (purple
down-triangle) measured at various values of the drive power. The
corresponding orange and purple fitting curves also are obtained using
Eq. (6). The frequency shifts of the Kittel mode, MS mode 1, and MS
mode 2 are here referenced from 9.5526, 9.4758, and 9.6174 GHz,
respectively.

curves do not fit the experimental data of the MS modes
so well as those of the Kittel mode, especially in the region
around the threshold power [see the region of 1–3 mW in
Fig. 4(b)]. In fact, as a collective mode of spins with a zero
wave vector, the Kittel mode is the uniform precession mode
with homogeneous magnetization, whereas the MS modes
are nonuniform precession modes holding inhomogeneous
magnetization and have a spatial variation comparable to the
sample dimensions [26,27,31]. The appreciable deviations of
the experimental data from the theoretical fitting curves are
due to the inhomogeneous magnetization of the MS modes.

Note that when the drive power is small, γm � �m, so
Eq. (6) reduces to

(
γm

2

)2

�m − cP = 0, (7)

i.e., the magnon frequency shift depends linearly on the drive
power in the small drive power limit. When the drive power be-
comes sufficiently large, �m � γm, and then Eq. (6) reduces to

�3
m − cP = 0. (8)
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It yields

�m = (cP )1/3, (9)

i.e., in the large drive power limit, the magnon frequency shift
depends linearly on the cubic root of the drive power. These
limit results are consistent with the previous work in Ref. [34]
where there is a threshold power separating the small and
large driving power regions.

A dispersive measurement on the cavity transmission was
implemented at room temperature in Ref. [35], but the cavity’s
central frequency shift due to the magnon Kerr effect was
not observed. In Ref. [35], the drive field was applied on
the cavity rather than the YIG. This is different from our
setup in which the YIG sphere is directly pumped by the
drive field and the nonlinear effect of large-amplitude spin
waves can be induced [36]. Moreover, choosing a suitable
angle between the external magnetic field and the crystalline
axis is also important to observe the magnon Kerr effect
because the value of the Kerr coefficient K strongly depends
on this angle [37]. In our case, the bias magnetic-field B0

is aligned along the hard magnetization axis [100] of the
YIG sphere, which gives rise to the largest K . Furthermore,
our experiment is implemented at a cryogenic temperature
where the magnetocrystalline anisotropy constant Kan (so the
Kerr coefficient K) is several times larger than that at room
temperature [3,31]. These may be the reasons why appreciable
Kerr effect was not observed in Ref. [35].

VI. CONCLUSION

We have realized a strongly coupled cavity-magnon system
with magnon Kerr effect. By directly pumping the YIG sphere
with a drive field, we have demonstrated the Kerr-effect-
induced central frequency shift of the cavity mode as well
as the frequency shifts of the Kittel mode and MS modes. An
analytical relation between the magnon frequency shift and
the pumping power for a uniformly magnetized YIG sphere is
derived, which agrees very well with the experimental results
of the Kittel mode. In contrast, the experimental results of MS
modes deviate from this relation owing to the spatial variations
of the MS modes over the sample. We can use this relation
to characterize the degrees of deviation of the MS modes
from the homogeneous magnetization. Our setup can provide
a flexible and tunable platform to further explore nonlinear
effects of magnons in the cavity-magnon system. Moreover,
this coupled hybrid system involves magnon polaritons. It can
be used to explore a series of phenomena realized in other
polariton systems [12,13].
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FIG. 5. (a) The 3D cavity, which is made of oxygen-free copper
and plated with gold. (b) The drive antenna, which is connected to
a superconducting microwave line that goes into the cavity via port
3. (c) The small YIG sphere, which has a diameter of 1 mm and is
placed near the antenna and glued on the inner wall of the cavity.

APPENDIX A: CAVITY USED IN THE EXPERIMENT

Figure 5 shows the 3D rectangular cavity used in our
experiment. It has inner dimensions of 44.0 × 20.0 × 6.0 mm3

and contains three ports. Port 1 (2) is used for the probe field
into (out of) the cavity, and Port 3 is used for inputting the
drive field [Fig. 5(a)]. The drive antenna is placed just beside
the YIG sphere [Figs. 5(b) and 5(c)], and it is connected to a
superconducting microwave line that goes into the cavity via
port 3. This makes it efficient to pump the YIG sphere with a
drive field.

APPENDIX B: HAMILTONIAN OF THE
COUPLED HYBRID SYSTEM

The hybrid system shown in Fig. 5 consists of a small YIG
sphere coupled to a 3D rectangular cavity and driven by a
microwave field. Its Hamiltonian can be written as (setting
� = 1)

H = Hc + Hm + Hint + Hd. (B1)

Here Hc = ωca
†a is the Hamiltonian of the cavity-mode TE102

used in our experiment with ωc and a†(a) being the frequency
and creation (annihilation) operator of the cavity mode,
respectively. When Zeeman energy, demagnetization energy,
and magnetocrystalline anisotropy energy are included, the
Hamiltonian of the YIG sphere, which has a volume Vm, can
be written as [29]

Hm = −
∫

Vm

M · B0dτ − μ0

2

∫
Vm

M · (Hde + Han)dτ , (B2)

where μ0 is the magnetic permeability of free space, B0 =
B0ez is the static magnetic field applied in the z direction,
which is aligned along the crystalline axis [100] of the
YIG sphere in our experiment, M is the magnetization of
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the YIG sphere, Hde is the demagnetizing field induced by
the static magnetic field, and Han is the anisotropic field
caused by the magnetocrystalline anisotropy in YIG. For a
uniformly magnetized YIG sphere, the induced demagnetizing
field is [29] Hde = −M/3, and the anisotropic field is [30]
Han = −(2Kan/M

2)Mz where only the dominant first-order
anisotropy constant Kan is taken into account and M is the
saturation magnetization. Then, the Hamiltonian in Eq. (B2)
becomes

Hm = −B0MzVm + μ0

6
M2Vm + μ0Kan

M2
M2

z Vm. (B3)

The YIG sphere can act as a macrospin S = MVm/γ ≡
(Sx,Sy,Sz), where γ = gμB/� is the gyromagnetic ration [33]
with g being the g factor and μB being the Bohr magneton.
With the macrospin operator introduced, the Hamiltonian Hm

reads

Hm = −γB0Sz + μ0Kanγ
2

M2Vm
S2

z . (B4)

where we have neglected the constant term μ0M
2Vm/6. The

interaction Hamiltonian between the macrospin and the cavity
mode is

Hint = gs(S
+ + S−)(a† + a) ≡ 2gsSx(a† + a), (B5)

where gs denotes the coupling strength between the macrospin
and the cavity mode and S± ≡ Sx ± iSy are the raising and
lowering operators of the macrospin, respectively. In our
experiment, the YIG sphere (i.e., the macrospin) is directly
pumped by a drive field with frequency ωd. The interaction
between the macrospin and the drive field is

Hd = �s(S
+ + S−)(eiωdt + e−iωdt ) ≡ 4�sSx cos(ωdt), (B6)

where �s characterizes the coupling strength of the drive field
with the macrospin.

The macrospin operators are related to the magnon opera-
tors via the Holstein-Primakoff transformation [32],

S+ = (
√

2S − b†b)b,

S− = b†(
√

2S − b†b), (B7)

Sz = S − b†b,

where S is the total spin number of the macrospin operator
and b† (b) is the creation (annihilation) operator of the
magnon with frequency ωm. For the low-lying excitations with
〈b†b〉/2S 	 1, one has S+ ≈ b

√
2S, and S− ≈ b†

√
2S. Then,

the Hamiltonian in Eq. (B1) becomes

H = ωca
†a + ωmb†b + Kb†bb†b + gm(a + a†)(b + b†)

+�d(b + b†)(eiωdt + e−iωdt ), (B8)

where ωm = γB0 − 2μ0Kanγ
2S/(M2Vm) is the frequency of

the magnon mode, K = μ0Kanγ
2/(M2Vm) is a coefficient

characterizing the strength of the nonlinear magnon effect,
gm = √

2Sgs denotes the magnon-photon coupling strength,
and �d = √

2S�s denotes the coupling strength of the drive
field with the magnon mode. In the rotating-wave approxima-
tion, the Hamiltonian is reduced to

H = ωca
†a + ωmb†b + Kb†bb†b + gm(a†b + ab†)

+�d(b†e−iωdt + beiωdt ). (B9)

Note that because the YIG sphere contains a very large
number of spins, the condition 〈b†b〉/2S 	 1 for the low-lying
excitations can easily be satisfied [8], even when considerable
magnons are generated by the drive field.

APPENDIX C: EFFECTIVE HAMILTONIAN
IN THE DISPERSIVE REGIME

For convenience of calculations, we first transform the
Hamiltonian H in Eq. (B9) to a rotating reference frame
with respect to the frequency of the drive field by the unitary
transformation,

R1 = exp(−iωda
†at − iωdb

†bt), (C1)

i.e.,

H ′ = R
†
1HR1 − iR

†
1

∂R1

∂t

= ωca
†a + ωmb†b + Kb†bb†b + gm(a†b + ab†)

+�d(b† + b) − (ωda
†a + ωdb

†b)

= δca
†a + δmb†b + Kb†bb†b + gm(a†b + ab†)

+�d(b† + b), (C2)

with δc(m) ≡ ωc(m) − ωd. Here the coupled hybrid system is in
the strong-coupling regime, i.e., gm � κ,γm, where κ (γm) is
the decay rate of the cavity (magnon) mode. The Hamiltonian
(C2) can be divided into two parts H ′ = H0 + HI with the
free part,

H0 = δca
†a + δmb†b + Kb†bb†b + �d(b† + b), (C3)

and the interaction part,

HI = gm(a†b + ab†). (C4)

Below we use a Fröhlich-Nakajima transformation to
reduce the Hamiltonian H ′. It needs to find a unitary
transformation U = exp(V ), where V is an anti-Hermitian
operator V † = −V and satisfies [H0,V ] + HI = 0. Up to the
second order, the reduced Hamiltonian is given by

H ′
eff = U †H ′U ≈ H0 + 1

2 [HI ,V ]. (C5)

We choose V = λ1(a†b − ab†) + λ2(a† − a). Then,

[H0,V ] + HI = [δca
†a + δmb†b + Kb†bb†b + �d(b† + b),λ1(a†b − ab†) + λ2(a† − a)] + gm(a†b + ab†)

= λ1(δc − δm)(a†b + ab†) − λ1K[(2b†b + 1)a†b + ab†(2b†b + 1)] − λ1�d(a† + a)

+λ2δc(a† + a) + gm(a†b + ab†). (C6)
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In our experiment, we use a drive field to directly pump the YIG
sphere so as to generate considerable magnons. In this case,
the mean-field approximation can be applied to the term b†b
in Eq. (C6). Because 〈b†b〉 � 1, Eq. (C6) can approximately
be written as

[H0,V ] + HI ≈ [λ1(δc − δm) − 2λ1K〈b†b〉 + gm](a†b + ab†)

+(−λ1�d + λ2δc)(a† + a). (C7)

Using the relation [H0,V ] + HI = 0, we get

λ1(δc − δm) − 2λ1K〈b†b〉 + gm = 0,

−λ1�d + λ2δc = 0, (C8)

which give

λ1 = − gm

δc − δm − 2K〈b†b〉 = − gm

� − 2K〈b†b〉 ,
(C9)

λ2 = �d

δc
λ1 = −�d

δc

gm

� − 2K〈b†b〉 ,

where � = ωc − ωm. Therefore, V has the form

V = − gm

� − 2K〈b†b〉 (a†b − ab†)

−�d

δc

gm

� − 2K〈b†b〉 (a† − a). (C10)

Also, we apply the mean-field approximation to the Kerr term
in Eq. (C5). Then, the Hamiltonian (C5) becomes

H ′
eff ≈ H0 + 1

2
[HI ,V ]

≈
[
δc + g2

m

�
+ 2g2

m

�2
K〈b†b〉

]
a†a +

[
δm − g2

m

�

+
(

1 − 2g2
m

�2

)
K〈b†b〉

]
b†b + �′

d(b† + b), (C11)

with

�′
d =

[
1 − 1

2δc

(
g2

m

�
+ 2g2

m

�2
K〈b†b〉

)]
�d. (C12)

Finally, we further rotate the reduced Hamiltonian H ′
eff

using the unitary transformation,

R2 ≡ R
†
1 = exp(iωda

†at + iωdb
†bt), (C13)

which is the inverse transformation of R1 in Eq. (C1). The
derived Hamiltonian is given by

Heff = R
†
2H

′
effR2 − iR

†
2

∂R2

∂t

=
[
ωc + g2

m

�
+ 2g2

m

�2
K〈b†b〉

]
a†a

+
[
ωm − g2

m

�
+

(
1 − 2g2

m

�2

)
K〈b†b〉

]
b†b

+�′
d (b†e−iωdt + beiωdt ). (C14)

This is the effective Hamiltonian of the coupled hybrid
system obtained in the dispersive regime [i.e., Eq. (4)]. In
our experiment, the drive field is tuned to be in resonance with

the magnon mode,

ωd = ωm − g2
m

�
+

(
1 − 2g2

m

�2

)
K〈b†b〉. (C15)

APPENDIX D: RELATION BETWEEN THE MAGNON
FREQUENCY SHIFT AND THE DRIVE POWER

With Hamiltonian (C2), we can obtain the quantum
Langevin equations for the coupled hybrid system,

da

dt
= −i δca − igmb − κ

2
a,

db

dt
= −i δmb − i(2Kb†b + K)b − igma − i�d − γm

2
b.

(D1)

Here we write the operator a (b) as a sum of the steady-state
value and the fluctuation, i.e., a = A + δa and b = B + δb. It
follows from Eq. (D1) that A and B satisfy
dA

dt
= −i δcA − igmB − κ

2
A,

dB

dt
= −i δmB − i(2K|B|2 + K)B − igmA − i�d − γm

2
B.

(D2)

From Eq. (C15), we have δm ≡ ωm − ωd ≈ g2
m/� − K|B|2

because � � gm in the dispersive regime. Also, δc ≡ ωc −
ωd = � + δm ≈ �. At the steady states for both A and B, dA/

dt = 0 and dB/dt = 0. Then, it follows from Eq. (D2) that

− i �A − igmB − κ

2
A = 0,

(D3)

−i

(
K|B|2 + g2

m

�

)
B − igmA − i�d − γm

2
B = 0.

Eliminating A in Eq. (D3), we get[
K|B|2 + g2

m

�
− g2

m

� − i(κ/2)
− i

γm

2

]
B + �d = 0. (D4)

Because � � κ and γm � κ , Eq. (D4) is reduced to(
K|B|2 − i

γm

2

)
B + �d = 0. (D5)

Using Eq. (D5) and its complex conjugate expression, we
obtain [

(K|B|2)2 +
(γm

2

)2
]
|B|2 − �2

d = 0. (D6)

In our experiment, the measured frequency shift of the
magnons is

�m =
(

1 − 2g2
m

�2

)
K〈b†b〉 ≈ K〈b†b〉. (D7)

Note that 〈b†b〉 = |B|2 for small fluctuation δb, corresponding
to the case with considerable magnons generated in the YIG
sphere. With �m ≈ K|B|2 and K�2

d = cP , where P is the
drive power and c is a constant coefficient, Eq. (D6) reads[

�2
m +

(γm

2

)2
]
�m − cP = 0, (D8)

which is the relation between the magnon frequency shift and
the drive power [i.e., Eq. (6)].
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