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Effects of electronic relaxation processes on vibrational linewidths of adsorbates on surfaces:
The case of CO/Cu(100)
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We investigate nonadiabatic effects for the vibrational stretch mode of the CO molecule adsorbed on the top site
of the Cu(100) surface. By studying the long-wavelength (q ≈ 0) imaginary and real parts of the density functional
theory based phonon self-energy due to the electron-phonon coupling �λ we obtain the phonon linewidth and
the frequency renormalization of the CO stretch mode, respectively. To simulate electronic scattering processes
that lead to further damping of the phonon modes we include a phenomenological damping in the phonon
self-energy, as well as in the single-electron spectral function that enters �λ, through the momentum distribution
function. For the specific case of electron-impurity scattering we explicitly show how this process opens the
indirect intraband channel and broadens the linewidth of the CO stretch mode. To emphasize the importance
of accounting for electronic scattering processes we compare the phonon linewidths in the clean noninteracting
limit (infinite electron lifetime) and when electronic scattering processes are phenomenologically included (finite
electron lifetime) with available experimental data. We find that the agreement with experiments is improved in
the latter case.
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I. INTRODUCTION

The adiabatic Born-Oppenheimer approximation (BOA) is
considered to be the foundation for the ground state electronic
and ionic calculations, i.e., electronic and phononic band
structures [1]. Although this is fundamentally valid only for
systems where the energies of the electronic excitations are
much larger than the vibrational energies (adiabaticity) [2], as
in insulators and semiconductors, the BOA generally gives a
very good description of phonon dispersion in metallic systems
[3], where the adiabatic condition is not met. From theoretical
considerations it was demonstrated that nonadiabatic effects
should lead to the renormalization of the optical phonon spec-
trum, as well as to the appearance of the corresponding phonon
linewidth [4–7]. Even though these effects are considered to
be hard to observe in bulk systems [8,9], it was recently shown
within the framework of Raman spectroscopy that they could
be important for explaining the long-wavelength (q ≈ 0) part
of the phonon spectrum of layered graphene-based systems
[10–14].

Very similar and equally interesting is the problem of
dynamical effects of adsorbed atomic and molecular species
on metallic surfaces. Here, the importance of nonadiabatic
corrections was originally demonstrated through the finite
vibrational linewidths of the adsorbate high-frequency modes
that come from electron-phonon coupling (see Ref. [15] and
references therein). Namely, it was shown how the lifetime
of vibrationally excited dipolar molecules is substantially
reduced from the millisecond regime in the gas phase to the
picosecond regime on various metallic surfaces. More recently,
evidence of nonadiabaticity was manifested experimentally
in the so-called chemicurrents, which are electrical currents
generated upon adsorption of atomic and molecular species
on metal surfaces [16–18]. Similarly, excited electrons are
observed when highly vibrational excited molecules collide
with a metal surface [19,20]. The corresponding theoretical

work also emerged to explain these effects, either by using
isotropic friction coefficients in molecular dynamics simu-
lations [21–30] or by calculating the vibrational damping
rate with the Fermi golden rule formula [31–42]. The latter
expression has been also used to describe the diffusion of
subsurface H towards a Pd(111) surface induced by the
scanning tunneling microscope [43].

In the aforementioned cases (bulk systems and adsorbed
molecules on surfaces) the key physical quantity for un-
derstanding nonadiabatic effects on the vibrational spectra
is the phonon self-energy due to electron-phonon coupling,
�λ(q,ω) (here q and ω are the momentum and frequency of
the excitation and λ denotes the phonon mode). The static part
of this phonon self-energy, �λ(q,0) (ω � |εα − εβ |, where
εα,β are the eigenvalues of the electronic states α and β

involved in the coupling), is relevant for obtaining the adiabatic
phonon frequencies [44], while the dynamic part, �λ(q,ω �=
0), gives information on nonadiabatic effects. Specifically, its
imaginary part is related to the phonon linewidth, while its real
part renormalizes the phonon frequency. In usual vibrational
spectroscopy experiments (e.g., infrared and Raman spec-
troscopies) the electromagnetic field is used as the external
perturbation. Therefore, the relevant phonon self-energy for
describing these experimental results is the long-wavelength
part of this self-energy, �λ(q ≈ 0,ω) [45]. It has been shown
that this q ≈ 0 part is considerably affected by the relaxation
processes of the electronic system (e.g., electron scattering
on phonons, impurities, or other electrons) [6,7,46–48], in a
close analogy with the q ≈ 0 part of the Kubo conductivity
formula [49–55] and the electronic Raman correlation function
[56–60]. More specifically, the intraband part goes to zero in
the clean (impurity free) noninteracting limit, while it takes a
finite value when electron relaxation processes are considered.
In fact, for high vibrational frequencies, ωqλ � |εα − εβ |, it
is proportional to (ωτtr)−1 [6,60,61], where τtr is the electron
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transport relaxation time. These scattering processes affect the
interband part in a similar manner as well [62].

In this paper we analyze the density functional theory
(DFT) based phonon self-energy due to the electron-phonon
coupling with emphasis on the mentioned electronic relaxation
processes. To account for these relaxation processes we
use the relaxation time approximation (RTA), where the
frequency and momentum dependent damping function, the
so-called electron-hole (e-h) self-energy [53], is replaced by
the variable parameter 	. This way of treating the phonon
self-energy can be useful for those numerical calculations
where the broadening parameter, used for summation over
the momentum space, has a finite value [34–38,41]. In fact,
the present approach to accounting for electronic relaxation
processes is more general and can be applied to problems
of long-wavelength conductivity [53,54] and electronic Ra-
man scattering [60,61,63]. This is due to the two-particle
propagator form of the phonon self-energy, which is the
essential part of the general correlation function. Extending
this formalism to other physical problems is equivalent to
changing the electron-phonon vertex by the corresponding
vertex (e.g., Raman vertex in the case of electronic Raman
scattering).

As a case study we select the stretch mode of an ordered
CO molecular layer adsorbed on the Cu(100) surface, which
was one of the first examples that revealed the importance of
nonadiabatic corrections for the vibrational lifetimes of adsor-
bates on metal surfaces. The earliest experiments done on this
system with infrared absorption spectroscopy (IRAS) reported
vibrational lifetimes in the range τ = 1.2–1.4 ps, or the cor-
responding linewidths γ = 110–140 GHz [64,65]. The slight
change of the linewidth with surface temperature observed in
Ref. [65] (δγ ≈ 11 GHz within the range T = 100–160 K)
was attributed to pure dephasing, where the high-frequency
CO stretch mode couples anharmonically to the low-frequency
frustrated translational mode. Nevertheless, this effect on the
linewidth is relatively small and the excitation of e-h pairs
is still considered to be the relevant damping channel [66].
Later pump-probe laser spectroscopy experiments reported
lifetimes on the same order of magnitude, τ = 2 ± 1 ps (γ =
80 ± 40 GHz) [67]. These experimental results were modeled
by many theoretical calculations [26,31,32,34,36,37,41,42].
However, none of these studies performed a clear distinction
between the q ≈ 0 intraband and interband contributions,
nor did they consider the case where the phonon relaxation
rate due to electron-phonon coupling is additionally triggered
by electronic scattering processes [68]. In this paper we
do so.

The paper is organized as follows. In Sec. II we present
the general theory for obtaining nonadiabatic effects in the
electron-phonon system by defining the phonon propagator
and the corresponding phonon self-energy. Using this general
formulation as the starting point, in Sec. II A we derive the
bare phonon self-energy valid in the clean noninteracting
regime. In Sec. II B we introduce the electronic damping
rate in a phenomenological way (RTA). A discussion on
the effects of long-range screening on the bare phonon
self-energy is given in Sec. II C. In Sec. II D we derive the
high-energy intraband phonon self-energy relevant for large
(optical) phonon frequencies and in the presence of impurities
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FIG. 1. Diagrammatic representation of (a) the Dyson equation
for the phonon propagator Dλ and (b) the reduction of the exact
phonon self-energy �λ to the bare one π 0

λ . The thick lines correspond
to the exact Green’s function G, while the thin lines to the bare G0.
The bare and dressed electron-phonon vertex functions are labeled gλ

and g̃λ, respectively.

(dirty regime). The validity of the quasistatic approximation
of the phonon self-energy in evaluating the linewidth of
high-frequency vibrational modes is discussed in Sec. II E. The
results of our calculations are given in Sec. III, where we give
the computational details, geometric and electronic structure,
phonon linewidths, and renormalized phonon frequencies for
the CO stretch mode on Cu(100) in Secs. III A, III B, III C, and
III D, respectively. Finally, we present the concluding remarks
in Sec. IV. In this paper atomic units (me = e = � = 1) are
used unless otherwise stated.

II. THEORY

The frequency representation of the free phonon propagator
of mode λ is given in Matsubara notation by the well known
result [55,69]

D0
λ(q,iνn) = 2ωqλ

(iνn)2 − ω2
qλ

, (1)

where iνn are the Matsubara frequencies for bosons, and
ωqλ is the bare frequency of the phonon mode λ. By doing
the analytical continuation (iνn → ω + iη) of Eq. (1) we get
the function D0

λ(q,ω), where the imaginary part gives us the
spectrum of the bare phonons (density of the bare phonon
states).

To get a more realistic description of the phonon spectrum,
we need to introduce the electron-phonon coupling in our
system and solve the Dyson equation represented diagrammat-
ically in Fig. 1(a). According to this equation the renormalized
phonon propagator can be written as

Dλ(q,iνn) = 2ωqλ

(iνn)2 − ω2
qλ − 2ωqλ�λ(q,iνn)

, (2)

where �λ(q,ω) is the phonon self-energy due to electron-
phonon coupling. In systems where the harmonic approx-
imation does not hold, phonon-phonon coupling effects
(anharmonicity) should also be taken into account, i.e.,
�λ = �

el−ph
λ + �

ph−ph
λ . However, in our present study we

restrict ourselves to the electron-phonon coupling only. The
exact phonon self-energy due to electron-phonon coupling is
represented by the first bubble diagram in Fig. 1(b) [4,44,70]
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and we can write it as

�λ(q,iνn) =
∑

μμ′kσ

1

β

∑
iωn

[
g

μμ′
λ (k,q)

]∗
g̃

μμ′
λ (k,q,iωn,iνn)

×Gμ(k,iωn)Gμ′(k + q,iωn + iνn), (3)

where μ,μ′ are the electronic band indices, the summation
over σ accounts for the spin degrees of freedom, and the
inverse of the temperature is β = 1/(kBT ). One of the vertex
functions is the bare electron-phonon vertex in the harmonic
approximation

g
μμ′
λ (k,q) = 1√

2Mλωqλ

〈ψμ′k+q| ∂Vei

∂Qqλ

· εεεqλ|ψμk〉

≡ 1√
2Mλωqλ

d
μμ′
λ (k,q), (4)

while the other, g̃
μμ′
λ (k,q,iωn,iνn), is dressed (renormal-

ized) with higher-order scattering processes, i.e., with vertex
corrections and single-particle self-energy contributions that
come from electron-electron, electron-phonon, or electron-
impurity scatterings. The wave functions ψμk are the ground
state one-electron wave functions, εμk are the corresponding
eigenvalues, and Vei is the electron-ion potential energy. For
each phonon with wave vector q and branch λ there is an
associated effective mass Mλ, a bare phonon frequency ωqλ,
and a displacement Qqλ = Qqλεεεqλ, where εεεqλ is a unit length
polarization vector. Each of the Matsubara Green’s functions
in Eq. (3) satisfy the corresponding Dyson equation

Gμ(k,iωn) = 1

iωn − εμk − �μ(k,iωn)
, (5)

where �μ(k,iωn) is the single-electron self-energy. This
Dyson equation can be used to express Eq. (3) in a slightly
different form

�λ(q,iνn) =
∑

μμ′kσ

1

β

∑
iωn

[
g

μμ′
λ (k,q)

]∗
g̃

μμ′
λ (k,q,iωn,iνn)

× Gμ(k,iωn) − Gμ′(k + q,iωn + iνn)

iνn + εμk − εμ′k+q + ��μμ′(k,q,iωn,iνn)
,

(6)

where we define the bare e-h self-energy
��μμ′(k,q,iωn,iνn) ≡ �μ(k,iωn) − �μ′(k + q,iωn + iνn)
[53]. From this form of the phonon self-energy we can see
what the role of the e-h self-energy is as follows: its real
part renormalizes the electronic structure (i.e., εμk), while
its imaginary part gives additional damping to the phonon
spectrum.

The analytical continuation of expression (2) is of great
interest because its imaginary part gives the spectral function
of the phonon excitations that corresponds to the experimental
spectra (e.g., IRAS). The phonon linewidth (relaxation rate due
to e-h pair excitations) and the renormalized phonon frequency
are then respectively given by

γqλ = −2Im�λ(q,ωqλ) (7)

and

ω2 = ω2
qλ + 2ωqλRe�λ(q,ω), (8)

where Eq. (8) needs to be calculated self-consistently. If one
is interested in electronic excitations (e.g., single-electron
excitations or plasmons), it is useful to know that the spectral
function of the phonon excitations shares close resemblance
with the energy loss function, Im ε−1(q,ω), but then ωqλ and
�λ would have to be replaced by the bare plasmon energy and
the appropriate current-current correlation function, respec-
tively [54,71,72]. In that case Eq. (7) would give the plasmon
linewidth, while Eq. (8) the renormalization of its energy.

A. Bare phonon self-energy

The first step of our analysis consists of obtaining the
bare phonon self-energy and examining its general properties.
We define the bare phonon self-energy as in the third bubble
diagram of Fig. 1(b), i.e., without vertex corrections and with
the exact Green’s function [Eq. (5)] replaced by the bare one,

G0
μ(k,iωn) = 1

iωn − εμk
. (9)

By doing this the phonon self-energy is reduced to a form that
describes the ideal electron-phonon system, where impurities
and the electron-electron interaction are disregarded, as well
as higher orders of the electron-phonon interaction. For
systems in which these scattering processes do not play
an important role, the bare phonon self-energy serves as a
good approximation for obtaining the phonon spectra. After
considering the above mentioned steps and doing the analytical
continuation, we get the following form for the bare phonon
self-energy [5,48]:

π0
λ (q,ω) =

∑
μμ′kσ

∣∣gμμ′
λ (k,q)

∣∣2 fμk − fμ′k+q

ω + εμk − εμ′k+q + iη
, (10)

where η → 0+ and fμk = (1/β)
∑

iωn
G0

μ(k,iωn) is the
temperature-dependent Fermi-Dirac distribution function.

To get a closer insight into the bare phonon self-energy and
to understand what kind of electronic excitations are involved
in it, we decompose it into its intraband (μ = μ′) and interband
(μ �= μ′) contributions, i.e.,

π0
λ (q,ω) = π

intra,0
λ (q,ω) + π

inter,0
λ (q,ω). (11)

Due to the long-wavelength nature of the electromagnetic field
in infrared spectroscopy experiments, our main concern is the
q ≈ 0 phonons. In that case we can expand the intraband part
of expression (10) into powers of small q and write the first
nonzero term as

π
intra,0
λ (ω) =

∑
μkσ,αβ

∣∣gμμ
λ (k,0)

∣∣2

(ω + iη)2
fμk

∂2εμk

∂kα∂kβ

qαqβ, (12)

where we write π
intra,0
λ (q ≈ 0,ω) ≡ π

intra,0
λ (ω) to simplify the

notation. This expression allows us to extract already some
important conclusions about the nature of the bare q ≈ 0
intraband phonon self-energy: (i) the terms of order q0 and
q1 are zero, so when q → 0 then π

intra,0
λ → 0 as q2; (ii) the

dependence q2/ω2 resembles the Lindhard-like form of the
charge-charge correlation function if |gμμ

λ (k,0)| is replaced
with the bare charge vertex |ρμμ(k,0)| ≈ 1 [73]; (iii) the
imaginary part is proportional to δ(ω)/ω, where δ(ω) is the
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Dirac delta function, and thus only the acoustic phonons are
damped.

The interband part for q ≈ 0 is

π
inter,0
λ (ω) =

∑
μ �=μ′,kσ

∣∣gμμ′
λ (k,0)

∣∣2 fμk − fμ′k

ω + εμk − εμ′k + iη
. (13)

Here fμk �= fμ′k, which in principle makes the q ≈ 0 interband
self-energy finite for all phonon (acoustic and optical) modes.
We write the imaginary and real parts of the latter contribution
as

Imπ
inter,0
λ (ω) = −π

∑
μ �=μ′,kσ

∣∣gμμ′
λ (k,0)

∣∣2
(fμk − fμ′k)

× δ(ω + εμk − εμ′k) (14)

and

Reπ inter,0
λ (ω) =

∑
μ �=μ′,kσ

∣∣gμμ′
λ (k,0)

∣∣2P fμk − fμ′k

ω + εμk − εμ′k
,

(15)

respectively, where P stands for the principal value. Ex-
pressions (7) and (14) show that the linewidth of the q ≈ 0
phonon mode is finite due to interband transitions only if
the condition ωqλ = εμ′k − εμk is strictly met. Since we are
mainly interested in optical phonon modes, we can safely use
the interband part as the total q ≈ 0 bare phonon self-energy,

π0
λ (ω) ≈ π

inter,0
λ (ω). (16)

This result is analogous to the first-order Fermi golden rule
formula for the phonon damping rate due to the electron-
phonon interaction [74].

The bare phonon frequency ωqλ that enters the phonon
propagator of Eq. (2) is usually calculated within the adi-
abatic approximation (see Appendix A); thus to avoid the
divergent phonon renormalization by counting the adiabatic
contribution twice, the bare phonon self-energy of Eq. (10)
should be subtracted with its value at ω = 0 (adiabatic part)
[5,70,75–79]:

π̂0
λ (q,ω) = π0

λ (q,ω) − π0
λ (q,0)

=
∑

μμ′kσ

−ω
∣∣gμμ′

λ (k,q)
∣∣2

εμk − εμ′k+q

fμk − fμ′k+q

ω + εμk − εμ′k+q + iη
.

(17)

It can be seen from Eq. (17) that this correction can also be done
informally by replacing one of the vertex functions g

μμ′
λ (k,q)

with −ωg
μμ′
λ (k,q)/(εμk − εμ′k+q) in Eq. (10) [75]. Since the

parameter η is infinitesimal in the bare phonon self-energy,
this subtraction only affects the real part of the phonon self-
energy (renormalization of the phonon frequency), while the
imaginary part stays the same. We will see in Sec. II B that this
is not the case in the RTA regime, due to spurious effects that
appear when including damping mechanisms in the system by
hand.

For the intraband part of the q ≈ 0 bare phonon self-energy
π̂0

λ (q,ω) already the q0 order term is not zero. Thus, to
renormalize the phonon spectrum with π̂0

λ (q,ω) both the

intraband and interband parts should be included,

Reπ̂0
λ (ω) = Reπ̂ intra,0

λ (ω) + Reπ̂ inter,0
λ (ω). (18)

The first term can be expressed as [10,80]

Reπ̂ intra,0
λ (ω) = lim

η→0+

(
ω2

ω2 + η2

)
×

∑
μk

∣∣gμμ
λ (k,0)

∣∣2
(

− ∂fμk

∂εμk

)
(19)

with

− ∂fμk

∂εμk
= 1

2kBT

1

1 + cosh
( εμk−εF

kBT

) , (20)

where εF is the Fermi energy, while the second term is

Reπ̂ inter,0
λ (ω) =

∑
μ �=μ′,kσ

−ω
∣∣gμμ′

λ (k,0)
∣∣2

εμk − εμ′k

×P fμk − fμ′k

ω + εμk − εμ′k
. (21)

In Eq. (19) we deliberately leave the infinitesimal parameter
η to show what the actual dependence on ω is. In the case of
optical phonons, this limit is 1. When doing the static limit
(ω → 0) of this expression, the ordering of limits should be
reversed, i.e., take first ω → 0, and then η → 0, in order to
satisfy the condition π̂0

λ (0) = 0.

B. RTA phonon self-energy

The simplest case of the RTA for the phonon self-energy, in
which η is replaced by a phenomenological damping energy
	 > 0, corresponds to the approximation of Eq. (6) in which (i)
the vertex renormalization is neglected, (ii) the exact Matsub-
ara Green’s functions in the numerator are replaced with the
bare ones, and (iii) only the imaginary part of the bare e-h self-
energy is kept, but without energy and momentum dependence,
i.e., ��μμ′(k,q,iωn,iνn) ≈ iIm��μμ′ ≡ i	μμ′ . Without this
specific structure of the e-h self-energy, information on which
electrons and phonon modes are responsible for the damping
and the breakdown of the momentum conservation law is lost
[51,53,55]. Nevertheless, as we are interested in the phonon
linewidth for the specific (q,λ) mode and not in its functional
dependence of ω, in Sec. III C we use a physically meaningful
range of 	μμ′ and discuss the corresponding linewidths. Fol-
lowing previous works [54,60], it is convenient to distinguish
different damping energies for intraband, Im��μ=μ′ ≡ 	intra,
and interband, Im��μ �=μ′ ≡ 	inter, transitions. With these
approximations we are accounting phenomenologically for
electron scattering processes (i.e., electron-electron, electron-
phonon, and electron-impurity scattering) that lead to further
damping of the phonon spectra. However, the effects of
these processes on the renormalization of the electronic band
structure are neglected, i.e., Re��μμ′ = 0. This is a reasonable
approximation for weak scattering processes [60,61].

Under these assumptions the q ≈ 0 phonon self-energy
from Eq. (16) becomes

π0
λ (ω) =

∑
μ �=μ′,kσ

∣∣gμμ′
λ (k,0)

∣∣2 fμk − fμ′k

ω + εμk − εμ′k + i	inter
. (22)
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This expression shows how the strict condition imposed by
the Dirac delta function in Imπ0

λ (ω) for interband transitions
[Eq. (14)] is now loosened, and it reads |ω + εμk − εμ′k| �
	inter/2.

Similarly, if we apply the same RTA to the phonon self-
energy of Eq. (17) (replacing η by 	μμ′), we get for q ≈ 0

π̂0
λ (ω) =

∑
μμ′kσ

−ω
∣∣gμμ′

λ (k,0)
∣∣2

εμk − εμ′k

fμk − fμ′k

ω + εμk − εμ′k + i	μμ′
.

(23)

Comparing Eqs. (22) and (23), it is clear that the imaginary
parts of the phonon self-energies π0

λ and π̂0
λ within the RTA

differ considerably, because now the factor ω/(εμk − εμ′k) of
Eq. (23) does not cancel since ω �= εμ′k − εμk when 	μμ′ > 0
(see also Appendix D for differences). This implies that the
interband parts of these two self-energies are different and,
furthermore, that the imaginary part of the phonon self-energy
π̂0

λ has both interband and intraband parts, while the imaginary
part of π0

λ has only the interband contribution for q ≈ 0. At
this point, it is important to remark that the different behavior
of π̂0

λ with respect to π0
λ in the RTA is due to the ad hoc

inclusion of the relaxation processes in Eq. (17), which in
fact turns out to be nonphysical. More precisely, in the case of
π0

λ the higher-order diagrammatic expansion of the scattering
processes leads naturally to the appearance of a damping
energy [7,62], i.e., an e-h self-energy, while to our knowledge
in the case of π̂0

λ there is no corresponding perturbation
expansion of the Hamiltonian associated with this bare phonon
self-energy in the literature (see Appendix A and Ref. [2]).
Thus, it is not completely clear how the RTA form of π̂0

λ

should look (see Appendix B for a possible expression of π̂0
λ in

RTA).
Next, we consider the damping effects in π0

λ a step further
than in Eq. (22) and instead of neglecting the dressed single-
electron self-energies in the Green’s functions appearing in the
numerator of Eq. (6), we also account for them phenomenolog-
ically. Such a phonon self-energy corresponds to the second
bubble diagram in Fig. 1(b), where ��μμ′(k,q,iωn,iνn) →
i	μμ′ , and reads

�0
λ(ω) =

∑
μ �=μ′,kσ

∣∣gμμ′
λ (k,0)

∣∣2 nμ(k) − nμ′(k)

ω + εμk − εμ′k + i	inter
. (24)

In this expression the momentum distribution functions nμ(k)
appear instead of the usual Fermi-Dirac distribution functions.
Approximating nμ(k) by fμk, as done in Eq. (22), is equivalent
to substituting the interacting electron distribution by the
thermal equilibrium value for noninteracting electrons. The
exact definition of the momentum distribution function is

nμ(k) = 1

β

∑
iωn

Gμ(k,iωn)

=
∫ ∞

−∞

dε

2π
Aμ(k,ε)f (ε), (25)

where f (ε) is the Fermi-Dirac distribution function and
Aμ(k,ε) is the exact single-electron spectral function

Aμ(k,ε) = −2Im�μ(k,ε)

[ε − εμk − Re�μ(k,ε)]2 + [Im�μ(k,ε)]2
. (26)

(a)

π̃0
λ

gλ gλ

=

π0
λ

gλ gλ

+

π0
λ

Vq

π̃0
λ

gλ gλρ ρ

(b)

k′

kgλ(k) gλ(k)
+

k′

k

gλ(k′) gλ(k′)

+

k′

kgλ(k) gλ(k′)
+

k′

k

gλ(k′) gλ(k)

FIG. 2. Diagrammatic representation of (a) the long-range
screening of the phonon self-energy π 0

λ and (b) the leading terms
in the high-energy expansion of the indirect contribution to the
intraband phonon self-energy. The electron-phonon vertex function is
represented by gλ, the charge vertex function by ρ, the bare Coulomb
interaction by Vq , and the impurities by crosses.

In our phenomenological approximation, we neglect the
real part of the single-electron self-energy, Re�μ(k,ε) =
0, and use a constant damping parameter 	μ instead of
−2Im�μ(k,ε). One further simplification is to use the same
damping parameter for all electronic bands μ, i.e., 	μ ≡ 	A.
This approximation is reasonable in a phenomenological
treatment of the intraband relaxation processes of electrons on
impurities where the damping of the single-electron spectral
function is −Im�μ(k,ε) ≈ 1/2τtr, while the damping of the
two-particle propagator (e.g., phonon self-energy or Kubo
conductivity formula) is Im��μμ′(k,q,ω) ≈ 1/τtr. However,
for the interband channel this is no longer the case and this
simplification serves just as a coarse estimation. Although the
mentioned approximations make the integration in Eq. (25)
simpler, it is still a difficult task to perform it analytically
for a finite temperature T . As we are only interested in
effects of the damping parameter entering nμ(k) on the phonon
self-energy �0

λ(ω), we explicitly integrate expression (25) for
T → 0 K,

nμ(k) ≈ 1

2
− 1

π
tan−1

[
2(εμk − εF )

	A

]
. (27)

We see from the above expression that when the temperature
is very low, but we are still considering realistic relaxation
processes (e.g., scattering on impurities), the electronic state
distribution is still broadened and governed by the intensity of
such processes [81].

C. Long-range screening of the phonon self-energy

In this section we analyze how the long-range Coulomb in-
teraction affects the bare phonon self-energy and, in particular,
whether it can eliminate the q2 dependence in the intraband
part. When phonon excitations produce charge fluctuations
in the electronic gas, the long-range screening should, in
principle, influence the phonon linewidth and the frequency
renormalization. Inclusion of the long-range screening into
the bare phonon self-energy π0

λ can be done as in Fig. 2(a)
[5,60],

π̃0
λ (q,ω) = π0

λ (q,ω) + π0
λ0(q,ω)Vq

π0
0λ(q,ω)

ε(q,ω)
, (28)
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where we have defined a more general form of the correlation
function as

π0
αβ(q,ω) =

∑
μμ′kσ

[
Fμμ′

α (k,q)
]∗

F
μμ′
β (k,q)

× fμk − fμ′k+q

ω + εμk − εμ′k+q + iη
, (29)

Fμμ′
α (k,q) =

{
g

μμ′
λ (k,q), for α = λ,

ρμμ′
(k,q), for α = 0.

(30)

Here we have introduced the charge vertex function
ρμμ′

(k,q) = 〈ψμk|e−iq·r|ψμ′k+q〉, the bare Coulomb interac-
tion Vq , and the dielectric screening function

ε(q,ω) = 1 − Vqχ (q,ω). (31)

The function χ (q,ω) is the charge-charge correlation function
given by π0

00(q,ω) and the function π0
λ0(q,ω) represents the

electron-mediated coupling of the phonon mode λ to the
external scalar field. We can look now separately into the
screening of the long-wavelength intraband and interband
phonon self-energies.

In the long-wavelength limit q ≈ 0, Eq. (28) has the form

π̃0
λ (ω) = π0

λ (ω) − π0
λ0(ω)π0

0λ(ω)

χ (ω)
, (32)

where the essential difference between the intraband and in-
terband contributions is in the corresponding vertex functions,

ρμμ′
(k,q ≈ 0) =

{
1, for μ = μ′,
−q·Jμμ′

(k,q≈0)
εμk−εμ′k

, for μ �= μ′.
(33)

The relation between the charge ρμμ′
(k,q ≈ 0) and the cur-

rent Jμμ′
(k,q ≈ 0) vertex functions is derived using the

charge continuity equation for the operators [73]. Now, the
symmetry of the vertex function product in π0

λ0(ω) governs
the degree of phonon self-energy screening; i.e., when the
product [gμμ′

λ (k,0)]∗ρμμ′
(k,0) is an odd function of k the

function π0
λ0(ω) vanishes and when it is even it does not.

For example, the vibrational modes of CO adsorbed vertically
on the c(2 × 2) unit cell of Cu(100) belong to the C4v point
group symmetry, where the CO stretch mode corresponds to
the A1 irreducible representation. In that case g

μμ′
λ=A1

(k,0) is

an even function, so π
intra,0
A10 (ω) will be finite, while π

inter,0
A10 (ω)

will vanish due to the odd character of Jμμ′
(k,0). Thus, when

Eqs. (32) and (33) are combined, it can be easily seen that the
long-range screening does not affect the interband channel,
while the intraband contribution is modified, i.e.,

π̃
inter,0
λ (ω) ≈ π

inter,0
λ (ω) (34)

and

π̃
intra,0
λ (ω) ≈ π

intra,0
λ (ω) − π

intra,0
λ0 (ω)π intra,0

0λ (ω)

χ intra(ω)
. (35)

Since the long-wavelength intraband part of the correlation
function π0

αβ(q,ω) has the same dependence on q as Eq. (12),
we can observe from the last expression that the screened

intraband part is still proportional to q2 [5], and thus is still
negligible for the q ≈ 0 case.

In contemporary ab initio calculations screening effects
of the phonon self-energy are implemented in a different but
closely related way. In principle, the inner bubble diagrams
connected with Coulomb interactions should be all gathered
within one of the electron-phonon vertex functions, while
the remaining vertex should be bare (e.g., as in Ref. [74]).
This new screened electron-phonon vertex function is then
frequency dependent. However, in DFT calculations both
vertex functions are screened and are usually treated within
the adiabatic (static) approximation for practical reasons [70].

D. High-energy expansion of the intraband phonon self-energy

In the preceding analysis of the intraband part of the phonon
self-energy we were only considering direct transitions, i.e.,
those where an electron with momentum k is directly scattered
to the state k + q by absorbing the energy of a phonon with
momentum q [first term in Eq. (C7)]. As we already saw
in Sec. II A, this process is proportional to q2, and thus
negligible for the q ≈ 0 phonons. However, this result does
not completely exclude the existence of intraband transitions
contributing to the phonon self-energy. In addition to the
mentioned direct intraband transitions, there are also indirect
ones, in which an electron is scattered from k to k′, but now
these two states are not correlated directly with the phonon
momentum q [7,46,51,58–61] [second term in Eq. (C7)]. This
correlation is interrupted by the scattering of the electron on
impurities or other quasiparticles in the system (e.g., other
phonons). In our case, we only consider indirect transitions
due to impurity scattering and we sum the leading terms of
these processes. These terms are represented in Fig. 2(b),
where the first two are the self-energy contributions, while the
other two are the vertex corrections. This type of expansion
is called high-energy (HE) expansion because it is valid for
ω � |εμk − εμk+q| [61].

Before performing the explicit summation of the diagrams
in Fig. 2(b) we write the total phonon self-energy as the sum
of direct and indirect terms:

�λ(ω) = �d
λ(ω) + �id

λ (ω)

≈ π
inter,0
λ (ω) + π

intra,HE
λ (ω). (36)

As for the interband transitions, we keep the leading direct
contributions as in Eq. (22). The summation of the leading
terms in π

intra,HE
λ can be performed using the force-force

correlation function approach for the phonon self-energy (see
Appendix C and Refs. [49,55,61]):

π
intra,HE
λ (ω) = − 1

ω2
[φλλ(ω) − φλλ(0)]. (37)

From the summation of the diagrams, we have

− φλλ(ω)

ω2
= − 1

ω2

∑
μkk′σ

〈|V (k − k′)|2〉

× ∣∣gμμ
λ (k,0) + g

μμ
λ (k′,0)

∣∣2

× fμk − fμk′

ω + εμk − εμk′ + iη
, (38)
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where 〈|V (k − k′)|2〉 is the impurity potential averaged over
impurity sites [55]. By combining Eqs. (37) and (38) we get
that the high-energy expansion of the indirect contribution to
the intraband phonon self-energy is

π
intra,HE
λ (ω) =

∑
μkσ

∣∣gμμ
λ (k,0)

∣∣2 ∂fμk

∂εμk

��λ
μμ(k,ω)

ω
. (39)

In doing so, we have approximated the term (fμk − fμk′)/
(εμk − εμk′) with the derivative ∂fμk/∂εμk to separate the k
and k′ summations. With this approximation the high-energy
expansion of the intraband phonon self-energy acquires a form
analogous to the high-energy expansion of the conductivity
formula obtained within the memory-function model [49,53],
the second-order Fermi golden rule formula [51], or the
Holstein theory [51,82]. In Eq. (39) we have defined the e-h
self-energy due to electron scattering on impurities as

��λ
μμ(k,ω) = −

∑
k′

〈|V (k − k′)|2〉
(

1 − g
μμ
λ (k′,0)

g
μμ
λ (k,0)

)

× 2ω

(ω + iη)2 + (εμk − εμk′)2
. (40)

The relaxation processes described by the HE expansion term
of Eq. (39) are of particular importance when the region of
interest is far above the intraband Landau damping region
(ω � |εμk − εμk+q|). Here we approximate the e-h self-energy
��λ

μμ(k,ω) by the phenomenological parameter i	imp,

π
intra,HE
λ (ω) ≈ i

∑
μkσ

∣∣gμμ
λ (k,0)

∣∣2 ∂fμk

∂εμk

	imp

ω
. (41)

From the structure of expressions (39)–(41) we can deduce
that 	imp is actually the inverse of the transport relaxation
time τ

imp
tr due to electron-impurity scattering obtained in

the Boltzmann equations, i.e., 	imp = 1/τ
imp
tr [55]. We note

that the phenomenological damping energy 	μμ should in
principle account for all relevant scattering processes in
the system, while 	imp accounts just for the specific case
of electron-impurity scattering. Using the above formalism,
an equivalent expression for the indirect intraband phonon
self-energy [Eq. (41)] can be derived for the case of electron-
phonon scattering. In that case, a frequency- and temperature-
dependent damping energy due to electron-phonon scattering
	ph(ω) appears instead of 	imp in Eq. (41) [6,47,55,57,83].
This damping energy contains information on which (k′ − k �=
0,λ′) phonon modes satisfying ωk′−k,λ′ < ω0λ [47,51] are
responsible for the damping of the studied (q ≈ 0,λ) phonon
mode and the breakdown of the momentum conservation law.
Contributions such as e-h pair dephasing [84] and indirect
phonon-phonon coupling mediated by electron excitations
[85], which are also important to describe the experimental
phonon linewidth of a vibrating ordered layer of molecules
on a metallic surface, are included in Eq. (41) with 	ph(ω).
However, the corresponding analysis goes beyond the scope
of the present work.

Finally, a further comment on the RTA form of the
imaginary part of Eq. (23) is in order. Apart from the
interband contribution, the RTA form of π̂0

λ (ω) has an intraband
contribution as well. The imaginary part of the former can be

expressed as

−Imπ̂
intra,0
λ (ω) ≈ −ω	intra

ω2 + 	2
intra

∑
μkσ

∣∣gμμ
λ (k,0)

∣∣2 ∂fμk

∂εμk
. (42)

In the high-energy limit (ω � 	intra) this expression is
equivalent to the high-energy expansion of the intraband
phonon self-energy π

intra,HE
λ (ω) [Eq. (41)] that we obtained

by summation of the leading indirect terms in the electron-
impurity scattering processes. However, there is no equivalent
physical justification for the q ≈ 0 intraband transitions in
Eq. (23) (Appendix A). Thus, this expression should be taken
with caution if electron scattering processes are neglected
and a finite (purely numerical) 	intra is used as a broadening
parameter to simulate the clean noninteracting limit.

E. Quasistatic approximations for the phonon self-energy

A common practice when studying the linewidth of low-
energy phonons and also of vibrationally excited adsorbates
is the use of the quasistatic limit (ω0λ � |εμk − εμ′k|) in
Eqs. (10) and (17). In this respect, we consider it meaningful
to examine step by step the implications of using this limit in
calculations of the q ≈ 0 phonon self-energy. First of all, if
the ω → 0 limit is taken directly in Eq. (10), the following
expression is obtained:

π0
λ (0) =

∑
μμ′kσ

∣∣dμμ′
λ (k,0)

∣∣2

2Mλω0λ

fμk − fμ′k

εμk − εμ′k
, (43)

where d
μμ′
λ (k,0) is the deformation potential defined in Eq. (4).

This expression is purely real, which is actually required by
the definition of the bare phonon self-energy given in Eq. (10).
However, a practical formula for the phonon linewidth can still
be obtained by taking carefully the quasistatic limit. In what
follows we use η as a finite parameter, since this is usually done
in DFT calculations to ensure numerical convergence. When
applying the RTA as done above, a finite η is used, too, that has
a physical meaning (i.e., η = 	μμ′). We write the imaginary
part of Eq. (10) for ω = ω0λ as

− Imπ0
λ (ω0λ) = π

∑
μμ′kσ

∣∣dμμ′
λ (k,0)

∣∣2

2Mλ

fμk − fμ′k

ω0λ

×Lη(ω0λ + εμk − εμ′k), (44)

where Lη(x) stands for the Lorentzian function η/π (x2 + η2)
(see Appendix D). To obtain the quasistatic limit that is
always positive-definite we need to take the ω0λ → 0 limit
both in the Lorentzian function and in (fμk − fμ′k)/ω0λ. The
latter limit is the derivative of the Fermi-Dirac distribution
function, −∂fμk/∂εμk. Otherwise, if we only took the limit
of the Lorentzian function, the imaginary part could give
negative, nonphysical values because it could happen that
fμk − fμ′k < 0 when summation over the Fermi surface is
performed. Therefore, by taking both limits the following
expression for the quasistatic phonon self-energy is obtained:

− Imπ0
λ (0) ≈ π

∑
μμ′kσ

∣∣dμμ′
λ (k,0)

∣∣2

2Mλ

(
− ∂fμk

∂εμk

)
×Lη(εμk − εμ′k). (45)
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In the low-temperature limit T → 0, the derivative of the
Fermi-Dirac distribution function −∂fμk/∂εμk goes to δ(εμk −
εF ). This expression is also known as Allen’s formula for the
phonon linewidth [86]. The same formula can be obtained
by taking the quasistatic limit in Eq. (17). In that case, the
imaginary part for ω = ω0λ is

− Imπ̂0
λ (ω0λ) = −π

∑
μμ′kσ

∣∣dμμ′
λ (k,0)

∣∣2

2Mλ

fμk − fμ′k

εμk − εμ′k

×Lη(ω0λ + εμk − εμ′k). (46)

Since −(fμk − fμ′k)/(εμk − εμ′k) is always positive, the
ω0λ → 0 limit in the Lorentzian function can be safely
performed, which leads to the following quasistatic
expression:

− Imπ̂0
λ (0) ≈ −π

∑
μμ′kσ

∣∣dμμ′
λ (k,0)

∣∣2

2Mλ

fμk − fμ′k

εμk − εμ′k

×Lη(εμk − εμ′k). (47)

When we additionally require that εμk → εμ′k this expression
also leads to Allen’s formula [Eq. (45)]. Since the intraband
part of Allen’s formula diverges [48], only the interband part
is usually considered for calculating linewidths. To avoid this
divergent form, the derivative ∂/∂εμk can be applied to the
Lorentzian Lη(x) instead of applying it to the Fermi-Dirac
distribution function fμk [35],

− Im∂π0
λ (0) ≡ −π

∑
μμ′kσ

∣∣dμμ′
λ (k,0)

∣∣2

2Mλ

(fμk − fμ′k)

× ∂Lη(εμk − εμ′k)

∂εμk
. (48)

Although this trick disregards the divergent intraband part, it
actually changes the interband part as well, as we will explicitly
show in the next section.

All in all, the expressions for the quasistatic q ≈ 0 phonon
self-energies [Eqs. (45), (47), and (48)] should be taken
with care when trying to simulate the clean noninteracting
limit η → 0+, for which the imaginary part should vanish
by definition (adiabaticity), as Eq. (43) shows. Nevertheless,
if the physically relevant transitions occur mostly at the
Fermi surface, as happens for the ω0λ → 0 limit (e.g., small
phonon frequencies, acoustic phonons), Eqs. (45) and (47)
imply that a finite η could be useful. However, note that
the strict η → 0+ limit in these expressions is nonphysical
because it leads to divergent values [87]. Furthermore, too
large η values in the RTA could also give nonphysical values,
since it could happen that Eqs. (45) and (47) account for
inelastic interband transitions when η � ω0λ, although these
expressions suggest that only the quasielastic transitions at the
Fermi surface should contribute. A similar precaution should
be taken when studying the quasistatic limit for low-frequency
q �= 0 modes (e.g., adiabatic electronic friction coefficient)
[32,34,36,37]. In that case Allen’s formula should be more
reliable, since the intraband part is not divergent for finite q
[48].

III. THE CASE OF CO STRETCH MODE
ON THE Cu(100) SURFACE

A. Computational details

All calculations were done using the plane-wave DFT-based
QUANTUM ESPRESSO (QE) package [88] with a plane-wave
cutoff energy of 50 Ry. The core-electron interaction was
approximated with ultrasoft pseudopotentials, and the ex-
change and correlation functional with the revPBE version [89]
of the generalized gradient approximation (GGA) [90]. The
adiabatic vibrational frequencies ω0λ and harmonic electron-
phonon matrix elements g

μμ′
λ (k,0) defined in Eq. (4) were

calculated on a (8 × 8 × 1) Monkhorst-Pack k point grid
[91] using density functional perturbation theory (DFPT) [3].
In that case, ψμk are the Kohn-Sham (KS) electronic wave
functions, while Vei is replaced with the self-consistent KS
potential V SCF in both electron-phonon matrix elements.
Generally, the KS potential is frequency dependent. However,
for practical reasons it is approximated with its static value
V SCF ≈ V SCF (ω = 0) in usual DFT calculations [70,79].
In order to calculate the different phonon self-energies dis-
cussed in Sec. II we use denser k point grids ranging from
(16 × 16 × 1) to (160 × 160 × 1). In doing so, the electron-
phonon matrix elements g

μμ′
λ (k,0) obtained on the coarser

grid are interpolated on these denser grids following the QE
implementation.

B. Geometric and electronic structure

All the analysis is performed for the adsorption structure
and coverage reported from IRAS experiments in Ref. [64]:
one CO molecule in the c(2 × 2) unit cell of Cu(100) adsorbed
vertically on the top site [Fig. 3(a)]. Using the aforementioned
parameters, the adsorption geometry is optimized until forces
are smaller than 0.01 eV/Å, where only the bottom surface
layer is not allowed to move. The obtained Cu-C and C-O
bond lengths are 1.875 and 1.154 Å, respectively, which are in
good agreement with the experimental data [92] and previous
theoretical works [93]. In our study we vary the number
of Cu layers, going from three to 18 layers. Although the
relevant geometrical parameters (Cu-C and C-O bond lengths)
do not depend much on the number of layers included in
the calculation, we will show how it significantly affects
the electronic structure and, hence, the calculated phonon
linewidth.

Obviously, the perturbation induced by the CO stretch mode
is so localized in the molecule that it will overall affect the
electronic states that consist of a mixture of CO and Cu states.
It is for these states that the matrix elements g

μμ′
λ (k,0) may take

finite non-negligible values. The projected density of states
(PDOS) and the electronic band structure along the the high-
symmetry points of the Brillouin zone allow us to identify the
states contributing to the finite phonon linewidth (the PDOS
is calculated by projecting on s and p states centered at the
selected atoms, using the implementation of QE). The results
for the CO/Cu(100) system with three layers are shown in
Fig. 3(b). The color scale in the band structure represents
states contributed by either the CO molecule (red color) or Cu
atoms (purple color). This identification was made by defining
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FIG. 3. (a) Unit cell of the c(2 × 2) structure of CO molecules adsorbed on the top site of the Cu(100) surface and the corresponding
Brillouin zone with high-symmetry points. Red balls represent oxygen, yellow ones carbon, and brown ones copper atoms. (b) The electronic
band structure for the CO molecule on the Cu(100) three-layer surface. Red (purple) bands correspond to contributions from the CO molecule
(Cu atoms). Additionally, the projected density of states is shown for CO (red) and Cu (purple) states. (c) Comparison between the electronic
band structure of CO adsorbed on 12 (blue lines) and three (red dashed lines) layers of the Cu(100) surface. The shaded areas in the electronic
band plots represent the energy window εF ± ω0λ, where ω0λ is the energy of the CO stretch mode.

the coefficient Cμk for each state as

Cμk =
∫∫

dxdy
∫ z0+a

z0−a
dz|ψμk(r)|2∫

V
dr|ψμk(r)|2 , (49)

where a is the distance between the midpoint of CO and the
midpoint of the Cu-C bond, z0 is the z coordinate of the
midpoint of CO, and V is the total volume of the unit cell.

In agreement with Refs. [34,93], the PDOS shows that
there is a significant hybridization between the CO states
with p symmetry (π∗) and the Cu states around the Fermi
level. In addition, the colored band structure provides precise
information on what states can contribute to the interband
transition with q ≈ 0. Note that only electronic transitions
within the shaded gray area around the Fermi energy can
be induced by the CO stretch mode (ωexp

0λ = 0.259 eV [15]).
Clearly, this region is poorly described by the three-layer
surface. However, as we increase the number of Cu layers, the
number of bands in this area increases significantly [Fig. 3(c)].
Therefore, it is reasonable to expect that the imaginary part
of any of the above phonon self-energy expressions changes
with the increase of the number of electronic bands, since
more electronic transitions fulfilling the energy conservation
condition δ(ω0λ + εμk − εμ′k) may contribute to the matrix

elements g
μμ′
λ defined by Eq. (4). As dictated by the causality

principle, the real part of the phonon self-energy can be
obtained by using the imaginary part and the Kramers-Kronig
relations, so the mentioned changes will affect the real part as
well. All these observations indicate that a proper description
of the Cu surface is needed to assure an accurate calculation
of the phonon self-energy.

C. Phonon linewidth

Before analyzing the role of electronic relaxation processes
in the stretch mode linewidth of CO adsorbed on Cu(100), it
is necessary to assure first that the value of the noninteracting
phonon linewidth is well converged with respect to those pa-
rameters controlling the quality of the CO/Cu(100) electronic
states, namely, the number of k points and the number of Cu

layers. In doing this selection, one should be aware that the
Dirac delta function appearing in the imaginary part of Eq. (10)
(bare phonon self-energy) is numerically approximated by
a Lorentzian function of half-width at half-maximum η.
Therefore, the calculated values of the bare phonon linewidth
should be well converged for reasonably small η values as we
check next.

In an ideal situation, the summation appearing in the
expressions of correlation functions (e.g., phonon self-energy)
would be a continuous integral over the k space. Thus, in
order to obtain accurate numerical results, we need to achieve
convergence with respect to the discrete number of k points
used to simulate the continuum. To clarify this issue we plot
in Fig. 4 the results for the CO stretch mode phonon linewidth
obtained with Eq. (10) as a function of η and for different
k point grids, where all the calculations were performed for
a slab of six Cu layers. We observe that for η � 60 meV the
convergence is achieved with the (48 × 48 × 1) grid, while for
smaller values of η we need at least the (72 × 72 × 1) grid.

FIG. 4. Interband part of the q ≈ 0 phonon linewidth γ inter
0λ of

the CO stretch mode as a function of η calculated with Eq. (10). The
Cu(100) surface is approximated by six layers. The number Nk defines
the k point grid with (Nk × Nk × 1). The temperature is T = 200 K.
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FIG. 5. Interband part of the q ≈ 0 phonon linewidth γ inter
0λ of the

CO stretch mode on the Cu(100) surface for three, six, and 10 Cu
layers (red, blue, and yellow colors, respectively). The results are
obtained with Eq. (10) and extrapolating the finite η values to η = 0
to get the result of the bare phonon linewidth (black triangles). The
number of k points used here is (160 × 160 × 1) for three layers, and
(72 × 72 × 1) for six and 10 layers. The temperature is T = 200 K.
The blue shaded area represents the area from the lowest measured
experimental linewidth (∼50 GHz) to the highest one (∼140 GHz)
(including experimental error bars).

Therefore, this latter grid will be used in the rest of this section
unless otherwise stated.

The convergence of the bare phonon self-energy as a
function of the number of Cu layers used in the slab is shown
in Fig. 5. For each slab, the phonon linewidth in the clean
noninteracting limit η → 0+ (black triangles) is obtained by
extrapolating the corresponding γ inter

0λ (η) curve. The results
of Fig. 5 show that the bare γ inter

0λ obtained with six Cu
layers is already converged. Importantly, the obtained values
for six and 10 layers are 26.7 and 29.1 GHz, respectively,
which are far beneath the lowest reported experimental values
[15,64,65,67]. In principle, a theoretical linewidth smaller than
the experimental one is not that surprising, because further
electron scattering effects that exist under real experimental
conditions are not captured by an ideal theoretical model.
For this reason we analyze next how these results change
when electron relaxation processes are included at the RTA
level (η → 	inter), i.e., by giving a physical meaning to the
broadening.

The results in Fig. 6 show the values of γ inter
0λ for six Cu

layers as a function of the damping energy 	inter calculated
with the RTA phonon self-energy π

inter,0
λ (ω0λ) [see Eq. (22)].

We observe how the phonon linewidth increases with the
damping energy, i.e., with the intensity of the electronic
scattering processes. Consequently, including a finite electron
damping energy improves the bare phonon linewidth result by
bringing it closer to the experimental values. Figure 6 also
shows that the results obtained with π

inter,0
λ (ω0λ) [Eq. (22)]

(blue circles) and π̂
inter,0
λ (ω0λ) [Eq. (23)] (red circles) are

different for finite 	inter, while they tend to the same values
when 	inter → 0+. Note that, as discussed in Sec. II (see
also Appendix D), Eq. (22) is the correct phonon self-energy

FIG. 6. Interband part of the q ≈ 0 phonon linewidth γ inter
0λ of the

CO stretch mode as a function of 	inter for six Cu layers calculated
with Eqs. (22) (blue circles), (23) (red circles), (45) (black circles),
(47) (green circles), and (48) (yellow circles), using the (72 × 72 × 1)
k point grid. Blue shaded area as in Fig. 5. The temperature is T =
200 K.

within the RTA. This shows that Eq. (23), which corresponds
to introducing a finite damping into the phonon self-energy
expression obtained after removing the adiabatic contribution
[Eq. (17)], is only correct in the strict 	inter → 0 limit, but not
in the general RTA with finite 	inter.

In order to get insight in the limitations of the quasistatic
limit for high-frequency vibrational modes or for optical
phonons, we also show in Fig. 6 the quasistatic forms of the
interband phonon linewidths obtained with Allen’s formula
[Eq. (45)] (black circles), π̂

inter,0
λ (0) [Eq. (47)] (green circles),

and ∂π
inter,0
λ (0) [Eq. (48)] (yellow circles). Recall here that

Eq. (47) is obtained by taking the quasistatic limit in Eq. (23)
(as described in Sec. II E) when η → 	inter. Allen’s formula
is obtained after taking ω0λ → 0 and εμk → εμ′k in Eqs. (44)
and (47), respectively. Additionally, Eq. (48) has been used
in the literature to avoid the divergence in the intraband
part of the phonon self-energy in the quasistatic limit [35].
As 	inter → 0+ the three quasistatic curves go to zero, as
required by definition of adiabaticity. For large values of 	inter

the phonon linewidth obtained with π̂
inter,0
λ (0) approaches the

result obtained with π̂
inter,0
λ (ω0λ), which means that the proper

resolution in the Lorentzian is lost when 	inter becomes larger
than ω0λ. From the perspective of the quasistatic expression
π̂

inter,0
λ (0) this implies that 	inter is so large that it actually

introduces dynamic (ω �= 0) instead of static contributions,
which are the only ones that should strictly appear in the
quasistatic limit. Similarly, the large broadening parameter
(η = 0.6 eV) used in Ref. [41] forces the quasistatic phonon
linewidth, and also the adiabatic friction coefficients that are
calculated from an expression analogous to π̂

inter,0
λ (0), to fall

into the dynamical regime. In a realistic situation the case
	inter � ω0λ is unlikely to happen, because the energy of the
CO stretch mode is 0.26 eV, and a value 	inter � 0.26 eV would
correspond to a very dirty system characterized by various
and highly probable scattering processes. In fact, the realistic
values of 	inter should be within the same order of magnitude
as 	intra [54,94], where the usual values range from ∼1 meV
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up to around 100 meV [95]. Therefore the values of γ inter
0λ at

	inter ≈ 100–150 meV should be taken as the uppermost limit.
The results obtained from the interband part of Allen’s formula
(black circles) exhibit a dependence on 	inter very similar to
that of the interband phonon linewidth obtained from Eq. (47).
Regarding the results of the phonon linewidth obtained with
∂π

inter,0
λ (0), note that even if they match the π

inter,0
λ (ω0λ) results

for some values of 	inter, this quasistatic limit faces the same
inconsistencies as π̂

inter,0
λ (0) for 	inter � 150 meV.

Having the above discussion in mind, we can summarize
the problems of the quasistatic approximations when applied
to high-frequency modes in the following two points: (i) if
the clean noninteracting limit (	inter → 0+) is simulated, then
the interband expressions in the quasistatic limit are zero,
leaving only the intraband term of π̂0

λ (0) finite (as discussed
in Sec. II E). (ii) If the interacting case (	inter > 0) is regarded
relevant in the studied system, then realistic values of 	inter

should be taken into account, since the phonon linewidth is
not constant with respect to different 	inter values. However,
even in that case the quasistatic approximations may give
inconsistent results, being therefore more meaningful to use
the frequency-dependent phonon self-energy π

inter,0
λ (ω0λ).

As for the temperature effects that enter the Fermi-Dirac
distribution functions fμk, we observe only minor changes
in the phonon linewidth. Specifically, γ inter

0λ changes less
than 1 GHz for electronic temperatures within the range
T = 40–300 K. In general, this does not mean that the phonon
linewidth due to electron-phonon coupling is independent of
temperature. Well on the contrary, the e-h self-energy is a
complex function of temperature, and thus the damping energy
	inter should also change when the temperature changes (in a
way similar to that in which 	intra changes in Refs. [6,7,47,57]).

Next we analyze the effect of including electronic relax-
ation processes in the electron distribution functions, i.e.,
of replacing fμk by nμ(k) as defined in Eq. (27). The
results for this replacement are shown in Fig. 7 for three
different values of 	A. For each 	inter, the interband phonon
linewidth increases when including relaxation processes in the
distribution function. As a result we get better agreement with
the experimental values. Still, it is not possible to establish a
correct quantitative estimation of the theoretical γ inter

0λ since
the exact value of 	A is unknown, except for the fact that it
should be within the usual values of the electron self-energy
(∼1–100 meV). Thus these results show qualitatively how
accounting for relaxation processes in the single-electron spec-
tral function (quasiparticle linewidth) influences the phonon
linewidth through the momentum distribution function.

So far we have only considered the interband transitions
without paying attention to the intraband ones, which are
proportional to q2 and thus negligible for the q ≈ 0 optical
phonons, i.e., the CO stretch mode in our particular case.
If we take into account higher-order electron scattering
processes (e.g., electron-impurity scattering), the indirect
intraband channel is open, as discussed in Sec. II D. For
the CO stretch mode excited by infrared light (q ≈ 0), the
condition ω � |εμk − εμk+q| is met. Thus we can apply
the high-energy expansion of the indirect intraband phonon
self-energy provided by Eq. (41). The corresponding values
of −Imπ

intra,HE
λ (ω0λ) are shown in Fig. 8 as a function

FIG. 7. γ inter
0λ as a function of 	inter of the CO stretch mode

obtained with Eq. (24), where the low-temperature (T = 10 K)
Fermi-Dirac distribution functions fμk (open circles) are replaced
with the momentum distribution functions nμ(k) obtained with
Eq. (27) (closed circles). The results are shown also for different
damping energies of the single-particle spectral function 	A. The
number of k points used here is (72 × 72 × 1). Blue shaded area as
in Fig. 5.

of 	imp. As the intraband damping energies (i.e., transport
relaxation times, τtr) can be extracted very easily from optical
conductivity measurements by fitting the results to the Drude
model, the values for usual bulk systems are well known.
The reported values for bulk Cu in the range T = 60–150 K
are 1/τtr = 2–11 meV [95]. Applying these values to our
system we get −Imπ

intra,HE
λ (ω0λ) ≈ 10–30 GHz (Fig. 8). Note

however that this value should be taken as a rough estimation,
since the intraband electron scattering processes in bulk Cu
could be different from the ones in CO/Cu(100). Moreover,
1/τtr is the total transport relaxation time accounting for all the
relevant scattering processes in the system (1/τtr = 1/τ

imp
tr +

1/τ
ph
tr + 1/τ el

tr , where τ
imp
tr , τ ph

tr , and τ el
tr are the relaxation times

FIG. 8. High-energy expansion of the indirect contribution to the
intraband phonon self-energy [Eq. (41)] of the CO stretch mode as a
function of 	imp with T = 200 K and as a function of the temperature
with 	imp = 5 meV (inset) for six Cu layers. The number of k points
used here is (80 × 80 × 1).
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FIG. 9. γ inter
0λ of the CO stretch mode calculated with Eqs. (22)

(blue circles) and (23) (open blue circles), and the long-wavelength
adiabatic frequency of the CO stretch mode, ω0λ (open red cir-
cles), as a function of the number of Cu layers. The damp-
ing energy is 	inter = 150 meV and the numbers of k points
are Nk = 160,72,72,56,56,32 for the number of layers Nlayer =
3,6,10,12,14,16, respectively. Blue shaded area as in Fig. 5. The
temperature is T = 200 K.

for impurity, phonon, and electron scattering, respectively)
and not just for electron-impurity scattering (1/τ

imp
tr ). In the

inset of Fig. 8 we also show the temperature dependence of
−Imπ

intra,HE
λ (ω0λ) obtained through the ∂fμk/∂εμk factor. In

the range T = 100–160 K relevant for the experiment [65], no
significant temperature effects are observed.

As we mentioned earlier, the calculated phonon linewidth
depends on the number of Cu layers used to describe the
surface. In Fig. 9 we show the RTA phonon linewidth γ inter

0λ

obtained with Eqs. (22) (open blue circles) and (23) (blue
circles) as a function of the number of Cu layers. As we already
anticipated from the electronic structure analysis in Sec. III B,
the RTA linewidths are closer to the experimental values as the
slab thickness increases from three to 16 layers. Here we see
that six layers provide a reasonably good approximation for
the surface and, even though the linewidth further increases
with the number of layers, the change is not drastic. Also, the
RTA phonon linewidths obtained with π

inter,0
λ (ω0λ) are always

higher than the ones obtained with π̂
inter,0
λ (ω0λ). The presented

results are calculated with 	inter = 150 meV, so they should
be interpreted as an upper limit for the given number of Cu
layers.

To get a more precise estimation of the RTA phonon
linewidths and the corresponding phenomenological damping
energies (e.g., 	inter, 	A, and 	imp), one should either calculate
the damping energies Im�μ(k,ε) and Im��μμ′(k,q,ω) explic-
itly [53], or extract these values from experiments, for example
angle-resolved photoemission spectroscopy (ARPES) for the
former and optical conductivity measurements for the latter.
These calculations are rather difficult to do ab initio, and
according to our knowledge, this has not been done yet
systematically for both intraband and interband phonon self-
energies. As for experiments, they are not available for our
studied system. Thus, we are restricted to phenomenological
calculations, where we give the results for a range of
meaningful damping energies 	.

TABLE I. Renormalization of the CO stretch mode frequency
on the Cu(100) surface (ω0λ = 61.37 THz) due to the nonadiabatic
electron-phonon coupling. The number of Cu layers is six and the k
point grid is (80 × 80 × 1). The units are THz.

q ≈ 0

intraband interband total

π 0
λ π̂ 0

λ π 0
λ π̂ 0

λ π 0
λ π̂ 0

λ

Reπ 0
λ 0.0 0.69 −4.97 −0.019 −4.97 0.671

ω0λ + Reπ 0
λ 61.37 62.06 56.4 61.35 56.4 62.04

ω
exp
0λ [15] 62.51

D. Renormalization of the phonon frequency

If the change from the adiabatic to the nonadiabatic phonon
frequency is relatively small, the renormalization of the q ≈ 0
phonon frequencies given by Eq. (8) can be approximated as

ωNA ≈ ω0λ + Reπ0
λ (ω0λ), (50)

where we have changed the exact form of the phonon self-
energy by the bare one, and ω0λ is the phonon frequency
obtained within the adiabatic DFT calculations (see Ap-
pendix A). For the CO stretch mode we get ω0λ � 61.4 THz
as the converged value (see Fig. 9, right y axis), which is
already in good agreement with the reported experimental
value ω

exp
0λ = 62.51 THz [15]. This means that nonadiabatic

effects should indeed be small as we demonstrate next.
Table I shows the results for the real parts of π̂0

λ (ω0λ)
[Eqs. (19) and (21)] calculated with six Cu layers, as well as
the corresponding nonadiabatic phonon frequencies ωNA. For
completeness, we have also calculated the interband part of
Reπ0

λ (ω0λ) [Eq. (15)], although it cannot be taken as a correc-
tion to the DFT adiabatic frequency (see Sec. II A). Note that
it actually would reduce the value of ω0λ, and therefore further
increase the difference between calculated and experimental
frequencies. On the contrary, the phonon self-energy π̂0

λ (ω0λ),
which directly gives the difference between the adiabatic and
nonadiabatic frequencies [5,10,75] (see Sec. II A), shifts the
phonon frequency closer to the experimental one. The next
point we investigate is how sensitive this value is to the number
of Cu layers used in the calculation.

Figure 10 shows the intraband and interband contributions
to Reπ̂0

λ (ω0λ) as a function of the number of Cu layers. The
interband contribution is in all cases very small, so it does not
affect the phonon frequency. However, the converged value of
the intraband part is between 2 and 2.5 THz. With this value the
nonadiabatic frequency overestimates the experimental value
by around 1 THz. Although the accuracy could be improved
by choosing a finite η as in the inset of Fig. 10 (electronic
damping effects as in Ref. [10]) or possibly by the long-range
screening effects discussed in Sec. II C, we leave the results as
they are for at least three reasons: (i) all the above nonadiabatic
corrections to the phonon frequencies are relatively small,
(ii) the adiabatic phonon frequency ω0λ could depend on the
choice of the DFT functional [96], and (iii) there is no way to
our knowledge to use π̂0

λ (ω) in a diagrammatic perturbation
expansion to obtain the electronic damping effects. One
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FIG. 10. Real part of the intraband (blue circles) [Eq. (19)] and
interband (black triangles) [Eq. (21)] contributions to the phonon self-
energy π̂ 0

λ (ω0λ) of the CO stretch mode as a function of the number
of Cu layers. The numbers of k points used are Nk = 160,80 for
Nlayer = 3,6 and Nk = 64 for the rest. The inset shows the intraband
contribution Eq. (19) for six Cu layers as a function of η, where
the η → 0+ limit corresponds to the results presented in the main
panel.

possibility for (iii) would be not to use π̂0
λ (ω) directly, but

to gather all the irreducible diagram terms in a random phase
approximation fashion for π0

λ (ω), and then subtract the static
part in the clean noninteracting limit from the dynamic one,
�λ(ω) − π0

λ (0) (this is precisely explored in Appendix B).
For the indirect intraband channel this summation of diagrams
would include all possible scattering processes beyond the
leading terms presented in Fig. 2(b), which would lead to a
phonon self-energy not just valid for ω � |εμk − εμk+q|, but
for any ω value [61]. This goes beyond the scope of the present
work.

IV. CONCLUSION

We have analyzed the dynamical (nonadiabatic) phonon
self-energy in the long-wavelength limit, both for cases where
electronic scattering processes are disregarded and where
they are included in a phenomenological way (relaxation-time
approximation). This general formulation was then used to
calculate the long-wavelength phonon linewidth and frequency
shift due to the electron-phonon coupling for the CO stretch
mode on the Cu(100) surface.

The results for the phonon linewidth show that the phonon
self-energy in the clean noninteracting limit, corresponding
to the first-order Fermi golden rule formula, is not enough
to explain the experimental results of the CO stretch mode
obtained from infrared spectroscopy. To get a better agreement
it is necessary to account for electronic scattering processes
(i.e., electron scattering on phonons, impurities, or other
electrons). We do so by including a finite electron self-energy
into the Green’s functions and use them together with the
Dyson equation to construct the phonon self-energy. This
procedure naturally includes electron damping processes in the
phonon self-energy through the difference of electron and hole
self-energies, as well as through the single-electron spectral
function that enters the momentum distribution functions.
Using a phenomenological treatment we have shown that this
phonon self-energy (mostly the imaginary part) is then consid-

erably affected by the mentioned scattering processes, that is,
by the corresponding damping energies. For electron-impurity
scattering processes we have summed the four leading terms
in the high-energy expansion of the indirect contribution to the
intraband phonon self-energy. The result gives us an expression
for the phonon self-energy analogous to the high-energy form
of the intraband Kubo conductivity formula, and we obtain the
explicit expression for the e-h self-energy, which resembles
the inverse of the transport relaxation time caused by electron-
impurity scattering. Since the contamination with impurities is
unavoidable in the experimental setup, the high-energy indirect
phonon self-energy term, together with the relaxation-time
approximation of the direct interband phonon self-energy, is
relevant for explaining the experimental phonon linewidths.
Along with these two contributions, it is expected that electron-
hole pair dephasing [84] and indirect phonon-phonon coupling
mediated by electron excitations [7,47,85], as well as the
improvement of semilocal DFT functionals, should contribute
to improve the agreement with the experimental linewidth.
Further work along the latter three contributions would be
desirable.

We have examined in addition the reliability of the
quasistatic approximation for the phonon linewidth of the
CO stretch mode. Considerably different results with respect
to the dynamical phonon linewidth are found, especially for
damping energies that are much smaller than the phonon
frequency of the CO stretch mode (0.26 eV). Importantly,
we have shown that the interband part of the q = 0 qua-
sistatic phonon self-energy is exactly zero in the limit of
zero damping energy. For this reason, the quantity that is
calculated using this approach with finite damping values
[41] cannot be connected to the adiabatic friction coefficient
of atoms/molecules interacting with metal surfaces because
it already includes dynamical effects that should be absent
from it. Quasistatic expressions are expected to show the
same flaws for similar high-frequency modes in other systems
when q = 0. Therefore, Allen’s formula (both its intraband and
interband parts) is not applicable when calculating the phonon
linewidth of high-frequency modes obtained in infrared or
Raman spectroscopies [48]. Nevertheless, we expect it to be
suitable for low-frequency modes and for q �= 0.

We have also found that the temperature dependence of
the phonon linewidth that comes from the Fermi-Dirac distri-
bution function is negligible. However, electronic scattering
processes (i.e., electron self-energy) are also temperature
dependent and they are expected to affect the overall tem-
perature dependence of the phonon self-energy. Regarding
the renormalization of the CO stretch mode, we have shown
the necessity of subtracting the static (adiabatic) phonon
self-energy from the dynamic (nonadiabatic) one. The result
so obtained is more reasonable, since adiabaticity is already
included in the phonon frequency obtained from DFT-based
calculations. In addition, we have found that the phonon
linewidth is very sensitive to the parameters used. Good
convergence is only achieved after a careful consideration of
the numbers of k points and surface layers.

Finally, we would like to emphasize that the present
approach to study nonadiabatic effects is a general one and can
be applied for any well-defined high-energy optical phonon
mode.
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APPENDIX A: NONADIABATIC EFFECTS
IN THE ELECTRON-ION SYSTEM

Here we briefly summarize the two approaches to derive the
bare phonon self-energy due to the electron-phonon coupling
(a) when the goal is to calculate the adiabatic (ω = 0) and
nonadiabatic (ω �= 0) effects on the phonon spectrum starting
with the bare phonon frequency and (b) when we already know
the adiabatic effects on the phonon spectrum and we want to
explore the nonadiabatic effects (e.g., when the starting point
is the adiabatic frequency obtained within DFPT [3]).

We start with the usual equations for the electron-ion system
[74–76], already separated into Hamiltonians acting on the
electron

[He(r) + Vei(r,R)]ψm(r,R) = Em(R)ψm(r,R) (A1)

and on the ion wave functions

[Hi(R) + En(R)]φn(R) +
∑
m

(Anm + Bnm)φn(R) = Eφn(R).

(A2)

In these expressions He(r) is the electron Hamiltonian, Hi(r)
is the ion Hamiltonian, Vei(r,R) is the interaction that couples
the electron charge density to the ions, and

Anm = − 1

M

∫
drψ∗

m(r,R)∇Rψm(r,R)∇R, (A3)

Bnm = − 1

2M

∫
drψ∗

m(r,R)∇2
Rψm(r,R). (A4)

By expanding Vei(r,R) for small displacements Qj for each
ion with index j and then imposing the Bloch theorem and
the second quantization we arrive at the operator form for the
electron-phonon interaction [74]

V (a)
ep =

∑
μμ′,kq,λ

g
μμ′
λ (k,q)c†μ′k+qcμk[bqλ + b

†
−qλ], (A5)

with the electron-phonon coupling coefficient g
μμ′
λ (k,q) =

d
μμ′
λ (k,q)/

√
2Mλωqλ, where d

μμ′
λ (k,q) is the deformation

potential defined by Eq. (4). The operators bqλ and b
†
−qλ are

phonon annihilation and creation operators, respectively. The
bare phonon self-energy due to the electron-phonon coupling
that corresponds to the interaction V (a)

ep is expressed by Eq. (10)
where the phonon frequency ωqλ is actually the bare phonon
frequency, ωqλ ≡ ω0

qλ. Using this self-energy and Eq. (8) we
can find the adiabatic

ω2
A = [

ω0
qλ

]2 + 2ω0
qλReπ0

λ (q,0) (A6)

and the nonadiabatic phonon frequency

ω2
NA = [

ω0
qλ

]2 + 2ω0
qλReπ0

λ (q,ωNA). (A7)

A slightly different approach would be to take the interac-
tion operator Anm acting on the ion wave functions given by
Eq. (A3) and express it also in the second quantization form.
Note that we are not considering the Bnm operator because it
does not affect the phonon spectrum at this level of perturbation
expansion [74,75]. To reach the second quantization form we
use the Bloch theorem, the off-diagonal Hellmann-Feynman
theorem [75,97],

〈ψμk|∇Rj
|ψμ′k′ 〉 = −

〈ψμk| ∂Vei

∂Qqλ
|ψμ′k′ 〉

εμk − εμ′k′
, (A8)

and the relation between the ion momentum operator and
the phonon creation and annihilation operators, ∇Rj

∝√
ωqλ(b−qλ − b

†
qλ). Finally, we have

V (b)
ep ≡ A =

∑
μμ′,kq,λ

−ωqλ

εμk − εμ′k+q
g

μ′μ
λ (q,k)

× c
†
μkcμ′k+q[b−qλ − b

†
qλ], (A9)

where ωqλ is already the adiabatic phonon frequency ex-
pressed with Eq. (A6), ωqλ ≡ ωA [75,76]. From the prefactor
ωqλ/(εμk − εμ′k+q) in Eq. (A9) it is clear that the operator A is
a purely nonadiabatic effect (i.e., when ωqλ � |εμk − εμ′k+q|
then A → 0). Equation (A9) is just the formal notation for
the operator A and we would like to emphasize here that the
diagrammatic expansion using this operator as the perturbation
Hamiltonian does not exist in the literature to our knowledge
[2]. Now we denote the (formal) phonon self-energy associated
with V (b)

ep as π̂0
λ (q,ω), and we express the phonon frequency

shift due to the nonadiabatic effects in this case as

ω2
NA = ω2

A + 2ωAReπ̂0
λ (q,ωNA). (A10)

Combining Eqs. (A6) and (A7) and comparing the result with
Eq. (A10) we get the relation between the real parts of the two
phonon self-energies above:

Reπ̂0
λ (q,ωNA) = ω0

qλ

ωA

[
Reπ0

λ (q,ωNA) − Reπ0
λ (q,0)

]
. (A11)

In conclusion, when the starting point is the bare phonon
frequency (ωqλ → ω0

qλ) it is appropriate to use the real part of
the bare phonon self-energy defined with Eq. (10), while when
starting with the adiabatic phonon frequency (ωqλ → ωA) the
real part of the bare phonon self-energy Eq. (17) should be
used.

APPENDIX B: POSSIBLE RTA FORM OF π̂ 0
λ

Since the usual starting point of the contemporary nona-
diabatic calculations is the phonon self-energy with adiabatic
phonon frequency and finite numerical broadening parameter
η > 0, it would be useful to have the RTA form of π̂0

λ obtained
with Eq. (17) where its imaginary part is equal to the imaginary
part of Eq. (10) in the RTA, i.e., Imπ̂0

λ (ω) = Imπ0
λ (ω). Since

the direct diagrammatic perturbation expansion of π̂0
λ has

not been developed to our knowledge, we take a different
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approach here. First we account for all the relevant electron
scattering processes (at least formally) in the phonon self-
energy �λ(ω) and then we subtract the adiabatic term in
the clean noninteracting limit π0

λ (0). In that way, we avoid
the direct perturbation expansion of π̂0

λ by constructing �̂λ a
posteriori. In Matsubara notation this reads

�̂λ(q,iνn) = �λ(q,iνn) − π0
λ (q,0)

=
∑

μμ′kσ

1

β

∑
iωn

[
g

μμ′
λ (k,q)

]∗
g̃

μμ′
λ (k,q)

× Gμ(k) − Gμ′(k + q)

iνn + εμk − εμ′k+q + ��μμ′(k,q)

−
∑

μμ′kσ

1

β

∑
iωn

∣∣gμμ′
λ (k,q)

∣∣2 G0
μ(k)−G0

μ′(k + q)

εμk − εμ′k+q
,

(B1)

where dependence on iωn and iνn is assumed in g̃λ, G, and
��. In the simplest RTA form (as described in Sec. II B),
Eq. (B1) can be expressed as

π̂
0,RTA
λ (q,ω) =

∑
μμ′kσ

∣∣gμμ′
λ (k,q)

∣∣2

×fμk − fμ′k+q

εμk − εμ′k+q

−(ω + i	)

ω + εμk − εμ′k+q + i	
,

(B2)

where the corresponding imaginary and real parts are

Imπ̂
0,RTA
λ (q,ω) =

∑
μμ′kσ

∣∣gμμ′
λ (k,q)

∣∣2
(fμk − fμ′k+q)

× −	

(ω + εμk − εμ′k+q)2 + 	2
(B3)

and

Reπ̂0,RTA
λ (q,ω) = −

∑
μμ′kσ

∣∣gμμ′
λ (k,q)

∣∣2 fμk − fμ′k+q

εμk − εμ′k+q

×ω(ω + εμk − εμ′k+q) − 	2

(ω + εμk − εμ′k+q)2 + 	2
. (B4)

We can see that the imaginary part of Eq. (B2) gives the same
result as the RTA form of Imπ0

λ (ω), while the real part gives
directly the nonadiabatic correction to the adiabatic phonon
frequency. The superscript RTA is used here to distinguish
Eq. (B2) from Eq. (23).

APPENDIX C: EQUATION OF MOTION
FOR THE TWO-PARTICLE PROPAGATOR

The analytically continued equation for the exact phonon
self-energy [Eq. (3)] can be expressed explicitly with the two-
particle propagator Gμμ′ in the following way:

�λ(q,ω) =
∑

μμ′kσ

[
g

μμ′
λ (k,q)

]∗
g

μμ′
λ (k1,q)

×Gμμ′(k,k+,k1,k1+,ω), (C1)

where k+ and k1+ stand for k + q and k1 + q, respectively.
Here we gather all the relevant vertex correction contributions
into Gμμ′ , while in Eq. (3) they are in one of the vertex
functions. Within the usual equation of motion approach for the
propagators, it is customary to start with the time-dependent
form of Gμμ′

Gμμ′(k,k+,k1,k1+,t)

= −iθ (t)
〈[
A

μμ′
kqσ (t),Bμμ′

k1qσ (0)
]〉

=
∫ ∞

−∞

dω

2π
eiωt−ηtGμμ′(k,k+,k1,k1+,ω), (C2)

where the Heisenberg operators are defined as

A
μμ′
kqσ (t) = c

†
μkσ (t)cμ′k+qσ (t) (C3)

and

B
μμ′
k1qσ (0) = c

†
μ′k1σ

(0)cμk1+qσ (0), (C4)

with c
†
μkσ (t) and cμkσ (t) being the electron creation and

annihilation operators, respectively. In our present analysis for
an electron-phonon system with impurities, the Hamiltonian
can be written as

H = He + Hp + Vep + Vimp, (C5)

where He and Hp are the usual adiabatic electron and phonon
Hamiltonians, Vep is the electron-phonon coupling given by
Eq. (A5), and

Vimp =
∑

μkk1σ

V (k − k1)c†μkσ cμk1σ (C6)

represents the quasielastic single-electron scattering processes
on the impurities, which are restricted to the intraband
contributions only. We can write now the equation of motion
as [49,98]

i
d

dt
Gμμ′(k,k+,k1,k1+,t)

= δ(t)δk,k1 (fμk − fμ′k+q)

− (εμk − εμ′k+q)Gμμ′(k,k+,k1,k1+,t)

− iθ (t)
〈[[

A
μμ′
kqσ (t),H ′],Bμμ′

k1qσ (0)
]〉
, (C7)

where H ′ = Vep + Vimp. In the present work we are mostly
interested in the long-wavelength part of the phonon self-
energy; thus q = 0 should be used throughout in Eq. (C7).
Furthermore, we restrict our consideration to the intraband
transitions (μ = μ′) for which the first and second terms are
zero and we neglect as well the Vep part in the last term (i.e., we
disregard the higher-order electron-phonon processes). After
performing the Fourier transform of Eq. (C7) we get

ωGμμ(k,k,k1,k1,ω)

= −i

∫ ∞

−∞
dte−iωt θ (t)

〈[[
A

μμ

kσ (t),Vimp
]
,B

μμ

k1σ
(0)

]〉
≡ 〈〈[

A
μμ

kσ ,Vimp
]
; Bμμ

k1σ

〉〉
ω
. (C8)

The next step is to use the equation of motion Eq. (C7) but
now for the propagator at the right-hand side of Eq. (C8). By
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doing this we can express Eq. (C8) as

ωGμμ(k,k,k1,k1,ω) = 1

ω

〈〈[
A

μμ

kσ ,Vimp
]
; Bμμ

k1σ

〉〉
− 1

ω

〈〈[
A

μμ

kσ ,Vimp
]
;
[
B

μμ

k1σ
,Vimp

]〉〉
ω
,

(C9)

where the second term on the right-hand side is the propagator
part of the force-force correlation function [49,55,61],

�μμ(k,k,k1,k1,ω) = 〈〈[
A

μμ

kσ ,Vimp
]
;
[
B

μμ

k1σ
,Vimp

]〉〉
ω
. (C10)

By taking the formal limit ω = 0 we can express the two-
particle propagator solely through the force-force correlation
function

Gμμ(k,k,k1,k1,ω)

= − 1

ω2
[�μμ(k,k,k1,k1,ω) − �μμ(k,k,k1,k1,0)].

(C11)

Finally, if we include Eq. (C11) into Eq. (C1) we get the
force-force correlation function approach for obtaining the
q ≈ 0 intraband phonon self-energy [Eq. (37)].

APPENDIX D: JDOS AND LORENTZIANS

We define the complex joint density of states (JDOS) for
the q ≈ 0 interband parts of functions Eq. (10) and Eq. (17)
using the function

�inter
ϕ (q ≈ 0,ω) =

∑
μ �=μ′,k

ϕ−1 fμk − fμ′k

ω + εμk − εμ′k + i	inter
,

(D1)

which for ϕ = ω is the JDOS related to Eq. (10), and for
ϕ = εμ′k − εμk ≡ �ε is the JDOS corresponding to Eq. (17).
Note that Eqs. (10) and (D1) have a similar functional
dependence on ω only if we consider that ω0λ → ω in the
matrix elements g

μμ′
λ of Eq. (10). The imaginary and real parts

of these JDOS functions for different damping energies 	inter

and number of Cu layers can qualitatively predict the behavior
of the phonon linewidths and frequency shifts as a function
of these parameters. It can also be seen what the difference
between the imaginary part of the self-energy with ϕ = ω and
with ϕ = εμ′k − εμk is. In Figs. 11(a) and 11(c) we see how the
imaginary part of the JDOS obtained for the CO stretch mode
increases when increasing the number of Cu layers (compare
with Fig. 9). The effect of different damping energies 	inter

on the imaginary part of the JDOS is shown in Figs. 11(b)
and 11(d). The overall difference between the JDOS obtained
with ϕ = ω (left panels in Fig. 11) and with ϕ = εμ′k − εμk
(right panels in Fig. 11) is that the latter gives smaller values
than the former for the same damping energies 	inter, which is
in agreement with the results presented in Fig 6. Additionally,
we show the results for the real part of the JDOS for different
number of Cu layers and temperatures in Figs. 12(a) and 12(b),
respectively. The result for different numbers of Cu layers is
in agreement with the result obtained in Fig. 10, where the
real part of the interband phonon self-energy does not change
drastically with the number of layers.

The differences and similarities between the methods used
in Fig. 6 can be further clarified by looking at the corresponding
Lorentzians:

(1) Lorentzian corresponding to Eq. (47)

L(1)
	inter

(�ε) = 1

|�ε|
	inter

�ε2 + 	2
inter

, (D2)

(2) Lorentzian corresponding to Eq. (48)

L(2)
	inter

(�ε) = 2	inter|�ε|[
�ε2 + 	2

inter

]2 , (D3)

(3) Lorentzian corresponding to the imaginary part of
Eq. (17)

L(3)
	inter

(�ε,ω0λ) = 1

|�ε|
	inter

(ω0λ − |�ε|)2 + 	2
inter

, (D4)

FIG. 11. Imaginary part of the JDOS Eq. (D1) with ϕ = ω as a function of ω for (a) different numbers of Cu layers with 	inter = 60 meV
and (b) different damping energies 	inter with six Cu layers. Panels (c) and (d) show the same quantities as (a) and (b), respectively, but with
ϕ = �ε. The dashed vertical lines represent the energy of the CO stretch mode.
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FIG. 12. Real part of the JDOS Eq. (D1) as a function of ω for (a) different number of Cu layers with T = 200 K and (b) different
temperatures with six Cu layers, where ϕ = �ε. Different types of Lorentzians as a function of excitation energy �ε for (c) 	inter = 30 meV
and (d) 	inter = 250 meV. The dashed vertical lines represent the energy of the CO stretch mode.

(4) Lorentzian corresponding to the imaginary part of
Eq. (10)

L(4)
	inter

(�ε,ω0λ) = 1

ω0λ

	inter

(ω0λ − |�ε|)2 + 	2
inter

. (D5)

Here we consider the energy difference �ε and damping
energy 	inter as free parameters, while the phonon frequency
ω0λ is the one for the CO stretch mode. It can be seen

that L(1)
	inter

≈ L(2)
	inter

and L(3)
	inter

≈ L(4)
	inter

for small values of

	inter [Fig. 12(c)], while L(1)
	inter

≈ L(3)
	inter

and L(2)
	inter

≈ L(4)
	inter

for
large values of 	inter [Fig. 12(d)]. The similar form of the
Lorentzians L(2)

	inter
and L(4)

	inter
for large 	inter is accidental and

for a different value of ω0λ they would be different. For values
	inter < 150 meV the difference between L(1,2)

	inter
(quasistatic

limits) and L(3,4)
	inter

is very pronounced (in the same way there is
a difference between the different γ inter

0λ curves for small 	inter

in Fig. 6).
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[60] I. Kupčić and S. Barišić, Phys. Rev. B 75, 094508 (2007).
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Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
[104] T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard,

and D. C. Langreth, Phys. Rev. B 76, 125112 (2007).

224306-19

https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1103/PhysRevB.26.636
https://doi.org/10.1103/PhysRevB.26.636
https://doi.org/10.1103/PhysRevB.26.636
https://doi.org/10.1103/PhysRevB.26.636
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.73.235116
https://doi.org/10.1103/PhysRevB.73.235116
https://doi.org/10.1103/PhysRevB.73.235116
https://doi.org/10.1103/PhysRevB.73.235116
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevLett.92.246401
https://doi.org/10.1103/PhysRevB.76.125112
https://doi.org/10.1103/PhysRevB.76.125112
https://doi.org/10.1103/PhysRevB.76.125112
https://doi.org/10.1103/PhysRevB.76.125112



