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The boson peak appears in all amorphous solids and is an excess of vibrational states at low frequencies
compared to the phonon spectrum of the corresponding crystal. Until recently, the consensus was that it originated
from “defects” in the glass. The nature of these defects is still under discussion, but the picture of regions with
locally disturbed short-range order and/or decreased elastic constants has gained some traction. Recently, a
different theory was proposed: The boson peak was attributed to the first van Hove singularity of crystal lattices
which is only smeared out by the disorder. This new viewpoint assumes that the van Hove singularity is simply
shifted by the decreased density of the amorphous state and is therefore not a glass-specific anomaly. In order
to resolve this issue, we use computer models of a four-component alloy, alternatively with chemical disorder
(high-entropy alloy), structural disorder, and reduced density. Comparison to a reference glass of the same
composition reveals that the boson peak consists of additional vibrational modes which can be induced solely by
structural disorder. While chemical disorder introduces fluctuations of the elastic constants, we find that those do
not lead to sufficient local softening to induce these modes. A boson peak due to a reduction of density could be
excluded for the present metallic system.
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I. INTRODUCTION

Amorphous materials show an excess contribution in the
terahertz region of the vibrational density of states (VDOS)
as compared to the corresponding crystal or the Debye model.
The origin of this so-called boson peak is still a matter of
ongoing discussion. Early explanations include scattering of
phonons at density fluctuations [1] and the soft potential model
[2–6]. The latter assumes an interaction of acoustic phonons
with quasilocalized modes arising from “defects” in the
disordered structure [7–9]. It was proposed that these defects
are loosely packed atoms [6,10–13] or resemble interstitialcies
[14,15]. An alternative explanation, where the boson peak is
considered to be a precursor of a dynamical instability, was
brought forward by Grigera et al. [16], while Schirmacher
and colleagues developed a theory where fluctuating force or
elastic constants give rise to the additional modes that make up
the boson peak [17–22]. This viewpoint is supported by studies
that connect the boson peak to “soft spots”, i.e., regions of
reduced short-range order, stiffness, and mechanical strength
[13,23–25]. For silicon-based glasses, similar findings exist
[26,27] and a relation between the bending rigidity of the
silicon tetrahedra, the shear modulus, and the boson peak has
been proposed [28].

In contrast to these theories, which describe the boson
peak as additional modes present only in glasses, Taraskin
et al. proposed that the boson peak is related to the first
van Hove singularity of the crystal, which is shifted to lower
frequencies by fluctuating force constants [29]. More recently,
work by Chumakov and colleagues received attention [30–34]:
Measurements on oxide glasses suggest that the boson peak
is simply a van Hove singularity that is shifted because of the
lower volume density of the glass compared to the crystal.
These authors criticize alternative models like Schirmacher’s
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as they do not explicitly treat the (pseudo-)Brillouin zone and
therefore do not include the necessary van Hove singularities
[33]. Furthermore, the argument is that disordered systems
are always less dense than ordered ones. That leads to a
lower transversal sound velocity, to a smaller size of the
(pseudo-)Brillouin zone, and in consequence to a shift to lower
frequencies, the result of which was interpreted as a boson peak
[33]. This would equally apply to soft spots, which are also
characterized by a lowered density.

A material class carrying all the ingredients of those models
arguing for a boson peak induced by fluctuations in the
elastic medium, while still being crystalline and similar in
density to the crystalline forms of the constituent elements,
are high-entropy alloys (HEAs). HEAs are metallic alloys
consisting of at least four elements with equal or near equal
molar fractions that are considered to be thermodynamically
stable phases because of their large configurational entropy
[35–37]. Single-phase HEAs are random solid solutions and as
such—from the point of view of lattice dynamics—they can be
thought of as a simple crystal lattice with randomly distributed
force constants. Therefore, they are a suitable model to discern
between the different proposed origins of the boson peak.
Experimentally, though, HEAs have been mostly studied with
respect to their mechanical and thermodynamic properties, but
not their vibrational properties. We use molecular dynamics
(MD) simulations on a CuNiCoFe alloy, since MD provides
direct access to vibrational properties and furthermore allows
for additional modifications of the HEA model: Elastic scaling
of the volume of the crystalline matrix, as well as the gradual
introduction of disorder are possible. For the introduction of
disorder, we follow the ideas of interstitialcy theory which
proposes that the melting of metals is comparable to the
introduction of increasing numbers of interstitial defects that
remain discernible even in the liquid and glassy states [38].
Using this tunable model, and by comparison with a metallic
glass of the same composition—quenched from the melt at
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high cooling rates—we can identify the origin of the boson
peak.

II. SIMULATION METHODS AND ANALYSIS

A. Preparation of CuNiCoFe high-entropy alloys and glasses

We use MD simulations on a CuNiCoFe alloy consisting of
N = 102816 atoms with an embedded atom method potential
by Zhou et al. [39]. This provides a realistic description of
the vibrational properties but does not contain electronic or
magnetic effects, which we can safely ignore in discussing
the boson peak. All simulations were performed with LAMMPS

[40]. In order to generate the initial HEA structure, we used a
hybrid Monte Carlo/MD method in the variance-constrained
semi-grand-canonical ensemble [41], which provides a sig-
nificant reduction of computation time needed to reach the
equilibrium chemical order. Here, we performed N/4 Monte
Carlo trial moves in between every 20 MD steps at 800 K. The
constraint on the variation of the elemental concentrations
allows one to study phase formation—even in miscibility
gaps—and simultaneously maintain an equimolar composition
[41]. Since element concentrations depend on the excess chem-
ical potentials �μi , the simulation needs a set of chemical
potential differences {�μi} as input. If a set {�μi} exists, such
that the system is still miscible in a random solid solution, the
resulting sample is a good model for a single-phase HEA.
To probe for the chemical potential differences, we disabled
the variance constraint and employed Gaussian processes
[42], a global optimization algorithm: We used {�μi} as
the parameters and minimized the deviation from equimolar
concentrations obtained by running simulations in the semi-
grand-canonical ensemble. This works because without the
variance constraint an immiscible system will reduce the
concentration of one or more elements, while a miscible system
will stay equimolar. We found a solution in which the system
is in fact miscible: The final chemical potential differences
relative to Cu are �μCu-Ni = 0.9 eV, �μCu-Co = 0.85 eV, and
�μCu-Fe = 0.7 eV.

We performed this investigation at 800 K because this
makes it easier to find a miscible alloy: The T S term due
to chemical disorder dominates the thermodynamics of the
system. This is a reasonable facsimile of the experimental
synthesis, which often starts from the melt. If this alloy, and
HEAs in general, are still miscible at lower temperatures—or
if they are simply kinetically trapped during quenching—is an
important unsolved question which lies beyond the scope of
this work.

In addition to the HEA sample, we also prepared a glass
sample of the same composition by quenching from the melt at
2000 K to 30 K with a cooling rate of 1013 K/s (the minimum
rate at which crystallization is still kinetically suppressed).

B. Calculation of the vibrational density of states

We measured the VDOS by recording the velocity auto-
correlation function during an MD run, the Fourier transform
of which is the density of states g(ν) [43]. All systems were
first equilibrated for 0.5 ns at 30 K and ambient pressure; the
velocity autocorrelation function was subsequently measured
at 30 K in the microcanonical ensemble. We use the average

of 100 autocorrelation functions to reduce the noise. To
differentiate the contributions of different structures in the
system, we also present data from partial VDOS calculations.
Here, we consider only the partial velocity autocorrelation
function of the atoms of interest to calculate the VDOS.
While one could argue that phonons are delocalized over the
whole system, computer simulations using similar schemes
[12] evidence the effectiveness of this method in the case of
the boson peak: Its modes seem to be localized enough to be
able to separate them out by spatial sampling of the VDOS.

Thermodynamic properties for the low-temperature
regime—such as the internal energy U and the heat capacity
C—were derived from the VDOS via the harmonic approxi-
mation [44]
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The Debye temperature � and frequency νD can then be
obtained from the zero-point energy via [44]

U0 = 9
8NkB� = 9

8NhνD. (3)

Given the condition of
∫ νD

0 gD(ν)dν = 1, one can obtain the
complete VDOS in the Debye model from νD.

C. Calculation of the shear modulus

In order to probe the local stiffness of our samples, we
calculated the 0 K stiffness tensor for every atom. This
was done using molecular statics simulations in which we
subsequently impose the stress components σxx, σyy, σzz,
σxy, σxz, and σyz. For this, the currently active component
σi was set to 50 MPa and all other components σj �=i were set
to zero. After static minimization, we calculate the resulting
per-atom strain tensors using the atomic strain calculation
in OVITO [45,46]. Using Hooke’s law in tensor form (Voigt
notation),

sij = εi

σj

, (4)

we obtain the compliance tensor s. The stiffness tensor c is
simply its inverse. It should be noted that this method for the
calculation of elastic constants per atom can fail in the case of
microscopic plastic events. We mostly avoid this by using a
low stress value, but for a small number of atoms the stiffness
may be unrealistically high or low. The results we present later
evidence that this method is reliable enough for the present
purpose.

While an amorphous system should have an isotropic
shear modulus, (partially) crystalline samples show a large
anisotropy. Earlier work by Derlet and colleagues [24] demon-
strated that the five eigenshear moduli obtained from a Kelvin
stiffness tensor [47] are appropriate to characterize the elastic
moduli of amorphous systems. The Voigt notation of the
stiffness tensor can easily be converted to the Kelvin notation
by the element-wise multiplication

cKelvin
ij = Aij c

Voigt
ij , (5)

224203-2



STRUCTURAL ORIGINS OF THE BOSON PEAK IN . . . PHYSICAL REVIEW B 94, 224203 (2016)
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We follow Derlet et al. in calculating the shear moduli by first
projecting out the volume changes [24]:

c′ = P TcKelvinP (7)

with
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The shear moduli are now the five eigenvalues of c′, which—in
an isotropic material—correspond to two times the usual shear
modulus definition. A softening of the lowest shear modulus
(G1) was connected to the boson peak modes [24], which is
why we chose this value as our characteristic elastic constant.

D. Structure analysis

Structures and lattice defects were analyzed using OVITO

[46] and the algorithms implemented therein. Crystalline
ordering and its absence was identified using common neigh-
bor analysis (CNA) with an adaptive cutoff [48,49]. Atomic
volumes were obtained by Voronoi tessellation [50–53].

III. RESULTS

A. Defect-free high-entropy alloys

In the first step, we consider a defect-free HEA at ambient
pressure. Figure 1(a) shows the VDOS g as a function of the
frequency ν, both for the HEA and the glass with the same
composition. A reduced depiction g(ν)/ν2 over ν is chosen
in which the density of states postulated by the Debye model
appears as a constant and any excess over it is easily visible.
Figure 1(b) contains the corresponding reduced heat capacities
C/T 3. All curves feature an excess contribution. However, in
the HEA the vibrational excess is located at around 4 THz,
while the boson peak in the glass appears at the usual frequency
of 1 THz.

Given recent theories that the boson peak is a density-
shifted van Hove singularity and not disorder related at all [30],
it pays to have a more detailed look at the density dependence
of the VDOS. Figure 2 contains an atomic volume histogram of
the HEA and the glass: Clearly, the HEA has a higher density.
In fact, the density of the HEA fluctuates between those of
elemental Ni and elemental Cu, a small and a large constituent
element of the HEA. Consequently, we first prepared a sample
with a similar density to the glass (HEA I). This was done by
a simple, uniform scaling of the lattice to reach the desired
density followed by constant-volume relaxation at 30 K.

FIG. 1. Vibrational spectrum and heat capacity of a high-entropy
alloy compared with a glass. (a) Reduced VDOS of the CuNiCoFe
high-entropy alloy and a glass with the same composition. A clear
boson peak can be detected only in the glass; the high-entropy
alloy simply exhibits a van Hove singularity at 4 THz. (b) The
corresponding heat capacities as a function of temperature T . An
excess between 30 and 50 K is visible for the high-entropy alloy,
which lies above the usual range for the boson peak of 10–20 K.

Recent computer simulations on Cu-Zr-based metallic glasses
demonstrate that only the atoms with the largest mean square
displacement—which make up 10% of all atoms—contribute
to the boson peak [12]. Assuming that those are the ones with
the highest atomic volume, we also prepared a sample which
covers atomic volumes among the highest in the glass (HEA
II). The resulting VDOS measurements in Fig. 3(a) reveal
that the glass VDOS is not reproduced even with a highly
strained HEA. While the boson peak is found (as usual) in the
1 THz region, the HEA peak only shifts to around 2 THz.
Additionally, if plotting the reduced VDOS as a function
of a reduced frequency ν ′ = ν/νD, where νD is the Debye
frequency, the HEA peaks fall more or less on top of each
other while the boson peak in the glass remains at lower ν ′
[Fig. 3(b)].
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FIG. 2. Atomic volume distribution at 30 K of the high-entropy
alloy compared with a glass of the same composition. The equilibrium
HEA (red) is denser than the glass (blue) and lies between the densities
of pure fcc nickel and copper—a small and a large constituent element
of the alloy (indicated on the x axis). The sample HEA I is deformed
elastically to obtain the same average density as the glass, while HEA
II was deformed elastically to obtain densities similar to the largest
glass atoms.

Thus, comparing the VDOS of various strained and un-
strained HEAs with a glass of the same composition does not
provide evidence for a relation of the boson peak to a shifted
van Hove singularity in our model alloy. Moreover, the data
suggests that the chemical disorder of an HEA is insufficient
to induce a boson peak. This does not exclude that lattices with
stronger chemical disorder would show a boson peak; indeed,
several theoretical investigations use fluctuations on a lattice to
obtain these vibrational modes (see, for example, Ref. [18]).
Such increased disorder—which would most likely have to
include elements with large size differences—is expected to
destabilize the simple fcc, bcc, or hcp lattices of random

FIG. 3. (a) Reduced VDOS of the glass compared with the three
high-entropy alloy samples of different densities. The color coding
matches that in Fig. 2. The inset (b) shows the same as a function
of the reduced frequency ν ′ = ν/νD. These plots indicate that the
van Hove singularity of the high-entropy alloys cannot be shifted by
varying the density to obtain a boson peak.

metallic solid solutions [37,54] and is therefore not realizable
in single-phase HEAs.

B. Introduction of disorder via interstitial defects

In the next step, we consider the influence of defects on
the vibrational spectrum since the boson peak was related to
the lattice dynamics of defects [8] or loosely packed atoms
[6,10,12] and subatomic voids [13] in the past. Interstitialcy
theory states that melting can be understood as the generation
of an increasing number of interstitials, and that, consequently,
glasses are also characterized by interstitial-like features [38].
Following this, we chose to randomly introduce interstitials
into the HEA while keeping the composition equimolar. After
the insertion of various concentrations of interstitials followed
by equilibration at 30 K and ambient pressure, we obtained
different structures: samples with 0.5% and 1% interstitials,
one sample in which most of the point defects collapsed
into stacking faults and dislocationlike defects, one sample
in which 72% of atoms where amorphous, and one sample
which collapsed completely into an amorphous structure with
small crystalline clusters of a few atoms. The defects were
identified using CNA [48,49] in OVITO [46].

This increasing disorder now indeed leads to a boson
peak as shown in Fig. 4(a), where the peak height rises
with the defect concentration. Contrary to other theoretical
investigations (for example, Ref. [20]), the rise of this peak is
not correlated with a shift of the boson peak towards lower
frequencies. Instead, its position is more or less constant
and even shifts to somewhat higher frequencies when the
lattice collapses. We split the VDOS into a partial vibrational
density of states (PDOS) for defective atoms surrounding
point defects and atoms inside stacking faults and amorphous
regions [Fig. 4(b)], and a PDOS for atoms on intact fcc
lattice sites [Fig. 4(c)]. The interstitials and surrounding atoms
already possess an almost full boson peak in the PDOS even
at small concentrations. The contribution to the total VDOS is
small only because the intact fcc lattice sites, which are in the
majority, do not participate in the low-frequency modes. The
frequency shift is even less pronounced in this plot. The fact
that the boson peak is mostly absent in the PDOS of the intact
lattice, especially at low defect concentrations, demonstrates
its localized nature. This also explains the frequency of the
boson peak modes: The only difference between the samples
is the amount of defective areas. The disorder inside these areas
is comparable and therefore the boson peak modes are located
at the same frequencies. The inset of Fig. 4(a) explains the
additional small frequency shift of the samples which were
at least partially amorphous: The features of the crystalline
VDOS smear out upon amorphization and the low-frequency
tail of the first crystalline peak overlaps with the boson peak,
leading to an apparent shift to higher frequencies.

At 0.5% of interstitials, a second peak slightly below 2 THz
appears. It stands to reason that the introduction of interstitials
leads to a compression of some neighboring atoms. While
a chemically ordered system would only exhibit compressed
atoms, the HEA locally rearranges and produces both atoms
with increased and reduced atomic volume. Such a density
difference could lead to a frequency shift between both types
of defective atoms, which would in turn lead to a splitting of
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FIG. 4. The effect of defects on the VDOS. (a) Total reduced
VDOS for samples with different amounts of defects. The inset shows
the nonreduced VDOS. The crystalline features stay visible but smear
out with increasing defect concentration. The boson peak arises with
the introduction of interstitials. (b) The partial VDOS of atoms with
defective order, identified by CNA. Low concentrations of interstitials
already lead to a significant boson peak signal. Still, the crystalline
features persist for the defect atoms. (c) The partial VDOS of atoms
on intact fcc lattice sites. The boson peak modes intrude at high
defect concentrations, but the shape of the crystalline VDOS persists
even for small fcc clusters. The curves for the HEA and the glass
always represent the total VDOS in every plot and are provided for
comparison.

FIG. 5. The origin of the split boson peak for the sample with
0.5% of interstitials: When pinning low-volume atoms (� < 10.5Å3)
which appear after the insertion of interstitials, the second peak
is suppressed. This suggests that the splitting is a density-related
frequency shift. The plots show the partial VDOS of only the defect
atoms.

the boson peak. We tested this by pinning high-density atoms
and recomputing the VDOS of the nonpinned defect atoms.
Figure 5 shows that this indeed switches off the 2 THz peak.
At higher defect concentrations the split disappears. As we
will discuss later in some more detail, the compressed atoms
disappear with increasing defect concentration, as they are
accommodated in the defective parts of the lattice.

The defect PDOS of the sample which contains both
interstitials and dislocations seems to be reduced again, which
indicates that the dislocation and stacking-fault defects do not
contribute to the boson peak, thereby reducing the combined
value.

Finally, the collapsed lattice has a VDOS similar to the
glass, except for a small shift to lower frequencies. This
can be explained by the fact that the collapsed glass did
not have time for structural relaxation. This relaxation would
reduce the density and consequently lead to a slight shift to
higher frequencies. In the samples with such a high number
of defects, the PDOS of the intact lattice sites also exhibit
low-frequency modes. This is because a large fraction of these
atoms has disordered neighbors, the vibrations of which also
affect the fcc-ordered atoms. Still, even small fcc clusters resist
a complete intrusion of the boson peak.

These results support the view that the boson peak is due
to localized defect-related modes. A shift of a van Hove
singularity can now be completely excluded as even the defect
atoms still retain the VDOS shape of the crystal, although
heavily smeared out. The boson peak arises as additional
modes around the interstitials.

C. Connection between defective structures and softening

While we excluded that the fluctuations of elastic constants
of the HEA are sufficient to induce a boson peak, it pays
to have another look at the shear moduli of the defective
samples. Following Derlet et al., we use the lowest of the
five Kelvin shear moduli, G1, which has been related to the
boson peak [24]. Two-dimensional (2D) histograms of the
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FIG. 6. Histograms of atomic volume and per-atom shear moduli: (a) defect-free HEA; (b) HEA with 0.5% interstitials; (c) HEA with
1% interstitials; (d) amorphous system. The upper row shows 2D histograms of both the shear moduli G1 and the atomic volumes � with
a logarithmic color scale, while the lower row contains only the histograms of the shear moduli divided into defective atoms and atoms on
intact fcc lattice sites. The horizontal and vertical lines in the upper row represent the average values. The gray areas in the lower row show
the distributions of the reference glass, as well as the defect-free HEA. The relative height of the distributions is not to scale in order to make
small amounts of defective or lattice atoms visible. The HEA in (a) shows a narrow distribution on both axes. (b)–(d) With increasing defect
concentration, regions with shear moduli below 25 GPa emerge. Those are due to the defect atoms, which have a shear modulus distribution
similar to a bulk glass. (b) At low interstitial concentrations, atoms with increased and decreased volume appear. The decreased volume is
obviously due to the insertion of interstitials, while the increased volume is unexpected. In fact, with increasing disorder in (c) and (d), the
“compressed” atoms disappear. The reason for this is that the interstitials in the HEA always lead to local rearrangements of the surrounding
atoms, which in turn leads to a distribution of atomic volumes. The more the sample is defective, the easier the compressed atoms can release
their stress and be accommodated in the disturbed lattice.

atomic volume � versus the per-atom shear modulus G1

are presented in Fig. 6. Although the HEA has fluctuations
in both, they are small compared to the defective samples.
Already at low interstitial concentrations, significant amounts
of atoms with moduli between 0 and 25 GPa appear. With
increasing defect density the atoms with low modulus become
more numerous. Thus, significant softening is needed for the
boson peak, if it in fact results from fluctuating moduli. One
can observe a general softening of the whole material with
rising interstitial concentration, which points to a generally
increasing instability of the material. This is to be expected
at such high defect concentrations. The amorphous system
is slightly softer than the quenched glass, which supports
our earlier argument that the quenched glass represents a
more relaxed state. Qualitatively, the two systems are similar.
Figure 6(b) also proves our earlier statement that atoms with
increased as well as reduced density occur. As we can see
in Figs. 6(c) and 6(d), the unfavorable high-density atoms
start disappearing because the systems with higher defect
concentrations can rearrange more easily. With them, the split
in the boson peak also disappears.

The remaining question is, if the defect-based boson peak
models are indeed as different as they initially appear to
be. Studies ascribe the boson peak to interstitialcies [14,15],

“liquidlike” regions [13,25], “rattling” atoms [11,12], and
of course fluctuating force constants [17–19,21,22]. So, in
addition to local shear moduli, we calculated the mean square
displacement (MSD) of the atoms at 30 K over a period of
100 ps. Shear modulus G1, structure as identified by CNA,
and MSD are shown in Fig. 7. The spatial correlation between
defect atoms, low shear modulus, and high MSD is apparent.
This is not surprising: The defects introduced into the lattice
are well known to soften the material [38]. Furthermore,
low moduli are of course connected with shallow potential
wells and therefore a high MSD. This suggests that softened
regions can be introduced by interstitials, and that these regions
resemble the “soft spots” discussed in the literature on metallic
glasses [13,25]. Thus, previous studies seem to observe the
same effect by measuring different quantities.

D. A boson peak without chemical disorder

This analysis again supports the view that the loss of
structural order is the key ingredient for obtaining the boson
peak. In order to supplement this picture, we went one step
further and removed the chemical disorder from the model
structure by studying a single-component glass. We repeated
the analysis presented in Fig. 1 for fcc and amorphous copper
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FIG. 7. Snapshots of samples with different defects, mapping the spatial distribution of shear modulus, disorder, and mean square
displacement. A correlation between low shear modulus (a), defects as identified by CNA (b), and high mean square displacement (c) is
apparent. The color scale in (c) is logarithmic to enhance the visibility of small displacements.

(a-Cu) quenched from the melt with 1014 K/s. As can be seen
in Fig. 8, the a-Cu sample also exhibits an excess of states at
low frequencies. This evidences that chemical disorder is not
only not a sufficient condition for the boson peak, but that it

FIG. 8. Comparison of the VDOS of fcc copper with amorphous
copper. A boson peak occurs even without chemical disorder. The
VDOS of crystalline copper resembles that of the HEA and is typical
for fcc metals. The peak around 3.5 THz is a van Hove singularity.

is not even a necessary one. Indeed, the shape of the VDOS
of fcc copper resembles that of the HEA. The excess states in
the HEA are simply due to a van Hove singularity. Contrary
to recent theories [30–34], this van Hove singularity is not the
same as a boson peak. As demonstrated above, (i) the van Hove
singularity does not shift to 1 THz when scaling the density
to values typical for the glass, and (ii) the crystalline features
of the VDOS also appear in the glass; heavily smeared out but
unshifted.

IV. CONCLUSION

All in all, the current work supports the conclusion that the
boson peak in alloys results from (quasi-)localized additional
modes. The vibrational modes of interstitial defects resemble
those of a glass and the atomic volumes around those defects
do not exceed the values in HEA II, a defect-free lattice with
reduced density. This excludes a simple density-related origin
of these additional modes in the system we considered, since
HEA II did not exhibit a boson peak. In fact, the resemblance
of the PDOS in Fig. 4(b) to the crystalline state excludes
a general shift of frequencies. This is also in accordance
with recent measurements and simulations of the boson peak
in deformed Cu-Zr and Pd-Ni-P glasses [55,56]. The boson
peak contribution inside the shear band was found to be
higher than in the undeformed material. While one could
argue that the density in the shear band is lowered [57,58],
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the boson peak does not shift very much on the frequency
or temperature axis. Together with the current results, and
the fact that we know that short-range order inside the shear
bands is disturbed [57,58], this data rather supports the defect
picture outlined above. The results presented here also confirm
what was suggested by Schirmacher and colleagues [22]:
Defect-based pictures of the boson peak origin can be united
with the fluctuating force-constant model, although our results
indicate that a significant localized softening is needed. The
“soft spot” picture of metallic glasses seems relevant here:
Regions of defective short-range order are connected with
lower stiffness and strength as well as with a high boson peak
signal [13,23–25]. Of course, atoms in these regions exhibit
high MSDs as was shown in previous studies [11,12]. This
suggests a relevance of the boson peak not only in the realm

of solid-state physics, but also for the mechanical properties
of metallic glasses.
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