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This study aims to unravel the mechanism of colossal magnetoresistance (CMR) observed in n-type HgCr2Se4,
in which low-density conduction electrons are exchange-coupled to a three-dimensional Heisenberg ferromagnet
with a Curie temperature TC ≈ 105 K. Near room temperature the electron transport exhibits an ordinary
semiconducting behavior. As temperature drops below T ∗ � 2.1TC , the magnetic susceptibility deviates from
the Curie-Weiss law, and concomitantly the transport enters an intermediate regime exhibiting a pronounced
CMR effect before a transition to metallic conduction occurs at T < TC . Our results suggest an important role
of spin correlations not only near the critical point but also for a wide range of temperatures (TC < T < T ∗) in
the paramagnetic phase. In this intermediate temperature regime the transport undergoes a percolation type of
transition from isolated magnetic polarons to a continuous network when temperature is lowered or magnetic
field becomes stronger.
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I. INTRODUCTION

Colossal magnetoresistance (CMR), the negative magne-
toresistance (MR) with magnitude much larger than those
observed in conventional ferromagnetic metals, is among
the most studied magnetotransport phenomena in condensed
matter [1–4]. The MR ratio, defined as ρxx,0/ρxx(H ), serves
as a figure of merit for CMR materials, where ρxx(H ) is the
longitudinal resistivity in applied magnetic field H and ρxx,0 is
the zero-field value. In the past five decades, a massive research
effort has produced many types of CMR materials, includ-
ing perovskite manganites [1–6], europium chalcogenides,
monoxide, hexaboride [7–13], chromium spinels [14], pry-
ochlores [15,16], and cobaltites [17]. MR ratios up to several
orders of magnitude have been obtained.

The CMR-related research has greatly advanced the
knowledge of magnetism, electron correlations, and phase
transitions [1–4]. Important concepts, such as magnetic po-
larons [8,9,18,19] and magnetic phase separation [20,21],
have been developed. However, the physics underlying the
CMR effects is often very complicated because of various
material-specific complications and many-body interactions.
Such complexity is probably best manifested in mixed-valence
perovskite manganites, in which many degrees of freedom,
including spin, charge, orbital, and lattice, come into play,
along with other factors, for instance substitutional disorder
and strong electron correlations [1–4]. In order to gain further
insight into the CMR effects, it is desirable to study a simpler
system in which the various experimental parameters are
considerably less intertwined.
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In this paper we demonstrate that n-type HgCr2Se4 is an
excellent system to study the CMR effect. The ferromagnetism
in this material arises from the superexchange interaction
between Cr3+ ions, which have three 3d electrons and thus are
free from the Jahn-Teller distortion. The magnetic properties of
the Cr3+ lattice are barely influenced by conduction electrons,
and the critical exponents are found very close to those
of an ideal 3D Heisenberg ferromagnet. The paramagnetic-
ferromagnetic phase transition drives a well-defined insulator-
metal transition with MR ratios up to five orders of magnitude.
Most importantly, the CMR effect is most pronounced when
spin correlations between the Cr3+ ions are significant. Based
on these observations, we suggest that spin correlations play an
important role in the transport processes related to the magnetic
polarons, which are responsible for the CMR effect in a broad
range of temperatures in the paramagnetic phase.

HgCr2Se4 has been known as a ferromagnetic semi-
conductor of the spinel family for several decades
[22–26]. Ferromagnetic order in HgCr2Se4 originates from the
Cr3+-Se2−-Cr3+ superexchange interactions between nearest
neighbors of Cr ions [22]. For n-type HgCr2Se4 single crystals
with electron densities on the order of 1018 cm−3, our recent
Andreev reflection spectroscopy experiment has provided
evidence for nearly full electron spin polarization in the
ferromagnetic ground state [27]. In the present work, we focus
on the magnetism near the ferromagnetic-paramagnetic phase
transition, the metal-insulator transition, and the microscopic
origin of the CMR effect in n-HgCr2Se4.

II. EXPERIMENTAL METHODS

Single crystals of HgCr2Se4 were grown with a chemi-
cal vapor method by using CrCl3 or AlCl3 as the carrier
agent [23,28]. The starting materials Hg, Cr, and Se, as well
as the carrier agent, were sealed into a silica tube. They were
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heated at 800 ◦C for 5–10 days in a tube furnace. A temperature
gradient of about 100 ◦C was used for the transport at the
cooler growth end of the tube. The obtained octahedral-shaped
crystals typically have sizes in a range of 0.5 to 2 mm. Electron
transport measurements were carried out in helium vapor
flow cryostats with a temperature range from 1.5 to 325 K
and magnetic fields up to μ0H = 14 T. The magnetization
of HgCr2Se4 single crystals were measured in a commercial
vibrating sample magnetometer with a temperature range of
1.8–400 K and magnetic fields up to 7 T. Details of transport
and magnetization measurements, as well as the method for
extracting critical exponents, are given in Appendix A.

III. EXPERIMENTAL RESULTS

Our measurements have been carried out on several batches
of n-type HgCr2Se4 single crystals. All of the data shown in the
main text were taken from a sample with an electron density
of ∼1 × 1018 cm−3 at liquid helium temperatures. We have
also obtained similar results from other HgCr2Se4 samples
with comparable carrier densities. Additional magnetization
and electron transport data are given in Appendices B–D.

Figure 1(a) shows the temperature dependences of the
longitudinal resistivity ρxx in magnetic fields μ0H = 0, 1,
4, and 8 T. At T = 4.2 K the electron mobility is about
4 × 102 cm2 V−1 s−1. For temperatures below ∼ 60 K, ρxx

FIG. 1. (a) Temperature dependences of longitudinal resistivity
ρxx for an n-type HgCr2Se4 sample with carrier density n ≈ 1 ×
1018 cm−3 for magnetic fields μ0H = 0, 1, 4, and 8 T. The
corresponding Hall measurement results are shown in Fig. 7 in
Appendix A1. (b) T dependence of the magnetization M with an
applied field μ0H = 0.01 T. The left (right) inset is a sketch of
the position of the spin-split (spin-degenerate) conduction band for
temperatures below (above) the Curie temperature. (c) ρxx plotted
as a function of μ0H for T = 110 K and 120 K. (d) Temperature
dependence of the MR ratio ρxx,0/ρxx(H ) with μ0H = 8 T. The
maximum is located at T = 106.9 K. The Curie temperature is
marked with a vertical dashed line in panels (a), (b), and (d).

increases slowly with increasing T . In contrast, a very rapid
increase of ρxx is observed as the temperature is further raised.
At T = 118 K, ρxx reaches a maximum, with a value about
eight orders of magnitude larger than the low temperature
values. Such a large temperature dependence is several orders
of magnitude larger than those observed by other groups
in HgCr2Se4 [24–26]. This clearly demonstrates a metal-
insulator transition driven by the ferromagnetic-paramagnetic
phase transition shown in Fig. 1(b) [1,10,27]. The semicon-
ducting behavior in the paramagnetic phase can be attributed
to the Fermi level being located below the conduction band
minimum, whereas in the ferromagnetic phase a large spin
splitting (nearly 1 eV) shifts the Fermi level above the bottom
of the spin-down conduction band because of strong exchange
interactions between Hg-6s and Cr-3d electrons [see insets in
Fig. 1(b)] [23,29]. At temperatures near the Curie temperature
(TC ≈ 105 K), especially on the paramagnetic side, giant
negative magnetoresistances are observed, as illustrated in
Figs. 1(c)–1(d). The temperature dependence of the MR ratio
is very sharp, with a maximum of 6 × 104 at T = 106.9 K
and μ0H = 8 T. Such a large MR ratio is comparable to the
highest values reported in literature (e.g., ∼106 in europium
monooxide [10] and ∼103–105 in manganites [6,30]) and is at
least two orders of magnitude larger than previously reported
values for HgCr2Se4 [24,26]. Another noticeable feature in
Fig. 1 is that the maxima of both ρxx and the MR ratio
are located at temperatures above TC , suggesting that the
metal-insulator transition and the magnetic phase transition
are not fully synchronized.

More insight into the magnetism in HgCr2Se4 can be gained
from an analysis of the critical exponents.1 The Arrott plot in
Fig. 2(a) allows for an extraction of the critical exponents
from the magnetization data near TC [31,32]. The critical
exponents β, γ , and δ can be obtained from fits to the follow-
ing asymptotic relations: Ms(T ) = limH→0M(T ) ∝ [(TC −
T )/TC]β at T < TC , χ0(T ) = limH→0M(T )/H ∝ [TC/(T −
TC)]γ at T > TC , and M ∝ Hδ at T = TC . Here Ms is the
spontaneous magnetization, and χ0 is the zero-field limit of
magnetic susceptibility. As shown in Fig. 2(b) and Appendix
A2, these fits yield β = 0.361, γ = 1.372, and δ = 4.84,
which deviate strongly from the mean-field values (β = 1/2,
γ = 1, and δ = 3) but are close to the theoretical values for
a 3D Heisenberg ferromagnet (β = 0.367, γ = 1.388, and
δ = 4.78) [33]. The validity of the critical exponents analysis
can be verified by the scaling plot shown in Fig. 2(c). All of the
data in the critical region collapse very nicely onto two curves
in the M/|(T − TC)/TC |β vs H/|(T − TC)/TC |β+γ plot: one
for T < TC and the other for T > TC . Such a scaling behavior
is expected for the critical region of a second-order magnetic
phase transition [31]. It is important to note that the magnetic
properties are dominated by the superexchange-coupled Cr3+

ions [23], since the conduction electrons are outnumbered by
Cr3+ ions by four orders of magnitude.

From the fits for extracting critical exponents β and γ , we
obtain TC = 105.35 K, which is close to the maximum in the
temperature derivative of the zero-field resistivity, dρxx, 0/dT ,

1The method for the analysis of critical exponents is given in
Appendix A2.
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FIG. 2. (a) Arrott plot of the magnetization isotherms (M2 vs
H/M) in a temperature region of 80–130 K. The temperature interval
is 0.5 K for 100–110 K and 2 K for the others. (b) T -dependences
of the spontaneous magnetization Ms (green squares, left) and the
zero-field limit of the inverse magnetic susceptibility 1/χ0 (yellow
squares, right). Also shown are fitting curves (solid lines) to the
critical equations. (c) Scaling plot of M|ε|−β vs H |ε|−(β+γ ) for T =
98–110 K, where ε = (T − TC)/TC is the reduced temperature. (d)
T dependence of the zero-field resistivity derivative dρxx, 0/dT . In
panels (b) and (d), the critical region is indicated with a gray zone.

as shown in Fig. 2(d). The sharp peak in dρxx, 0/dT coincides
very well with the critical region (98–117 K), determined
from the Ms(T ) vs T and χ−1

0 (T ) vs T plots in Fig. 2(b).
This implies that, due to the s-d exchange interaction, the
critical behavior of the magnetic lattice is corresponding to
the strongest change in the electron transport properties. Sharp
peaks in dρxx, 0/dT at T = TC have also been observed in
ferromagnetic metals [34,35]. The critical behavior in case
of metallic conductivity was explained long ago by Fisher and
Langer [36], who pointed out that short-range spin fluctuations
are responsible for the singular behavior in dρxx, 0/dT at
T = TC . The Fisher-Langer model, however, cannot be used
to describe the peak in dρxx, 0/dT observed in this work, since
ρxx in n-HgCr2Se4 is on the order of 105 � cm or higher near
TC , suggesting the transport is far from the metallic regime.2

Figure 3(a) shows a set of ρxx(H ) vs H curves for T =
100–180 K, at which the CMR effect is most pronounced. The
corresponding magnetization curves are shown in Fig. 3(b).
In order to reveal the connection between transport and the
magnetization, in Fig. 3(c) we plot the normalized resistivity,
defined as ρxx(H )/ρxx, 0, as a function of reduced magne-
tization, m(H ) = M(H )/Msat , where Msat is the saturation
magnetization corresponding to 3 μB/Cr3+. It is found that
the curves for T � 110 K can be approximately scaled onto a

2For n ∼ 1018 cm−3, ρxx less than ∼0.1 � cm is required to meet
the Ioffe-Regel criterion for metallic conduction.

FIG. 3. (a) Magnetic field dependence of longitudinal resistivity
ρxx, (b) Dimensionless magnetization m(H ) = M(H )/Msat, where
Msat is the saturation magnetization (equivalent to 3 μB/Cr3+). (c)
Normalized resistivity ρxx(H )/ρxx, 0 plotted as a function of m(H ).
The data for T � 110 K can be roughly scaled onto a single curve.
The same set of temperatures (100–180 K) are used in panels (a)
and (b).

single curve. In contrast, no such scaling behavior exists for
T < 110 K.3

The scaling behavior between the MR and the magne-
tization implies that a unified description of the electron
transport is possible for a broad range of temperatures in
the paramagnetic phase. It is connected with a transport
regime in an intermediate temperature zone illustrated in
Fig. 4. At higher temperatures [T > T ∗ ≈ 2.1TC ≈ 220 K,
zone I in Fig. 4(a)], the transport follows a thermal activation
law ρxx ∝ exp(	/kBT ) with 	 = 0.19 eV, whereas at lower
temperatures (T < TC , zone III), ρxx drops very rapidly with
decreasing T and a transition to metallic conduction takes
place. In the intermediate temperature zone (TC < T < T ∗,
zone II), the resistivity exhibits a crossover behavior between
the high and low temperature regimes. These three transport
regimes are correlated remarkably well with the behavior
of the T dependence of the inverse magnetic susceptibility
χ−1(T ) plotted in Fig. 4(b). In zone I, χ−1(T ) follows a Curie-
Weiss law, and ρxx is nearly independent of the magnetic field
[Fig. 4(a)]. The sample behaves like an ordinary semiconductor
with activated transport. As temperature is lowered below T ∗
(zone II), the susceptibility deviates from the Curie-Weiss law.4

The zero-field resistivities in zone II are much smaller than

3The tiny kinks on the M-H and ρxx-H curves in Figs. 3(b) and 3(c)
are a result of domain wall nucleation/annihilation or movement in
the low magnetic field region.

4Determination of T ∗ from the susceptibility data is shown in
Fig. 10.
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FIG. 4. (a) Temperature dependence of the resistivity in the form
of ln(ρxx) vs 1000/T for magnetic fields μ0H = 0, 1, 4, 8 T. The
linear fit (dotted line) for T > 220 K yields a thermal activation gap
	 = 0.19 eV. (b) T dependence of the inverse susceptibility χ−1

recorded at μ0H = 0.01 T (solid line), which starts to deviate from
the Curie-Weiss law (dotted line) at T ∗ ≈ 220 K (see Appendix B1
for details). (c) The upper panel schematically shows the evolution of
the s-orbital states with decreasing temperature. In zone I (T > T ∗)
the conduction band is spin degenerate, whereas in zone III (T < TC)
the ferromagnetic order causes a large spin splitting of the conduction
band. The middle panel shows that spin correlation length ξ becomes
longer with decreasing temperature. In zone II, ξ enters the nanometer
scale and can substantially increase the size of magnetic polarons, as
illustrated in the bottom panel.

extrapolated values from the thermal activation law extracted
in zone I. When a magnetic field is applied, ρxx in zone II drops
more strongly at the lower temperature side. As a consequence,
the intermediate transport regime is squeezed to a narrower
range of temperatures in stronger fields, as shown in Fig. 4(a).

IV. DISCUSSION

A crucial point of our experimental observation is the
existence of the intermediate transport regime and its corre-
spondence with the deviation of magnetic susceptibility from
the Curie-Weiss law in zone II. Such deviation has been well
understood and can be attributed to the spin correlations and
fluctuations that are neglected in mean-field theories [33,37].
The critical behavior of the magnetic phase transition is a result
of a diverging spin correlation length at T = TC . The sharp
peak in dρxx, 0/dT near TC [see Fig. 2(d)] can be viewed as
a manifestation of such spin correlations in electron transport

due to the strong s-d exchange interaction. In contrast, when
the temperature is high enough so that the spin correlations
are negligible, the transport exhibits little response to the
magnetic field, as illustrated in zone I, Fig. 4(a). Taking
these observations altogether, it is reasonable that the spin
correlation effects are important to account for the transport
properties observed in zone II.

In this intermediate temperature zone, spin correlation
length becomes long enough to favor nanoscale local order-
ing of Cr3+ spins. Neutron scattering measurements have
confirmed such spin correlations in the Heisenberg-type
ferromagnets (e.g., EuO and EuS) at temperatures below
∼2TC [38]. However, the transport properties of these classic
magnetic semiconductors were explained in terms of magnetic
polaron models without considering the spin correlation
effects [16,18,19,39]. The magnetic polaron is a nanoscale
charge-spin composite, in which a charge carrier polarizes a
number of localized spins in the lattice of magnetic ions via the
exchange interaction. The existence of magnetic polarons has
been confirmed by a lot of experiments, including muon spin
resonance [40,41] and Raman scattering [42,43]. Thermally
activated transport has been observed in many magnetic semi-
conductors with low carrier densities, such as EuO [10,11],
CdCr2Se4 [44], and Sc-doped Tl2Mn2O7 [15]. The resistivity
follows ρxx ∼ exp(	b/kBT ), mostly in a temperature range of
a few times TC to room temperature, where 	b is attributed to
the binding energy of individual magnetic polarons, typically
of order 0.1 eV. At lower temperatures, the transport was
found to deviate from the thermally activated transport with a
single energy barrier. Up to now, not much effort has been
made to explain the lower resistivities in this temperature
range quantitatively, except a work reported by Majumdar and
Littlewood [16]. The equation for 	b(T ) given there, however,
predicts larger slopes of ln ρxx(T ) at lower temperatures,
inconsistent with the data shown in Fig. 1(a). It is noteworthy
that in Ref. [16], as well as other theoretical studies, the
exchange interaction between the lattice spins are either treated
on a mean field level or being neglected [9,16,18,19]. Spin
correlation effects are therefore not included in existing models
of magnetic polarons for magnetic semiconductors, to the
best of our knowledge. In the following, we suggest that spin
correlations account for the transport characteristics observed
in zone II.

In the n-type HgCr2Se4 samples studied in this work, the
charge donors are presumably Se vacancies.5 Similar to other
magnetic semiconductors with anion deficiencies [10,11],
electron clouds surrounding unionized donors lead to forma-
tion of bound magnetic polarons [18]. The s-d exchange in-
teraction (or s-f interaction in rare earth compounds) provides
strong polarizing force for a small number of lattice spins
overlapping with the donor wave functions [9,10,19,40,41]. At
high temperatures, spin correlation length ξ is too short to be
relevant. The lattice spins in the polarons can thus be modeled
as a uniformly polarized core of sub-nm size, separated by
a sharp boundary from the paramagnetic background with
randomized spins. This has been the basis of previous theories

5This is based on the fact that the samples tend to be n-type (p-type)
after being annealed in Hg (Se) vapor.
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of bound magnetic polarons [16,18,19]. At lower temperatures,
increasing ξ makes this simplified picture no longer valid.
Spin polarization at the core of the magnetic polarons remains
large, but it decays over a distance on the order of ξ , rather
than abruptly dropping to zero at the boundary. Figure 4(c)
illustrates such polarons with the core-shell structure, in which
the shell width is determined by the spin correlation length.

The magnetic polarons enlarged by spin correlations can
have substantial impact on the electronic structure and trans-
port properties in zone II. As shown in Fig. 4(c), the s-d
exchange interaction produces a 3D confinement potential
for the spin-down s-orbital states. The energy levels in the
quantum-dot-like structure are expected to be lower than the
spin-degenerate 6s band in the paramagnetic phase. This is
supported by an optical measurement by Arai et al. [23],
who observed a 0.3 eV redshift of the absorption edge at
temperatures above TC and the shift becoming noticeable at
about 200 K. This temperature is close to T ∗ obtained in this
work, further revealing the importance of spin correlations.
The empty states in the quantum-dot-like structure provide a
new avenue for electron transport. The carriers bound by the
donors no longer need to be excited to the spin-degenerate
conduction band. This can reduce the activation energy
substantially, in agreement with the rapid decrease in the slope
of the ln ρxx vs 1/T plot in Fig. 4(a) at T < T ∗. When the
temperature is further lowered deeply into zone II, increasing ξ

causes more overlapping in the wave functions of neighboring
polarons, and the transport will eventually pass a threshold at
which the polarons form a percolated network, as depicted in
the bottom panel of Fig. 4(c).

For the HgCr2Se4 sample with electron density of
∼1018 cm−3 at low temperatures, the nearest neighbor distance
between the polarons is about 10 nm. A spin correlation length
of a few nanometer should be able to establish the percolation.
Even though no neutron scattering experiment has been
reported for HgCr2Se4, the data from other Heisenberg-type
ferromagnets imply that T − TC ∼ 10 K is probably sufficient
to reach the percolation threshold. Generally speaking, the
percolation type of transition exists in many CMR materials.
However, it has been difficult to identify a convenient universal
hallmark in transport for the onset of percolation. Nevertheless,
in the HgCr2Se4 samples studied in this work, the transport
related to the polarons evolves from a well-defined thermally
activated transport at higher temperatures (zone I). Very high
resistivity (∼105–106 � cm) is maintained throughout zone
II. The crossover from the isolated polarons to percolation is
hence not complicated by additional transport channels (e.g.,
two-band conductivity in EuB6 reported in Ref. [45]). Fig-
ure 1(a) shows that the zero-field resistivity has a maximum at
T = 118 K, which is reasonably close to the value expected for
the onset of percolation. Therefore, the temperature at which
the resistivity maximum appears, TRmax, may provide a good
estimate for the percolation threshold, Tp, in n-HgCr2Se4.

When the magnetic field is applied, the resistivity in zone
II is greatly reduced. Such negative MR can be attributed
to sensitive response of magnetic polarons to the external
field. The Zeeman energy favors magnetic ordering and
consequently increases the core size of magnetic polarons,
therefore decreasing their binding energy. Assuming a constant
total size (i.e., core + shell) of the polarons at the percolation

FIG. 5. (a) Derivative of resistivity, dρxx/dH , as a function of
magnetic field for T = 120–160 K. The position of the minimum is
denoted as HdRmin. (b) Magnetization corresponding to the dρxx/dH

minimum, in the units of saturation magnetization, Msat; (c) Phase
diagram in the (T , H ) plane. In zone II, the (TRmax,H ) (squares)
and the (dρxx/dH ) (circles) data roughly fall onto a single line,
which separates zone II into two regions: one with isolated magnetic
polarons (MPs) and the other with percolated or merged MPs.

threshold, a higher Tp is thus expected for a stronger magnetic
field. This is consistent with our experimental data. As shown
in Fig. 1(a), TRmax increases from 118 K to 184 K as the
magnetic field is increased from 0 to 8 T.

In a recent study of the CMR effect in EuB6, Amyan
et al. suggested that analysis of the derivative of the MR data
provides a convenient method for determining the percolation
threshold [46]. Based on an experiment in combination of
conventional transport, nonlinear transport, and noise spec-
troscopy, they concluded that the minimum in the dρxx/dH

curve can be ascribed to the beginning of percolation. Because
of its negative sign, the dρxx/dH minimum is corresponding
to the most sensitive response to the change in magnetic
field. Shown in Fig. 5(a) are a set of dρxx/dH curves at
T = 120–160 K for the HgCr2Se4 sample. Each of them has
a pronounced dip. The location of the minimum, HdRmin,
increases monotonically with increasing temperature. It is
striking that the corresponding magnetization M(HdRmin)
remains at about 0.2Msat for all temperatures, as shown in
Fig. 5(b). Similar analysis of the MR data of EuB6 yielded a
critical magnetization of ∼0.1Msat. It is noteworthy, however,
that the spins inside the magnetic polarons (including the
shell areas) are partially polarized. This suggests that the
actual volume ratio could be considerably larger than 20%
for HgCr2Se4 and 10% in EuB6 at the percolation threshold.
As discussed in previous works on other CMR materials
[13,46–48], the transition from the isolated magnetic polarons
to the percolated network has some resemblance of granular
metal films, in which percolation thresholds of about 0.5 have
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been observed [49]. It is however out of the scope of this work
to discuss whether the percolation transition is quantum or
classical in nature [50].

Figure 5(c) shows that the percolation thresholds deter-
mined from the two methods described above, namely (TRmax,
H ) and (T , HdRmin), agree with each other quite well. This
threshold line separates zone II into two electronic phases:
one with isolated magnetic polarons at low H/T and the
other with percolated or merged polarons at high H/T . At
high temperatures (T > T ∗, zone I), the lattice Cr spins are
uncorrelated and the transport is thermally activated and is
little influenced by the magnetic field. This is in contrast to the
regions with the CMR effect, which include nearly the entire
zone II and a part of zone I close to TC . It should be noted
that the metallic conductivity only appears at temperatures
much lower than TC . In Fig. 5(c), a kF le ∼ 1 line is used as
a crude boundary between the metallic and insulating phases,
where kF is the Fermi wave vector, and le is the electron’s
mean free path.6 Near TC , the resistivity is very high despite
that the transport has passed the percolation threshold. This
can be attributed to strong spin fluctuations as well as the
disorder effect related to the low density electron system. Truly
metallic conductivity takes place only when the spontaneous
magnetization is large enough such that the bottom of the
conduction band drops considerably below the Fermi level
to overcome the disorder effect, which arises from defects
and spin excitations. Disorder induced localization has been
discussed previously by Coey et al. in manganites [51]. It is
also likely that the transport involves the hopping of magnetic
polarons, which have a very large effective mass due to the
strong coupling between the charge carriers and the magnetic
lattice. The polaron localization and hopping were discussed
long ago by von Molnár et al. for the high resistivity observed
near TC in Eu-chalcogenides [7,9].

V. CONCLUSION

In summary, we have shown that spin correlations play
a significant role in the transport properties of the CMR
material n-HgCr2Se4, in which a low-density electron system
is exchange coupled to lattice spins with Heisenberg-type
ferromagnetic order. For a wide range of temperatures in
the paramagnetic phase, the transport is related to magnetic
polarons and their effective size is dependent on the spin
correlation length. The colossal negative magnetoresistance
(with MR ratio up to five orders of magnitude) can be explained
by a percolation type of transition from isolated magnetic
polarons to a continuous network, which can be driven either
by lowering the temperature or increasing magnetic field.
Our work calls for further work to investigate the magnetic
polarons in magnetic semiconductors and related materials,
in particular with microscopic probes. This will help to gain
further insight into the physics of magnetic polarons influenced
by spin correlations, which have largely been neglected in
previous studies.

6The mean free path le is estimated with an effective mass of m∗ =
0.15me, which was obtained from an optical measurement reported
in Ref. [25].

ACKNOWLEDGMENTS

We are grateful to stimulating discussions with X. Dai,
Z. Fang, J. R. Shi, S. von Molnár, H. M. Weng, P. Xiong,
Y. F. Yang, and L. J. Zou. This work was supported by the
National Basic Research Program of China (Projects No.
2012CB921703 and No. 2015CB921102), National Science
Foundation of China (Projects No. 11374337, No. 11474330,
and No. 61425015), National Key Research and Development
Program of China (2016YFA0300600), and the Strategic
Initiative Program of Chinese Academy of Sciences (Project
No. XDB070200).

APPENDIX A: ADDITIONAL DETAILS
OF EXPERIMENTAL METHODS

1. Transport measurements

Electric contacts were made with silver paint or thermally
evaporated Cr/Au thin films on a flat (111) surface of HgCr2Se4

single crystals. The samples are mostly 0.5–1 mm thick.
Mechanical thinning or polishing was not used in order to
avoid unintentional modifications of transport properties. A
multiple-terminal contact geometry was used for the longi-
tudinal resistivity and the Hall resistivity measurements. The
distances between the source and drain contacts are larger
than or comparable to the sample thicknesses. The standard
low frequency lock-in technique was used for the measure-
ments of the low-impedance metallic states, whereas the dc

method was employed in case of very high impedances (e.g.,
semiconducting states at T > TC). In the dc measurements,
current pulses of both positive and negative polarities were
applied alternatingly so that spurious thermoelectric effects
can be removed. The input impedances of preamplifiers and
voltmeters were chosen to be much larger than the sample
impedances. The magnitude of the applied current was set at
a low level in order to keep the transport in the linear regime.
Figure 6 shows several examples of the current-voltage (I -V )
curves in the high impedance regime. The I -V characteristics
were confirmed to be linear for every pair of electrical contacts
used in the transport measurements.

FIG. 6. Current-voltage characteristics at T = 140 K for several
pairs of electrical contacts on a n-HgCr2Se4 sample. The linear I -V
curves suggest that the contacts are ohmic despite that the impedances
are on the order of 100 M�.
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FIG. 7. (a) The Hall resistivity of sample A in the temperature
range from 4.2 K to 60 K and in magnetic field up to 9 T. The inset
shows the Hall effect data at T = 4.2 K, in which the anomalous Hall
effect (AHE) can also be observed. (b) Temperature dependence of
electron density ne and mobility μ.

In order to extract the longitudinal and Hall re-
sistances without intermixing, a standard symmetriza-
tion/antisymmetrization was applied to the raw transport data
with respect to two polarities of the magnetic field. Figure 7(a)
shows the Hall resistivity data of the HgCr2Se4 sample
discussed in the main text (sample A) at selected temperatures
from 4.2 K to 60 K and in magnetic field up to 9 T. In
the low field region, the nonlinear of the Hall resistivity is
from the anomalous Hall effect which can be attributed to the
ferromagnetism of HgCr2Se4. For the curve at T = 4.2 K,
the anomalous Hall component has been clearly marked at
the inset of Fig. 7(a) by red lines. While at high magnetic
fields (e.g., 6–9 T), the Hall resistivity shows a linear behavior
because of the saturation in magnetization. This allows for
straightforward extractions of the Hall coefficient RH . The
corresponding electron densities, obtained by ne = 1/eRH ,
are plotted in Fig. 7(b) for several temperatures. The mobility
μ can be obtained by using the relation μ = RH/ρxx, 0 where
ρxx, 0 is the zero field resistivity [see Fig. 1(a)].

2. Analysis of critical exponents in magnetization

From Landau’s mean field theory of phase transitions, the
basic thermodynamic potential is Gibbs free energy G(T ,M),
which is a function of temperature T and magnetization M .

The latter is generally treated as an order parameter in fer-
romagnetic systems. Near the paramagnetic to ferromagnetic
transition, G(T ,M) can be expanded as a power series of M:

G(T ,M) = G0 + a(T )

2
M2 + b(T )

4
M4 − MH, (A1)

where the coefficients a and b are temperature dependent. At
equilibrium, dG/dM = 0, and one obtains:

H

M
= a + bM2. (A2)

An Arrott plot is composed of a set of M2 vs H/M curves
for temperatures near the ferromagnetic transition temperature
TC [33,34,52]. The Curie temperature TC can be determined
by simply finding out which curve passes through the origin
of the Arrott plot. According to Eq. (A2), the M2 vs H/M

curves should be straight lines in an Arrott plot. Unfortunately,
magnetic interactions in many ferromagnetic systems are
much more complicated than the mean field theory, and
consequently the M2 vs H/M curves are often not straight
lines. Nevertheless, one can still obtain valuable information
from the Arrott plot. It was suggested that the slope of the
M2 vs H/M curves can be used to infer the order of the phase
transition, namely a negative (positive) slope is corresponding
to the first (second) order phase transition [53].

In this work, the magnetization measurements were carried
out with a very small temperature interval (	T = 0.5 K) near
TC in order to obtain sufficient accuracy in the analysis. At
each of the temperatures for the Arrott plot shown in Fig. 2(a)
of the main text, the magnetization data were taken after the
magnetic field was swept back to zero and the temperature
was raised to 300 K, so that every trace was guaranteed to
have the same initial magnetization. The values of internal
magnetic field H have been corrected by considering the
demagnetization effect, i.e., H = He − NM , where He is the
applied (external) magnetic field, M is the magnetization,
and N is the demagnetization factor. Following a method
reported in Ref. [54], N can be evaluated from the low field
(He < 100 Oe) magnetization data in the ferromagnetic phase.

For a second order phase transition, the critical behavior
can be described by a series of asymptotic relations:

Ms(T ) = limH→0M(T ) ∝
[
TC − T

TC

]β

,T < TC (A3a)

χ0(T ) = limH→0
M(T )

H
∝

[
TC

T − TC

]γ

,T > TC (A3b)

M ∝ Hδ,T = TC. (A3c)

Here β, γ , and δ are the critical exponents, Ms is the
spontaneous magnetization, and χ0 is the zero-field limit of
the magnetic susceptibility. Following a method described in
Ref. [55], we obtain Ms(T ) and 1/χ0(T ) by polynomial fitting
of the curves in the Arrott plot and extrapolating them to
the vertical and horizontal axes, respectively. Figure 8 shows
the temperature dependences of Ms(T ) and 1/χ0(T ) and the
corresponding fits to Eqs. (A3a) and (A3b).

The critical equations are only valid in a small tem-
perature interval around TC and in low magnetic fields.
Therefore, we limit our fits to a narrow range of temperatures:
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FIG. 8. (a) Spontaneous magnetization Ms(T ) (squares) and the
fit to the Eq. (A3a) (solid line). (b) Zero field inverse magnetic
susceptibility 1/χ0(T ) (squares) and the fit to Eq. (A3b) (solid line).
(c) M(H ) at T = 105 K (triangles) and 105.5 K (squares) and the fits
to Eq. (A3c). Both M and H are in the logarithmic scale.

FIG. 9. Temperature dependence of the quantities X, Y (blue and
gray square symbols), defined in the text, and the corresponding linear
fits (red lines) to Eqs. (A4a) and (A4b). The temperature range with
the data points falling onto the linear fits can be regarded as the critical
region (T = 98–117 K).

|ε| = |(T − Tc)/Tc| < 0.05. The fit shown in Fig. 8(a) yields
β = 0.361 and TC = 105.5 K. It also shows that the experi-
mental Ms data starts to deviate from the critical relation [Eq.
A3(a)] at T = 98 K, which can be regarded as the lower bound
of the critical region. As shown in Fig. 8(b), from the fit 1/χ0(T )
data to Eq. (A3b), one obtains γ = 1.372 and TC = 105.2 K.
Similarly, the upper bound of the critical region is determined
to be T = 117 K. The In(M) vs In(H ) plots at T = 105.5
K and 105 K are shown in Fig. 8(c), from which δ = 4.83
and 4.85 can be extracted, respectively. Based on this, we
obtain δ = 4.84 for the average value of the Curie temperature
(TC = 105.35 K).

The validity of the above fits can be further confirmed by
a method given in Ref. [33]. The Ms(T ) and 1/χ0(T ) data can
be fitted to the following equations:

Y = Ms(T )

dMs(T )/dT
= T − TC

β
. (A4a)

X = χ−1
0 (T )

dχ−1
0 (T )/dT

= T − TC

γ
. (A4b)

As shown in Fig. 9, the obtained values (β = 0.34, TC =
105.5 K and γ = 1.388, TC = 105.2 K) are consistent with
the fits with Eqs. (A3a) and (A3b). From this plot, the critical
region can be determined to be 98–117 K, based on where
the deviation from the linear relationship takes place. This
result is consistent with the analysis shown in Fig. 8. The
obtained critical exponents (β = 0.361, γ = 1.372, and δ =
4.84) are very close to theoretical values of a 3D Heisenberg
ferromagnet (β = 0.367, γ = 1.388, and δ = 4.78) [35]. This
is not surprising since the magnetism near TC is dominated
by the superexchange interactions between Cr3+ ions. Similar
critical exponents have also been obtained for CdCr2Se4 [56],
a compound closer to a magnetic insulator than HgCr2Se4.
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FIG. 10. (a) Temperature dependence of the inverse magnetic
susceptibility 1/χ (solid line) of n-HgCr2Se4 and the linear fit in
the high temperature range (dashed line). (b) The temperature T ∗, at
which the deviation from the Curie-Weiss law begins, can be seen
more clearly after the linear part of the inverse susceptibility curve
is removed, i.e., 	χ−1(T ) = χ−1(T ) − c(T − Tθ ). The temperature
coefficient c and the Curie-Weiss temperature Tθ can be extracted
from the linear fit shown in panel (a).

APPENDIX B: ADDITIONAL MAGNETIZATION DATA

1. Temperature dependence of inverse susceptibility

In Fig. 10(a) we replot the temperature dependence of the
inverse magnetic susceptibility 1/χ of n-HgCr2Se4 shown in
Fig. 4(b). The three temperature zones (I–III) are divided by
two characteristic temperatures, the Curie temperature TC and
T ∗, at which the deviation of magnetic susceptibility χ (T )
begins. In order to obtain T ∗ more accurately, the temperature
dependence of 	χ−1(T ) = χ−1(T ) − c(T − Tθ ), is plotted in
Fig. 10(b), where c and Tθ are temperature coefficient and
the Curie-Weiss temperature, respectively. It clearly shows
T ∗ ≈ 220 K ≈ 2.1TC .

FIG. 11. Carrier density dependence of the Curie temperature TC

for several batches of n-type HgCr2Se4 single crystals. The electron
densities are extracted from the Hall measurements at 4.2 K. The
Curie temperature TC is taken to be the kink point of the M(T ,H ) vs T

curve with a small magnetic field (typically H = 100 Oe) applied.
This method gives reasonably accurate TC values in comparison to
those deduced from the critical exponent analysis.

ρ
 ρ

 ρ
Ω

 

−

FIG. 12. Transport properties of an n-type HgCr2Se4 single
crystal (sample B). (a) Temperature dependences of the longitudinal
resistivity plotted as ln(ρxx) vs 1/T for magnetic fields μ0H = 0,
1, 4, 8 T. The linear fit (dashed line) for T > 220 K yields a
thermal activation gap 	 = 0.28 eV. The transport characteristics in
temperature zones (I) T > T ∗, (II) TC < T < T ∗, and (III) T < TC

resemble those of sample A [see Fig. 4(a) in the main text].
(b) T dependence of the MR ratio ρxx,0/ρxx(H ) with μ0H = 8 T.
The maximum value is 4.2 × 104, which is located at T = 110 K.

2. Carrier density dependences of the Curie temperature

In this work, electron densities in n-type HgCr2Se4 samples
are in a range of 1016–1018 cm−3, and hence the carrier
mediated exchange interaction is not expected to play a

a 
 (n

m
)

T (K)

ΙΙΙΙΙΙ
(b)

20 40 60 80
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te

ns
ity

2θ

(a)

FIG. 13. (a) X-ray diffraction (XRD) spectra of HgCr2Se4 in a
temperature range of 35–299 K. (b) Temperature dependence of the
lattice constant extracted from the XRD measurements (solid circles),
which is compared with the Debye-Gruneisen (D-G) theory (dotted
line).
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significant role due to the strong Cr3+-Se2−-Cr3+ superex-
change interactions. This is confirmed by the measurements
of the Curie temperatures of the samples from five growth
batches. As shown in Fig. 11, there is no obvious dependence
of TC on the carrier density, which is determined by the Hall
measurements at liquid helium temperatures.

APPENDIX C: ADDITIONAL TRANSPORT DATA

Electron transport measurements have been carried out on
several batches of n-type HgCr2Se4 single crystals. As long
as the carrier density is on the order of 1018 cm−3, transport
properties similar to those of sample A (presented in the main
text) can be observed. In Fig. 12, we plot the transport data
from sample B. In addition, we also observed the CMR effects
with MR ratios up to several orders of magnitude in samples
with carrier densities on the order of 1017 cm−3 or lower. In
these low-carrier-density samples, however, the resistivities
near the magnetic phase transition are too high to perform
reliable four-point measurements. We therefore restricted our
focus to samples with electron densities on the order of
1018 cm−3 in the present work.

APPENDIX D: TEMPERATURE DEPENDENCE
OF LATTICE CONSTANT

The crystalline structure of HgCr2Se4 was determined
by using a variable temperature x-ray diffractometer with a

TABLE I. Lattice constant a of n-HgCr2Se4 determined with
x-ray diffraction at several temperatures. A more detailed temperature
dependence of a is shown in Fig. 13(b).

T (K) 299 255 210 150 103 50

a (nm) 1.07459 1.07401 1.07363 1.07310 1.07294 1.07269

temperature range of 35–299 K. The x-ray diffraction spectra
are shown in Fig. 13(a) of a powder sample which was
prepared by grinding many HgCr2Se4 single crystals to warrant
sufficient accuracy. The temperature dependence of the lattice
constant deduced from analysis of the x-ray diffraction spectra
is shown in Fig. 13(b) (Table I). It can be well described by the
Debye-Gruneisen theory except for a slight deviation around
TC . This indicates that the magnetic polarons in n-HgCr2Se4

are also different from the small polarons observed in per-
ovskite manganites. The Jahn-Teller distortion in manganites
produces stable, spatially confined dielectric polarons [3,57].
The hopping transport related to these small polarons can,
however, survive at very high temperatures (e.g., 1000 K) [58],
at which the spin correlation effect is negligible [3]. In
n-HgCr2Se4 the trivalent Cr ions are not susceptible to the
Jahn-Teller distortion, and the small dielectric polaron scenario
is thus unlikely to be relevant to the results obtained in this
work.
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[12] S. Süllow, I. Prasad, M. C. Aronson, S. Bogdanovich, J. L.
Sarrao, and Z. Fisk, Phys. Rev. B 62, 11626 (2000).

[13] P. Das, A. Amyan, J. Brandenburg, J. Müller, P. Xiong, S. von
Molnár, and Z. Fisk, Phys. Rev. B 86, 184425 (2012).

[14] H. W. Lehmann, Phys. Rev. 163, 488 (1967).
[15] A. P. Ramirez and M. A. Subramanian, Science 277, 546 (1997).

[16] P. Majumdar and P. Littlewood, Phys. Rev. Lett. 81, 1314 (1998).
[17] J. Wu, J. W. Lynn, C. J. Glinka, J. Burley, H. Zheng, J. F.

Mitchell, and C. Leighton, Phys. Rev. Lett. 94, 037201 (2005).
[18] T. Kasuya, Sol. Stat. Commun. 8, 1543 (1970).
[19] A. Mauger and C. Godart, Phys. Rep. 141, 51 (1986).
[20] L. P. Gor’kov and V. Z. Kresin, JETP Lett. 67, 934 (1998).
[21] A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).
[22] P. K. Baltzer, H. W. Lehmann, and M. Robbins, Phys. Rev. 151,

367 (1966).
[23] T. Arai, M. Wakaki, S. Onari, K. Kudo, T. Satoh, and T.

Tshushima, J. Phys. Soc. Jpn. 34, 68 (1973).
[24] L. Goldstein, P. Gibart, and A. Selmi, J. Appl. Phys. 49, 1474

(1978).
[25] A. Selmi, A. Mauger, and M. Heritier, J. Magn. Magn. Mater.

66, 295 (1987).
[26] N. I. Solin, V. V. Ustinov, and S. V. Naumov, Phys. Solid State

50, 901 (2008).
[27] T. Guan, C. J. Lin, C. L. Yang, Y. G. Shi, C. Ren, Y. Q. Li, H.

M. Weng, X. Dai, Z. Fang, S. S. Yan, and P. Xiong, Phys. Rev.
Lett. 115, 087002 (2015).

[28] W. D. Wang, A. Li, T. Dong, M. Lei, X. L. Fu, S. S. Miao, P.
Zheng, P. Wang, Y. G. Shi, J. L. Luo, and N. L. Wang, J. Low
Temp. Phys. 171, 127 (2013).

[29] G. Xu, H. M. Weng, Z. J. Wang, X. Dai, and Z. Fang, Phys. Rev.
Lett. 107, 186806 (2011).

[30] L. H. Chen, T. H. Tiefel, S. Jin, T. T. M. Palstra, R. Ramesh, and
C. Kwon, IEEE Trans. Magn. 32, 4692 (1996).

[31] M. E. Fisher, Rep. Prog. Phys. 30, 615 (1967).

224404-10

https://doi.org/10.1080/000187399243455
https://doi.org/10.1080/000187399243455
https://doi.org/10.1080/000187399243455
https://doi.org/10.1080/000187399243455
https://doi.org/10.1016/S0370-1573(00)00121-6
https://doi.org/10.1016/S0370-1573(00)00121-6
https://doi.org/10.1016/S0370-1573(00)00121-6
https://doi.org/10.1016/S0370-1573(00)00121-6
https://doi.org/10.1103/RevModPhys.73.583
https://doi.org/10.1103/RevModPhys.73.583
https://doi.org/10.1103/RevModPhys.73.583
https://doi.org/10.1103/RevModPhys.73.583
https://doi.org/10.1103/PhysRevLett.71.2331
https://doi.org/10.1103/PhysRevLett.71.2331
https://doi.org/10.1103/PhysRevLett.71.2331
https://doi.org/10.1103/PhysRevLett.71.2331
https://doi.org/10.1126/science.264.5157.413
https://doi.org/10.1126/science.264.5157.413
https://doi.org/10.1126/science.264.5157.413
https://doi.org/10.1126/science.264.5157.413
https://doi.org/10.1063/1.1709701
https://doi.org/10.1063/1.1709701
https://doi.org/10.1063/1.1709701
https://doi.org/10.1063/1.1709701
https://doi.org/10.1103/PhysRevB.5.3669
https://doi.org/10.1103/PhysRevB.5.3669
https://doi.org/10.1103/PhysRevB.5.3669
https://doi.org/10.1103/PhysRevB.5.3669
https://doi.org/10.1103/PhysRevB.8.2299
https://doi.org/10.1103/PhysRevB.8.2299
https://doi.org/10.1103/PhysRevB.8.2299
https://doi.org/10.1103/PhysRevB.8.2299
https://doi.org/10.1103/PhysRevB.62.11626
https://doi.org/10.1103/PhysRevB.62.11626
https://doi.org/10.1103/PhysRevB.62.11626
https://doi.org/10.1103/PhysRevB.62.11626
https://doi.org/10.1103/PhysRevB.86.184425
https://doi.org/10.1103/PhysRevB.86.184425
https://doi.org/10.1103/PhysRevB.86.184425
https://doi.org/10.1103/PhysRevB.86.184425
https://doi.org/10.1103/PhysRev.163.488
https://doi.org/10.1103/PhysRev.163.488
https://doi.org/10.1103/PhysRev.163.488
https://doi.org/10.1103/PhysRev.163.488
https://doi.org/10.1126/science.277.5325.546
https://doi.org/10.1126/science.277.5325.546
https://doi.org/10.1126/science.277.5325.546
https://doi.org/10.1126/science.277.5325.546
https://doi.org/10.1103/PhysRevLett.81.1314
https://doi.org/10.1103/PhysRevLett.81.1314
https://doi.org/10.1103/PhysRevLett.81.1314
https://doi.org/10.1103/PhysRevLett.81.1314
https://doi.org/10.1103/PhysRevLett.94.037201
https://doi.org/10.1103/PhysRevLett.94.037201
https://doi.org/10.1103/PhysRevLett.94.037201
https://doi.org/10.1103/PhysRevLett.94.037201
https://doi.org/10.1016/0038-1098(70)90604-6
https://doi.org/10.1016/0038-1098(70)90604-6
https://doi.org/10.1016/0038-1098(70)90604-6
https://doi.org/10.1016/0038-1098(70)90604-6
https://doi.org/10.1016/0370-1573(86)90139-0
https://doi.org/10.1016/0370-1573(86)90139-0
https://doi.org/10.1016/0370-1573(86)90139-0
https://doi.org/10.1016/0370-1573(86)90139-0
https://doi.org/10.1134/1.567770
https://doi.org/10.1134/1.567770
https://doi.org/10.1134/1.567770
https://doi.org/10.1134/1.567770
https://doi.org/10.1126/science.283.5410.2034
https://doi.org/10.1126/science.283.5410.2034
https://doi.org/10.1126/science.283.5410.2034
https://doi.org/10.1126/science.283.5410.2034
https://doi.org/10.1103/PhysRev.151.367
https://doi.org/10.1103/PhysRev.151.367
https://doi.org/10.1103/PhysRev.151.367
https://doi.org/10.1103/PhysRev.151.367
https://doi.org/10.1143/JPSJ.34.68
https://doi.org/10.1143/JPSJ.34.68
https://doi.org/10.1143/JPSJ.34.68
https://doi.org/10.1143/JPSJ.34.68
https://doi.org/10.1063/1.324928
https://doi.org/10.1063/1.324928
https://doi.org/10.1063/1.324928
https://doi.org/10.1063/1.324928
https://doi.org/10.1016/0304-8853(87)90162-4
https://doi.org/10.1016/0304-8853(87)90162-4
https://doi.org/10.1016/0304-8853(87)90162-4
https://doi.org/10.1016/0304-8853(87)90162-4
https://doi.org/10.1134/S1063783408050168
https://doi.org/10.1134/S1063783408050168
https://doi.org/10.1134/S1063783408050168
https://doi.org/10.1134/S1063783408050168
https://doi.org/10.1103/PhysRevLett.115.087002
https://doi.org/10.1103/PhysRevLett.115.087002
https://doi.org/10.1103/PhysRevLett.115.087002
https://doi.org/10.1103/PhysRevLett.115.087002
https://doi.org/10.1007/s10909-012-0830-1
https://doi.org/10.1007/s10909-012-0830-1
https://doi.org/10.1007/s10909-012-0830-1
https://doi.org/10.1007/s10909-012-0830-1
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1109/20.539120
https://doi.org/10.1109/20.539120
https://doi.org/10.1109/20.539120
https://doi.org/10.1109/20.539120
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1088/0034-4885/30/2/306


SPIN CORRELATIONS AND COLOSSAL . . . PHYSICAL REVIEW B 94, 224404 (2016)

[32] A. Arrott and J. E. Noakes, Phys. Rev. Lett. 19, 786 (1967).
[33] S. Blundell, Magnetism in Condensed Matter (Oxford

University Press, New York, 2001).
[34] P. P. Craig, W. I. Goldburg, T. A. Kitchens, and J. I. Budnick,

Phys. Rev. Lett. 19, 1334 (1967).
[35] H. Yanagihara and M. B. Salamon, Phys. Rev. Lett. 89, 187201

(2002).
[36] M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665

(1968).
[37] H. E. Stanley, Introduction to Phase Transitions and Critical

Phenomena (Oxford University Press, New York, 1971); Rev.
Mod. Phys. 71, S358 (1999).

[38] J. Als-Nielsen, O. W. Dietrich, and L. Passell, Phys. Rev. B 14,
4908 (1976).

[39] D. Emin, M. S. Hillery, and N.-Li H. Liu, Phys. Rev. B 35, 641
(1987).

[40] V. G. Storchak, O. E. Parfenov, J. H. Brewer, P. L. Russo, S.
L. Stubbs, R. L. Lichti, D. G. Eshchenko, E. Morenzoni, T. G.
Aminov, V. P. Zlomanov, A. A. Vinokurov, R. L. Kallaher, and
S. von Molnár, Phys. Rev. B 80, 235203 (2009).

[41] V. G. Storchak, J. H. Brewer, P. L. Russo, S. L. Stubbs, O. E.
Parfenov, R. L. Lichti, and T. G. Aminov, J. Phys. Condens.
Matter 22, 495601 (2010).

[42] C. S. Snow, S. L. Cooper, D. P. Young, Z. Fisk, A. Comment,
and J. P. Ansermet, Phys. Rev. B 64, 174412 (2001).

[43] H. Rho, C. S. Snow, S. L. Cooper, Z. Fisk, A. Comment, and
J.-P. Ansermet, Phys. Rev. Lett. 88, 127401 (2002).

[44] V. Prosser, P. Hudek, P. Hoschl, P. Polivka, and M. Zvara, Czech.
J. Phys. B 24, 1168 (1974).

[45] X. Zhang, S. von Molnár, Z. Fisk, and P. Xiong, Phys. Rev. Lett.
100, 167001 (2008).

[46] A. Amyan, P. Das, J. Müller, and Z. Fisk, J. Korean Phys. Soc.
62, 1489 (2013).

[47] X. Zhang, L. Q. Yu, S. von Molnár, Z. Fisk, and P. Xiong, Phys.
Rev. Lett. 103, 106602 (2009).

[48] L. Q. Yu, L. F. Wang, X. H. Zhang, W. B. Wu, S. von Molnár,
Z. Fisk, and P. Xiong, New J. Phys. 15, 113057 (2013).

[49] X. X. Zhang, C. C. Wan, H. Liu, Z. Q. Li, P. Sheng, and J. J.
Lin, Phys. Rev. Lett. 86, 5562 (2001).

[50] C. C. Wan and P. Sheng, Phys. Rev. B 66, 075309 (2002).
[51] J. M. D. Coey, M. Viret, L. Ranno, and K. Ounadjela, Phys. Rev.

Lett. 75, 3910 (1995).
[52] I. Yeung, R. M. Roshko, and G. Williams, Phys. Rev. B 34, 3456

(1986).
[53] L. P. Levy, Magnetism and Superconductivity (Springer, Berlin,

2000).
[54] V. Tsurkan, D. Ehlers, V. Felea, H. A. Krug von Nidda, and

A. Loidl, Phys. Rev. B 88, 144417 (2013).
[55] K. Ghosh, C. J. Lobb, R. L. Greene, S. G. Karabashev, D. A.

Shulyatev, A. A. Arsenov, and Y. Mukovskii, Phys. Rev. Lett.
81, 4740 (1998).

[56] L. Zhang, J. Y. Fan, L. Li, R. W. Li, L. S. Ling, Z. Qu, W. Tong,
S. Tan, and Y. H. Zhang, Europhys. Lett. 91, 57001 (2010).

[57] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C.
Marquina, J. Blasco, J. Garcı́a, A. Delmoral, and Z. Arnold,
Nature (London) 386, 256 (1997).

[58] D. Worledge, G. Snyder, M. Beasley, and T. Geballe, J. Appl.
Phys. 80, 5158 (1996).

224404-11

https://doi.org/10.1103/PhysRevLett.19.786
https://doi.org/10.1103/PhysRevLett.19.786
https://doi.org/10.1103/PhysRevLett.19.786
https://doi.org/10.1103/PhysRevLett.19.786
https://doi.org/10.1103/PhysRevLett.19.1334
https://doi.org/10.1103/PhysRevLett.19.1334
https://doi.org/10.1103/PhysRevLett.19.1334
https://doi.org/10.1103/PhysRevLett.19.1334
https://doi.org/10.1103/PhysRevLett.89.187201
https://doi.org/10.1103/PhysRevLett.89.187201
https://doi.org/10.1103/PhysRevLett.89.187201
https://doi.org/10.1103/PhysRevLett.89.187201
https://doi.org/10.1103/PhysRevLett.20.665
https://doi.org/10.1103/PhysRevLett.20.665
https://doi.org/10.1103/PhysRevLett.20.665
https://doi.org/10.1103/PhysRevLett.20.665
https://doi.org/10.1103/RevModPhys.71.S358
https://doi.org/10.1103/RevModPhys.71.S358
https://doi.org/10.1103/RevModPhys.71.S358
https://doi.org/10.1103/RevModPhys.71.S358
https://doi.org/10.1103/PhysRevB.14.4908
https://doi.org/10.1103/PhysRevB.14.4908
https://doi.org/10.1103/PhysRevB.14.4908
https://doi.org/10.1103/PhysRevB.14.4908
https://doi.org/10.1103/PhysRevB.35.641
https://doi.org/10.1103/PhysRevB.35.641
https://doi.org/10.1103/PhysRevB.35.641
https://doi.org/10.1103/PhysRevB.35.641
https://doi.org/10.1103/PhysRevB.80.235203
https://doi.org/10.1103/PhysRevB.80.235203
https://doi.org/10.1103/PhysRevB.80.235203
https://doi.org/10.1103/PhysRevB.80.235203
https://doi.org/10.1088/0953-8984/22/49/495601
https://doi.org/10.1088/0953-8984/22/49/495601
https://doi.org/10.1088/0953-8984/22/49/495601
https://doi.org/10.1088/0953-8984/22/49/495601
https://doi.org/10.1103/PhysRevB.64.174412
https://doi.org/10.1103/PhysRevB.64.174412
https://doi.org/10.1103/PhysRevB.64.174412
https://doi.org/10.1103/PhysRevB.64.174412
https://doi.org/10.1103/PhysRevLett.88.127401
https://doi.org/10.1103/PhysRevLett.88.127401
https://doi.org/10.1103/PhysRevLett.88.127401
https://doi.org/10.1103/PhysRevLett.88.127401
https://doi.org/10.1007/BF01586822
https://doi.org/10.1007/BF01586822
https://doi.org/10.1007/BF01586822
https://doi.org/10.1007/BF01586822
https://doi.org/10.1103/PhysRevLett.100.167001
https://doi.org/10.1103/PhysRevLett.100.167001
https://doi.org/10.1103/PhysRevLett.100.167001
https://doi.org/10.1103/PhysRevLett.100.167001
https://doi.org/10.3938/jkps.62.1489
https://doi.org/10.3938/jkps.62.1489
https://doi.org/10.3938/jkps.62.1489
https://doi.org/10.3938/jkps.62.1489
https://doi.org/10.1103/PhysRevLett.103.106602
https://doi.org/10.1103/PhysRevLett.103.106602
https://doi.org/10.1103/PhysRevLett.103.106602
https://doi.org/10.1103/PhysRevLett.103.106602
https://doi.org/10.1088/1367-2630/15/11/113057
https://doi.org/10.1088/1367-2630/15/11/113057
https://doi.org/10.1088/1367-2630/15/11/113057
https://doi.org/10.1088/1367-2630/15/11/113057
https://doi.org/10.1103/PhysRevLett.86.5562
https://doi.org/10.1103/PhysRevLett.86.5562
https://doi.org/10.1103/PhysRevLett.86.5562
https://doi.org/10.1103/PhysRevLett.86.5562
https://doi.org/10.1103/PhysRevB.66.075309
https://doi.org/10.1103/PhysRevB.66.075309
https://doi.org/10.1103/PhysRevB.66.075309
https://doi.org/10.1103/PhysRevB.66.075309
https://doi.org/10.1103/PhysRevLett.75.3910
https://doi.org/10.1103/PhysRevLett.75.3910
https://doi.org/10.1103/PhysRevLett.75.3910
https://doi.org/10.1103/PhysRevLett.75.3910
https://doi.org/10.1103/PhysRevB.34.3456
https://doi.org/10.1103/PhysRevB.34.3456
https://doi.org/10.1103/PhysRevB.34.3456
https://doi.org/10.1103/PhysRevB.34.3456
https://doi.org/10.1103/PhysRevB.88.144417
https://doi.org/10.1103/PhysRevB.88.144417
https://doi.org/10.1103/PhysRevB.88.144417
https://doi.org/10.1103/PhysRevB.88.144417
https://doi.org/10.1103/PhysRevLett.81.4740
https://doi.org/10.1103/PhysRevLett.81.4740
https://doi.org/10.1103/PhysRevLett.81.4740
https://doi.org/10.1103/PhysRevLett.81.4740
https://doi.org/10.1209/0295-5075/91/57001
https://doi.org/10.1209/0295-5075/91/57001
https://doi.org/10.1209/0295-5075/91/57001
https://doi.org/10.1209/0295-5075/91/57001
https://doi.org/10.1038/386256a0
https://doi.org/10.1038/386256a0
https://doi.org/10.1038/386256a0
https://doi.org/10.1038/386256a0
https://doi.org/10.1063/1.363498
https://doi.org/10.1063/1.363498
https://doi.org/10.1063/1.363498
https://doi.org/10.1063/1.363498



