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We perform ab initio molecular dynamics simulations to study structural and transport properties in liquid
Al1−xCux alloys, with copper composition x � 0.4, in relation to the applicability of the Stokes-Einstein (SE)
equation in these melts. To begin, we find that self-diffusion coefficients and viscosity are composition dependent,
while their temperature dependence follows an Arrhenius-type behavior, except for x = 0.4 at low temperature.
Then, we find that the applicability of the SE equation is also composition dependent, and its breakdown in the
liquid regime above the liquidus temperature can be related to different local ordering around each species. In
this case, we emphasize the difficulty of extracting effective atomic radii from interatomic distances found in
liquid phases, but we see a clear correlation between transport properties and local ordering described through
the structural entropy approximated by the two-body contribution. We use these findings to reformulate the
SE equation within the framework of Rosenfeld’s scaling law in terms of partial structural entropies, and we
demonstrate that the breakdown of the SE relation can be related to their temperature dependence. Finally, we
also use this framework to derive a simple relation between the ratio of the self-diffusivities of the components
and the ratio of their partial structural entropies.
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I. INTRODUCTION

Liquid phase dynamics plays a critical role in phase
transformations like crystal or glass formation, and controlling
such transformation pathways requires a comprehensive study
of diffusivity and viscosity as a function of temperature. In
particular, structural and transport properties of melts and
their interplay represent an important issue in condensed
matter physics and material science, not only regarding
fundamental aspects, but also for applications. They have a
strong impact on numerous academic studies on solidification,
for instance in dendritic growth, and they also play important
roles in the processing of commercial lightweight alloys,
such as aluminum-based alloys, for many applications in the
automotive and aeronautic industry. Therefore, the knowledge
of such properties prior to solidification is of high interest in
designing new workable alloys, and within this strategy, the
influence of the structural characteristics of the liquid phase
on transport properties that can be tuned by additional alloying
elements plays a prominent role.

The study of transport properties of liquids has been often
based on the Stokes-Einstein (SE) relation, which predicts that
the self-diffusion coefficient D is proportional to (T /η), where
η is the viscosity and T is the temperature. More specifically,
the SE relation can be written as Dη/kBT = 1/CπRSE, where
RSE is an effective radius of particles immersed in a viscous
fluid medium. The dimensionless constant C is taken as 6
in the original SE relation, while a value of 4, as used in the
present paper, is also reported, depending on the hydrodynamic
boundary conditions assumed. Quite remarkably, the SE
relation was found to work well for many monatomic liquids
[1] and molecular liquids [2], and its applicability in liquid
alloys is well accepted in common literature [3], although it is
not clear at all why this should be the case.

In fact, the breakdown of the SE relation in the deep
undercooling regime is even considered one of the hallmarks
of transport properties characterized by a strong decoupling of

diffusion from viscosity [4–6]. This decoupling is a significant
indication that different ways to measure relaxation times lead
to different answers and thus is a strong hint of the existence
of broad “distributions” of relaxation time scales [7]. This
leads to the existence of spatially heterogeneous dynamics
or dynamic heterogeneities (DHs) [3,7–10], an Arrhenius to
non-Arrhenius crossover of dynamics [3], or a change in the
diffusion mechanisms, such as jump diffusion [11] or the
self-hole filling mechanism [12]. The breakdown of the SE
relation might also give rise to a crossover toward a fractional
SE relation [13] that was associated with the development of a
medium-range order [14] or a change in the friction coefficient
for diffusion [15].

In the high-temperature liquid regime, the situation is more
controversial since the SE relation is taken for granted in
many experimental studies, although there is also evidence of
its breakdown [16]. More particularly, Brillo et al. [17] have
shown that the SE relation is valid in liquid Al80Cu20 above
1400 K, which is 400 K higher than its liquidus temperature.
Below 1400 K, the SE relation fails, giving rise to an effective
SE radius of the copper species that increases with decreasing
temperature and becomes greater than the known covalent
radius of copper atoms. A breakdown of the SE relation
also has been observed experimentally in Ni-Zr alloys [18]
characterized in that case by values of DNiη that are constant
with temperature. It has been pointed out that a match of
experimental values of diffusion and viscosity with the SE
relation in the vicinity of the melting temperature would lead
to an unrealistic SE radius for Ni. Using computer simulations,
we have recently shown that the SE relation fails for liquid
Al80Ni20 and Al80Cu20 alloys, while it is valid for Al80Zn20

alloys [3]. Han et al. [12] have also evidenced the high-
temperature breakdown of the SE relation in liquid Cu8Zr3.

Can the breakdown of the SE relation in the liquid regime be
considered like an intrinsic property of a melt, or does it occur
only in some alloying compositions in relation to local ordering
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effects? Are there other reasons, like the existence of dynamic
heterogeneities in the liquid phase? Intrinsic properties of
chemical species present in an alloy will impose specificity of
the chemical and topological short-range order. For instance,
we have shown that the degree of icosahedral short-range order
(ISRO) in a pure metallic liquid depends on the nature of the
metal [19]. Moreover, in liquid metallic alloys like Al-based
alloys, we have demonstrated that alloying effects lead to a
local chemical short-range order (CSRO) that may enhance or
disfavor ISRO [20]. This interplay between CSRO and ISRO
will influence transport properties as a function of composition
and temperature and eventually may cause a chemically
induced heterogeneity far above the liquidus temperature, as
was recently observed in a glass-forming melt [21].

To elucidate these questions, we propose to use ab initio
molecular dynamics (AIMD) simulations to study the compo-
sition and temperature dependence of structural and dynamic
properties of liquid Al1−xCux alloys, x � 0.4, as well as their
relationship through the SE relation. The choice of the Al-Cu
alloys on the Al-rich side is guided by the occurrence of an
appreciable degree of CSRO in the liquid phase [22] and the
existence of a broad temperature range of the liquid phase
from pure Al up to 0.4, as observed in the experimental phase
diagram. Moreover, experimental data for Cu diffusion co-
efficients are available, although relatively scarce [15,23,24],
while a relatively large number of viscosity measurements
have been reported by different investigators [25–31].

First, we find that self-diffusion coefficients and viscosity
are composition dependent, while their temperature depen-
dence follows an Arrhenius-type behavior, except for x = 0.4
below T = 1200 K. Then, from the study of the temperature
dependence of the ratio Dη/(kBT ), we point out a few
important observations: (i) We determine that the temperature
dependence of DCuη/(kBT ) depends on the Cu composition,
this effect being much less pronounced for DAlη/(kBT ). (ii)
We emphasize the difficulty of extracting effective atomic radii
corresponding to interatomic distances found in liquid phases.
(iii) We show a correlation between transport properties and
local ordering around each species through the pair excess
entropy, or the so-called structural entropy [32,33]. (iv) We
use these findings to reformulate the SE equation within the
framework of Rosenfeld’s scaling law in terms of the partial
structural entropies, and we demonstrate that the breakdown
of the SE relation in the liquid regime can be related to their
temperature dependence. (v) Finally, our approach allows
the derivation of a simple relation between the ratio of the
self-diffusivities of the components and the ratio of their
partial-pair excess entropies.

II. COMPUTATIONAL METHODS

A. Molecular dynamics simulations

AIMD simulations of liquid Al1−xCux alloys with x = 0.1,
0.2, 0.3, and 0.4 were carried out using the ab initio total energy
and molecular dynamics of the Vienna Ab initio Simulation
Package (VASP) [34]. All the dynamical simulations were
performed in the local density approximation [35] and using
projected augmented plane waves with a plane-wave cutoff of
270 eV. Newton’s equations of motion were integrated using

the Verlet algorithm in the velocity form with a time step of
1.5 fs within the constant number, volume, and temperature
(NVT) ensemble by means of a Nosé thermostat to control
temperature.

Some 256 atoms with the desirable composition are ar-
ranged in a cubic simulation box with standard periodic bound-
ary conditions. Only the � point is used to sample the Brillouin
zone. We have shown that such approximations reproduce the
transport properties of liquid aluminum correctly [36].

The liquid samples were first prepared at a temperature well
above the highest studied, namely 2500 K, for all compositions
by performing a run of 30 ps to reach thermal equilibrium. This
was followed by a cooling to the successively lower desired
temperatures for the given alloy at a rate of 3 × 1012 K/s.
For all Al-Cu alloys, we have considered five temperatures:
1000, 1200, 1400, 1600, and 1795 K. At each temperature,
the volume V of the simulation cell was chosen to reproduce
the experimental densities [37]. The pressures calculated in
the simulation cells do not exceed 0.9 GPa, with a typical
fluctuation of 1.2 GPa. Therefore, structural and dynamic
properties are not influenced by pressure effects. After an
equilibration of 30 ps at the studied temperature, the run
was continued for 80 ps to produce the physical quantities
described below. For pure liquid Al and Cu, we have used our
results from Ref. [19], which we have extended here for Al
in the temperature range between 1400 and 1700 K, using the
same simulation procedure.

B. Self-diffusion and viscosity

In the present paper, we determine self-diffusion coeffi-
cients and viscosity of liquid Al1−xCux alloys as follows: To
begin, self-diffusion coefficients are related to the individual
atom displacements through the mean square displacement
(MSD) for each chemical species i(i = Al, Cu),

R2
i (t) = 1

Ni

Ni∑
k=1

〈[rk(t + t0) − rk(t0)]2〉t0 . (1)

In Eq. (1), rk(t) is the position of atom k of species i at time
t , and angle brackets represent the average over time origin
t0. The self-diffusion coefficient Di is then computed from the
long time slope of R2

i (t),

Di = lim
t→∞

R2
i (t)

6t
. (2)

Di can be also calculated from the well-known Green-Kubo
time integral of function �i(t),

Di = 1

3

∫ ∞

0
�i(t)dt, (3)

with

�i(t) = 1

Ni

Ni∑
k=1

〈vk(t + t0) × vk(t0)〉t0 (4)

as the velocity autocorrelation function for species i obtained
from the velocity vk(t) of atom k of species i at time t .
Comparison of the numerical values of the self-diffusion
coefficients calculated from Eqs. (2) and (3) was done to check
the consistency of the simulations.
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The shear viscosity is computed by a direct method using
the transverse current-current correlation function CT (q,t), as
in our previous paper [36]. In brief, CT (q,t) is defined as

CT (q,t) = 1

N
〈J ∗

T (q,t)JT (q,t)〉, (5)

where JT (q,t) is the transverse current, which can be deter-
mined along the x direction as

JT (q,t) =
N∑

p=1

vp,x(t) exp[jqzp(t)], (6)

where the quantity vp,x(t) is the x component of the velocity of
atom p. Two formally identical expressions can be written for
y and z directions, from which the transverse current JT (q,t)
can be evaluated independently, giving rise to the same result.

The zero-limit Laplace transform C̃T (q,w = 0) gives rise
to the q-dependent shear viscosity

η(q) = ρkBT

mq2C̃T (q,w = 0)
, (7)

where kB and m correspond, respectively, to Boltzmann’s
constant and the weighted average atomic mass, and ρ is
the number density. The shear viscosity η is thus obtained
at the hydrodynamic limit of η(q); namely, at q = 0 the
simulated value of η(q) is extrapolated efficiently with the
function designed initially to represent the viscosity of a dense
hard-sphere system [38]

η(q) = η

1 + a2q2
. (8)

We have shown in our preceding papers [36,39] that this
procedure leads to reliable values of shear viscosity for metallic
liquids with an uncertainty on the order of 0.2 mPa s.

C. Identification of local ordering

To identify local ordering of Al1−xCux alloys, we
first compute their partial-pair correlation functions
gij (r)(i,j = Al, Cu) obtained from 1000 independent equili-
brated configurations. We refer the reader to Refs. [1] and [40]
for a detailed description of standard techniques to extract
them. The partial nearest neighbor coordination numbers are
then calculated by integrating the appropriate partial radial
distribution functions RDFij (r) = xj 4πρr2gij (r) (ρ being the
atomic density) up to the first minimum of the corresponding
gij (r). Note that we have also used these coordination numbers
to discuss the CSRO through the Warren parameter [20].

To go beyond the angular averaged properties obtained from
pair correlation functions and the coordination numbers, sev-
eral methods have been proposed. Among them, the common
neighbor analysis (CNA) [41] in which the local symmetry
is determined on smaller basic units, namely atomic pairs,
allowing us to discriminate between various local topologies,
like face-centered-cubic (fcc), hexagonal close-packed (hcp),
body-centered-cubic (bcc), and icosahedral, as well as more
complex polytetrahedral environments. We have already used
this approach to study local structural ordering in liquid Al-Ni
alloys [42,43] and to reveal the high degree of icosahedral
ordering. Results obtained in this paper are based on the same

approach, and we refer the reader to Ref. [44] for a detailed
description of the method.

III. RESULTS AND DISCUSSION

A. Dynamic properties of Al1−xCux alloys

In a first step, we consider the temperature and composition
dependence of self-diffusion coefficients, DAl and DCu. They
have been calculated either from MSD curves using Eq. (2) or
from the velocity autocorrelation functions using Eq. (3). For
all compositions and temperatures, both methods give a result

within an error bar of 0.03 Å
2
/ps, indicating that simulations

are well equilibrated. We report in Fig. 1(a) their evolution with
temperature for each composition, and we have also included
results for pure Al and Cu liquids. We observe that DCu in
alloys is higher than that of pure liquid Cu, the difference being

FIG. 1. (a) Calculated self-diffusion coefficients as a function
of inverse temperature for Al-Cu alloys from ab initio molecular
dynamics simulations for all compositions. Calculated values for
pure elements are also included. Dashed lines are Arrhenius fits to
AIMD results for alloys, as well as for pure elements Al and Cu are
included in the corresponding panels. For x = 0.4 the Arrhenius fits
are performed on the highest temperature. (b) Calculated viscosities
as a function of inverse temperature for Al-Cu alloys, as well as for
those of the pure elements.
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TABLE I. Activation energies for self-diffusion (ED) and viscosity (Eη) obtained from an Arrhenius fit of AIMD simulations as a function
of Cu composition and compared with values found in the literature.

Al-Cu ED(kJ/mol)Al ED(kJ/mol)Cu Eη(kJ/mol) ELit
D (kJ/mol)Al ELit

D (kJ/mol)Cu ELit
η (kJ/mol)

Al − 24.1 [19] 11.1 [19] − 26.4 [67,68] 10.9 [31]
Al90Cu10 − 24.8 − 25.4 11.9 − 19.0 [23,24] 15.3 [29]

12.8 [30]
16.0 [31]

Al80Cu20 − 25.2 − 25.8 12.8 − 25.2 [45] − 28.7 [50] 13.1 [30]
− 32.8 [17] 13.2 [31]
− 21.0 [23,24]

Al80Cu30 − 25.5 − 25.8 16.7 16.1 [30]
23.6 [31]

Al60Cu40 − 30.5 − 30.7 22.8 − 20.6 [45] − 19.7 [45]
Cu − 35.7 [19] 28.4 [19] − 32.5 [69] 23.53 [31]

larger for Al0.9Cu0.1. The opposite is found for DAl, which
is smaller than that of pure liquid Al, the difference being
larger for Al0.6Cu0.4. At the same time, the difference between
DAl and DCu becomes smaller and smaller with increasing Cu
composition.

Moreover, we determine that self-diffusion coefficients
follow an Arrhenius-type behavior in close agreement with
experimental [17,23,24] and theoretical [44,45] values for
DCu for x � 0.3. For x = 0.4, we detect a non-Arrhenian
behavior below 1200 K. Note that the tendency for an increased
non-Arrhenius behavior with increasing Cu content has been
reported by Dahlborg et al. [23,24]. Calculated activation
energies are displayed in Table I, as well as experimental
and other theoretical values. The calculated value at x =
0.4 is obtained using data corresponding to the Arrhenian
dependence of self-diffusion coefficients. We also establish
that our calculated values are in the range of the previously
reported values.

In Fig. 2(a), we display the evolution of DCu and DAl

as a function of composition for temperatures T = 1000,
1400, and 1795 K, and we also compare our data with
available experimental data [17,23,24]. We determine that the
composition dependence of DCu and DAl is more pronounced
at high temperature than at low temperature. We can mention
that the increase of DCu with increasing Al content is in
qualitative agreement with the experimental data of Dahlborg
et al. [24], and we note that our values of DCu at x = 0.2 are
in better agreement with data obtained by Brillo et al. [17].

All these results can be related to the occurrence of a
chemical short-range order (CSRO), as already discussed for
liquid Al-Ni alloys [40,41]. This relation will be discussed
further below.

In a second step, we have considered the temperature
and composition dependence of the viscosity obtained from
the long wavelength limit (q = 0) of the q-dependent vis-
cosity given by Eq. (7). As observed for the self-diffusion
coefficients, the temperature dependence of the viscosity
can be represented by an Arrhenius law in the investigated
temperature range for x � 0.3 [see Fig. 1(b)]. For x = 0.4,
we obtain a non-Arrhenian behavior below 1200 K. Calculated
activation energies are reported in Table I for comparison with
experimental values. They display a slight linear composition
dependence, in agreement with the experimental trend, but

the most amazing feature is that they differ strongly from the
activation energies found for self-diffusion coefficients.

The composition dependence of the viscosity has been
drawn in Fig. 2(b) for temperatures T = 1000, 1400, and
1795 K. At high temperatures, our AIMD results are in
close agreement with the experimental data [30,31]. At low
temperatures, namely at T = 1000 K, the agreement is still
acceptable, taking into account that the typical experimental
error bar is on the order of 10%.

As we dispose of diffusion coefficients and viscosities
calculated independently and in agreement with experimental
features, we come now to the investigation of the SE relation, in
which the ratio Diη/(kBT ) does not depend on temperature. In
order to test its validity for the investigated metals and alloys,
we plot this ratio as a function of temperature in Fig. 3.

For pure metals, the ratio Dη/(kBT ) is almost constant, and
we find that the effective radius of each metal RSE, is in close
agreement with the nearest neighbor distance of metal-metal
pairs obtained from experimental or computed pair correlation
functions [19,46], as shown in Table II. Then, based on the
validity of the SE relation, we can determine diffusivity from
viscosity or vice versa in pure metals using an effective particle
radius taken from the position of the first peak of the pair
correlation function.

For alloys with x = 0.1 and 0.2, we see that the ratio
DCuη/(kBT ) depends on temperature, while DAlη/(kBT ) is
roughly constant. Note that the temperature dependence of
DCuη/(kBT ) is more pronounced at x = 0.2. More specifi-
cally, we see at this composition that the SE relation breaks
down around 1300 K, more than 350 K above the experimental
liquidus temperature of these alloys. The breakdown is char-
acterized by an effective SE radius of the copper species, RCu,
which increases with decreasing temperature below 1300 K,
becoming larger than the effective radius of pure Cu, as
observed experimentally [17].

For x = 0.3, the ratio Diη/(kBT ) remains constant within
the investigated range of temperatures for the two elements,
but the resulting effective SE radii present unreliable values.
Indeed, we see from Fig. 4 that the effective SE radius of Cu
is larger than that of Al, as well as for other compositions. It is
opposite the behavior obtained for pure elements, and we will
see in the next paragraph that it is also in contradiction to the
structural analysis.
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FIG. 2. Composition evolution of calculated (a) Al and Cu
self-diffusion coefficients and (b) viscosities. AIMD results for
diffusion are compared with the most recent reliable experimental
data obtained by quasielastic neutron scattering [17,24]. AIMD
results for viscosities are compared with experiments taken from
Refs. [30] and [31].

FIG. 3. The ratio Diη/T as a function of temperature for Al-Cu
alloys. The corresponding ratio for pure elements Al and Cu are also
included.

TABLE II. Atomic diameters R corresponding to the positions of
the first maximum of the pair correlation function obtained from ab
initio molecular dynamics simulations. RSE corresponds to the atomic
diameter determined from the Stokes-Einstein relation (see text).

T (K) R (Å) RSE(Å)

Al 1000 2.73 2.84
1125 2.73 2.80
1250 2.73 2.82
1400 2.73 2.86
1500 2.73 2.85
1600 2.73 2.86
1700 2.73 2.88

Cu 1398 2.45 2.30
1600 2.45 2.32
1800 2.45 2.34
2000 2.45 2.34

For x = 0.4, we see that both ratios are roughly constant
only up to 1300 K and then increase below this temperature.
In this case, we suspect that the temperature dependence of
both ratios are related to the non-Arrhenian behavior of the
self-diffusion coefficients and viscosity.

Therefore, from Fig. 3, we conclude that the temperature
dependence of the ratio Diη/(kBT ) is composition dependent
in liquid Al1−xCux alloys. We also find that both RCu

SE and RAl
SE

display at low temperature a strong composition dependence
and that RCu

SE is always larger than RAl
SE within the investigated

composition range. This will be examined in more detail in
the following section. Finally, we suspect the non-Arrhenian
behavior of transport properties at x = 0.4 is the origin of the
breakdown of the SE relation in this composition.

FIG. 4. Total x-ray structure factor for composition x = 0.1,
x = 0.2, x = 0.3, and x = 0.4 at T = 1000 K and compared with
experimental curves, respectively, for x = 0.14 [48], x = 0.17 [47],
x = 0.3 [48], and x = 0.4 [45,48]. The experimental temperatures
of Ref. [48] are 50 K above the liquidus temperature, and that of
Ref. [47] is 1023 K. The curves for x = 0.3, x = 0.2, and x = 0.1
are shifted upward by an amount of 1, 2, and 3, respectively.
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FIG. 5. Partial-pair correlation functions for Al-Cu alloys at temperature T = 1400 K, for composition (a) x = 0.1, (b) x = 0.2, (c) x = 0.3,
and (d) x = 0.4.

B. Local ordering of Al1−xCux alloys

To go further into understanding the temperature and com-
position dependence of the transport properties of Al1−xCux

alloys, we proceed to the analysis of their local ordering
through (i) partial-pair correlation functions and (ii) the
common neighbor indexation to obtain a detailed 3D picture
of the topology surrounding each chemical species.

Before analyzing the partial-pair correlation functions, we
first display in Fig. 4 the corresponding total structure factors
for x-ray diffraction at T = 1000 K. They are compared with
existing experimental data in Refs. [45,47], and [48], and for
all compositions, good agreement guarantees the validity of
our simulations.

We show now partial-pair correlation functions, gAlAl(r),
gAlCu(r), and gCuCu(r) in Figs. 5(a)–5(d), respectively, for
x = 0.1, 0.2, 0.3, and 0.4. Our results indicate that changes
with temperature are small regarding amplitudes and peak
positions, whatever the composition. Therefore, we report our
results only for one temperature located in the middle of the
investigated range of each composition, namely 1400 K.

As the Cu concentration increases, the first peak of the
Al-Al partial decreases, and its position shifts slightly toward
larger distances, while that of the Cu-Cu partial increases, and
its position slightly moves toward smaller distances. In Fig. 6,
we report the position of the first peaks of these two partials as a
function of composition for comparison with the values of RAl

SE

and RCu
SE obtained at high and low temperature, i.e., 1795 and

1000 K, respectively. We can see that the relative position of
the first peaks of gAlAl(r) and gCuCu(r) is in contradiction with
the fact that the effective radius for Cu species is higher than

FIG. 6. Radii of the species as a function of copper composition
for temperature T = 1400 K determined from the partial-pair corre-
lation function. They are compared with the effective Stokes-Einstein
radii at temperatures T = 1000 K and T = 1795 K.
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FIG. 7. Warren-Cowley parameter as a function of copper compo-
sition for temperatures T = 1000 K, T = 1400 K, and T = 1795 K.

that of Al species, as obtained from Diη/(kBT ). Therefore,
we cannot use interatomic distances of liquid alloys from the
partial-pair correlation functions to determine effective radii
for both elements to be inserted in the SE relation. We also
mention that we cannot identify the effective SE radius of the
copper species to the position of the first peak of the Cu-Cu pair
correlation function to interpret the temperature dependence
of the ratio DCuη/(kBT ) for Al1−xCux alloys with x = 0.1,
0.2, and 0.4.

Another point is the amplitude of the first peak of gAlCu(r)
which is larger with respect to the two other partials,
whatever the composition. Such behavior indicates a hetero-
coordination in the alloy with preferred Al-Cu bonds, leading
to the occurrence of a CSRO. To determine the CSRO more
quantitatively, we use the Warren order parameter, i.e., αW =
1 − ZCuAl/xAl(xCuZAl − xAlZCu), where ZCuAl is the partial
coordination number, ZAl and ZCu are the total coordination
numbers around Al and Cu atoms, and xAl and xCu are the
partial concentrations of the corresponding species. Note that
coordination numbers describing the number of j -type atoms
around i-type atoms within the first nearest neighbor shell
are obtained by integrating computed partial-pair correlation
functions up to their first minima.

We report in Fig. 7 results obtained for the computed
values of α obtained for the different alloys as a function of
composition and for various temperatures. For all investigated
alloys, it takes negative values, which confirms quantitatively a
preference for hetero-atomic bonds. Note that CSRO increases
linearly with composition. We think this CSRO favors the
observed similarity of diffusion coefficients of the two species.

Coordination numbers can also be used directly as structural
indicators, in relation to the cage effect, which is the main
mechanism used to interpret the atomic diffusion in metallic
systems [49]. We show in Fig. 8 results as a function of
composition for the intermediate temperature T = 1400 K. For
Al atoms, we find that the total coordination number zAl varies
from 11.5 to 12.5, while the total coordination around Cu
atoms, zCu, varies from 9.2 to 10.2. From these data, we do not
find any correlation, since the difference between coordination

FIG. 8. Total and partial coordination numbers as a function of
copper composition for temperature T = 1400 K.

numbers of Al and Cu is roughly constant, while the two
species display closer and closer diffusivities with increasing
Cu composition. Therefore, we have to proceed to a more
detailed description of local ordering.

To obtain a deeper insight into the evolution of local
ordering as a function of the composition, we can use the
CNA [41], as already performed in liquid Al1−xNix alloys
[42,43]. In Fig. 9, we display the temperature evolution of the
main bonded pairs for Al1−xCux alloys, as well as for pure
liquid Al and Cu. The number of 15xx, namely the 1551,
1541, and 1431 bonded pairs, is a direct measure of the degree
of icosahedral ordering, including both perfect and distorted
icosahedral motifs, as already used in other theoretical studies
[50,51]. The number of the 142x(1422 + 1421) bonded pairs
is characteristic of close packed structures, while the 1311 and
the 1321 bonded pairs are related to disorderly structures.

For pure aluminum and copper, we first observe at high
temperatures that the CNA yields a different local ordering,
since the abundance of 15xx pairs is much more important (by
a factor two) in Cu than in Al, while we observe the opposite for
the 142x and 131x pairs. During cooling, the total fraction of
icosahedral-like motifs increases greatly, while the fraction of
disordered 13xx(1311 + 1321)-type pairs decreases for both
species. We note that during cooling, the fraction of 142x
bonded pairs also increases, but only slightly. It might be
reasonable to speculate that liquid Al and Cu display a more
important local ordering when decreasing the temperature
in their liquid phase, and the local ordering around each
species remains quite different. We observe the same trend
for Al1−xCux alloys upon cooling, but the most striking result
is the significant increase of icosahedral ordering around Al
atoms with increasing Cu content, even at high temperature,
while we observe a slight decrease of icosahedral ordering
around Cu atoms. As a consequence, local structures around
each species, as defined by CNA, become closer and closer
with increasing Cu content, mainly due to a favorable interplay
between ISRO and CSRO. Another consequence is that local
structures around Al and Cu atoms also display a similar
evolution as a function of temperature for x � 0.3. Note
that this trend can be also correlated with the composition
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FIG. 9. Abundances of pairs as a function of temperature for
Al-Cu alloys obtained from common neighbor analysis around Al
and Cu atoms: (a) 15xx(1551 + 1541 + 1431) bonded pairs, (b)
142x(1422 + 1421) bonded pairs, and (c) 13xx(1311 + 1321) bonded
pairs. Results for pure Al and Cu are included. The error bars are on
the order of 0.01.

dependence of DAl and DCu, since the difference between
DAl and DCu becomes smaller and smaller with increasing Cu

composition, as described above. The underlying mechanism
could be that icosahedral motifs are known to be the most
compact local structures and therefore correspond to the
most important cage effect [49]. As a consequence, the
backscattering regime is more pronounced for species that
display the highest ISRO, and their diffusivity is smaller. As
the degree of ISRO for Al and Cu species becomes closer
and closer, DAl and DCu follow the same trend. Note that
the correlation between ISRO and the viscosity of investigated
Al1−xCux alloys is also clear, in agreement with the discussion
in Ref. [52], stating that the more important the IRSO, the more
important the viscosity.

The same argument holds to describe the temperature
dependence of DAl and DCu (which is quite different for
low-Cu compositions), as well as the temperature evolution of
the degree of ISRO around Al and Cu species. It is particularly
true for x = 0.2, as seen from Fig. 1. Below 1400 K, we
observe decoupling of the diffusion of both species, here
referred to as chemically induced decoupling [21]. Such a
decoupling leads to the breakdown of the SE relation for
Cu, the minority element. To conclude our discussion, we
mention that other microscopic mechanisms are proposed in
the literature to explain this decoupling, like the model of local
configuration excitations in the atomic connectivity network
proposed by Egami and coworkers [53]. In these terms, Cu
atoms would form stronger temporary nearest neighbor bonds
compared with Al atoms. Such a behavior can be connected to
the preferential icosahedral symmetry around Cu atoms [54].
Another approach is based on the self-hole filling dynamics, as
proposed by Han et al. [12] to interpret the high-temperature
breakdown of the SE relation found in liquids Cu8Zr3 and
CuZr2. Within this scheme, the onset of the breakdown of
the SE relation corresponds also to a critical temperature
from which the viscosity of these liquids begins to deviate
from its higher temperature Arrhenius behavior. Because the
viscosity of liquid Al0.8Cu0.2 follows an Arrhenius behavior in
the investigated temperature range, it seems difficult to connect
our results with this approach.

C. Structural entropy and Rosenfeld’s scaling laws

In a recent contribution [43,55], we have revealed a strong
correlation between the composition dependence of the local
ordering of liquid Al1−xNix alloys and the partial structural
or pair excess entropy [32,33], which can be obtained for a
binary alloy in terms of the partial-pair correlation functions,

S2 = −2πρ

N∑
i,j=1

xixj

∫ ∞

0
{gij (r) ln[gij (r)] − [gij (r) − 1]}r2dr

=
2∑

i=1

xiS
i
2, (9)

ρ being the number density and the composition of species i.
In Fig. 10, we plot partial (Si

2) and total structural entropies
(S2) as a function of inverse temperature for Al1−xCux alloys.
We note a significant variation of S2 and Si

2 as a function of
composition for Al-Cu alloys, which is consistent with the
evolution of local ordering as discussed above. All quantities
display lower values with increasing Cu concentration when
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FIG. 10. Inverse temperature dependence of the structural en-
tropy for all Al-Cu alloys. The inset shows the inverse temperature
dependence of the total structural entropy for all Al-Cu alloys, as well
as that for pure Al and Cu liquids.

ISRO and CSRO also increase. We note also that partial excess
entropies SAl

2 and SCu
2 , display a quasi “near parallel” behavior

as a function of temperature for x = 0.3 and x = 0.4 but,
in this case, only for T � 1300 K, in close correspondence
with the similar temperature dependence of local ordering
found for these two compositions. To quantify the ability
of S2 to be used in a relationship with transport properties,
we plot self-diffusion coefficients and viscosity of each alloy
as a function of S2 in Fig. 11 within the investigated range
of temperatures. We can see that both the self-diffusivity
and viscosity show strong couplings to static structure via
S2. Therefore, the structural entropy computed from pair
correlation functions appears to act as a structural indicator
to measure the local ordering in liquid Al1−xCux alloys,
as well to provide good correlation with their transport
properties.

Whether structural entropy can be used to interpret the
temperature dependence of the ratio Diη/(kBT ) and the
breakdown of the Stokes-Einstein equation found in some
of these alloys is an important question, which merits
discussion.

To make a more quantitative link between structural entropy
and dynamic properties, we consider its relation to transport
properties via entropy-scaling laws [56,57]. More specifically,
we make use of the semiquantitative correlation proposed by
Rosenfeld [56]. To our best knowledge, Rosenfeld’s scheme is
the only one that treats the scaling laws for diffusion and
viscosity on the same footing, which is a prerequisite for
supporting our considerations. Rosenfeld asserts that a reduced
coefficient of self-diffusion D∗ and the reduced viscosity η∗
can be expressed as a function of Sex,

D∗ = D
ρ1/3

(kBT /m)1/2 = Aexp(αSex), (10)

η∗ = η
ρ−2/3

(mkBT )1/2 = B exp(−βSex), (11)

FIG. 11. Calculated self-diffusion coefficients of Al and Cu
species (a) and viscosities (b) as a function of total structural entropy
for all Al-Cu alloys and all temperatures in the semilog scale.

where ρ is the number density, and m is the atomic mass. A,
B, α, and β are property-specific constants equal to 0.6, 0.2,
0.8, and 0.8, respectively, for model fluids [56].

Many studies [57–65] in which Sex is most often replaced
by S2, have shown that these entropy-scaling laws provide a
quantitative connection between diffusivity and local structural
ordering, even for melts described by realistic many-body
potentials [59,60] or using ab initio calculations [19].

Here, we adopt a different strategy by using Eqs. (10) and
(11) and S2 to reformulate the SE equation. For a simple liquid,
we obtain:

Dη/(kBT ) ∼ ρ1/3 exp[(α − β)S2] (12)

The radius of the particle used in the familiar expression of
the SE relation, which is equal to kBT /CπηD, can be related
here to ρ; namely, R = 0.5ρ−1/3. Then, Eq. (12) indicates that
the SE relation holds only if the term exp((α − β)S2) does
not depend on temperature. As S2 varies with temperature, as
shown in Fig. 10 and in Ref. [60], α must be equal to β. Note
that this condition is satisfied in Rosenfeld’s assessment for
model fluids, as mentioned above.
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For a liquid alloy, we have to take into account that the
reduced viscosity is expressed as a function of S2, while the
diffusion coefficient of the i species depends only on Si

2. In
this case, the SE relation for each species i is given by:

Diη

kBT
∼ ρ1/3 exp

(
αiS

i
2 − βS2

)
. (13)

Equation (13) evidences that partial and total structural
entropies and their evolution as a function of temperature play
a key role in understanding the validity of the SE relation, in
addition to the αi and β parameters.

To check the assumptions used in Eqs. (10) and (11), we
first plot the reduced self-diffusion coefficient and reduced
viscosity as a function of the structural entropy for pure Al
and Cu liquids, as well as for Al1−xCux alloys in Figs. 12(a)
and 12(b), respectively. We can see that for both elements, we
obtain a similar slope for reduced self-diffusion and viscosity;
namely, α = β = 0.9 with an uncertainty of ±0.03. This value
corresponds to the slope of the dashed lines in Figs. 12(a) and
12(b). It is interesting to note that this value obtained for “real”

FIG. 12. Rosenfeld’s scaling law with the structural entropy for
liquid metals and alloys: (a) reduced diffusion D∗ as a function of the
partial two-body entropy S2. (b) Reduced viscosity η∗ as a function
of the two-body entropy S2.

liquids described by AIMD simulations is close to that used in
Rosenfeld’s original work for model fluids.

For Al1−xCux alloys, we find that reduced diffusivities of Al
of all investigated alloys, D∗

Al, display a slope of 0.9 similar
to that of pure metals, while it is also true for the reduced
diffusivity of Cu, D∗

Cu, at x = 0.1. For other compositions,
D∗

Cu presents a weaker slope, namely αCu = 0.85, which is,
however, not so far from 0.9. Finally, we observe that reduced
viscosities of all investigated alloys, except x = 0.4, display
the same slope as that found for pure metals, i.e., β = 0.9. For
x = 0.4, we notice that reduced viscosities depart from the
dashed line at low temperatures, namely below 1200 K. We
will turn back to this behavior later.

To test conclusions obtained from Eqs. (12) and (13), we
plot the quantity exp(αiS

i
2 − βS2) for Al1−xCux alloys as a

function of temperature in Figs. 13(a)–13(d). By comparing
with Fig. 4, we find that exp(αiS

i
2 − βS2) correlates pretty

well with the ratio Diη/(kBT ), except for DCuη/(kBT ) at x =
0.4. More specifically, the quantity exp(αiS

i
2 − βS2) describes

correctly the temperature dependence of the ratio Diη/(kBT )
and the hierarchy between the self-diffusion coefficients in all
investigated alloys with x = 0.1, 0.2, and 0.3; that is, self-
diffusions of Cu are found to be smaller than the self-diffusion
of Al in Al-Cu alloys.

For x = 0.4, we obtain also the correct hierarchy, but the
quantity exp(αCuS

Cu
2 − βS2) is not able to reproduce the tem-

perature dependence of DCuη/(kBT ). For this composition, we
suspect that the crossover from Arrhenius to non-Arrhenius
temperature evolution of diffusivity and viscosity starting
around 1300 K to be the origin of this failure. As this crossover
is often attributed to dynamic heterogeneities usually observed
in the supercooled regime, it is necessary to establish the
existence of DHs, or not, at a temperature located only 150 K
higher than the experimental liquidus temperature. The DH
can be quantified by means of the non-Gaussian parameter
[66] defined as

α2(t) = 3R4(t)/5[R2(t)]2 − 1, (14)

where R2(t) and R4(t) are, respectively, the mean square dis-
placement given by Eq. (1) and mean quadruple displacement.
Typically, α2(t) reaches a maximum value αmax

2 around 0.2
on the subpicosecond scale due to the anisotropy of atomic
motions in the ballistic regime. Then, a rapid decrease toward
zero, inversely proportional to time, is observed at long time
periods, which is an indication of a homogeneous diffusive
regime. Otherwise, an increase of the amplitude of αmax

2 above
0.2 is associated with an increasing degree of DH.

We have drawn the curves of α2(t) for x = 0.4 at temper-
atures T = 1000, 1400, and 1795 K, respectively, for Al and
Cu in Fig. 14. At high temperature, namely T = 1795 K, only
a weak maximum is observed, which is characteristic of a
homogeneous diffusion regime. As the temperature decreases
down to T = 1400 K, we observe only a small increase of αmax

2
with a position remaining on the subpicosecond time scale,
revealing only a small degree of DH. Homogeneous diffusion
is restored on a picosecond time scale. Below T = 1400 K and
up to 1000 K, we observe a rapid increase of αmax

2 , indicating a
pronounced degree of DH that grows and occurs later and later
with decreasing temperature. We notice that the amplitude of
αmax

2 becomes higher for Cu than for Al. Therefore DHs are
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FIG. 13. Quantity exp(αiS
i
2 − βS2) as a function of temperature for composition (a) x = 0.1, (b) x = 0.2, (c) x = 0.3, and (d) x = 0.4.

The corresponding insets display the quantity exp (αixj (Si
2 − S

j

2 )) as a function of temperature (see text).

at the origin of the breakdown of the SE equation for the
Al0.6Cu0.4 melt slightly above the liquidus temperature. Note
that a similar result was obtained for the Cu8Zr3 melt [12].

To go further in the predictive character of Eq. (13),
we state that the Rosenfeld scaling law holds reasonably
well for Al1−xCux alloys with αi = αj = α = β. In

FIG. 14. Non-Gaussian parameter of Al and Cu species as a func-
tion of time for composition x = 0.4 and for various temperatures.

this case, the quantity exp(αiS
i
2 − βS2) can be rewritten

like exp (α(Si
2 − S2)) or exp (αxj (Si

2 − S
j

2 )), where xj is the
composition of j species in the alloy. We point out that this
term does not vary with temperature only if Si

2 and S
j

2 display
the same temperature dependence. As a matter of fact, we
obtain from Fig. 11 that SAl

2 and SCu
2 display a “near parallel”

behavior only for x = 0.3 and for x = 0.4 up to 1300 K.
Below this temperature, we observe a change in the slope of
both partial structural entropies. Then we can conclude that
the “near parallel” character of partial structural entropies can
be used to predict, at least qualitatively, the constant behavior
of the ratio Diη/(kBT ) with temperature.

We also mention that the “nonparallel” temperature evo-
lution of partial structural entropies has a stronger impact
on Cu than on Al, because the impact of alloying effects on
local ordering is more important for the minority constituent,
namely for Cu at xCu = 0.1 and 0.2. This is also highlighted
in the quantity exp (αxj (Si

2 − S
j

2 )), in which the difference
(Si

2 − S
j

2 ) is multiplied either by xAl, equal to 0.9 or 0.8, to
determine the temperature dependence of DCuη/(kBT ) or by
xCu, equal to 0.1 or 0.2, for DAlη/(kBT ).

The last point concerns the hierarchy between the self-
diffusion coefficients in a given alloy. From Eq. (13), we
obtain the ratio Di/Dj as a function of exp(αiS

i
2 − αjS

j

2 ). As
discussed above, αi is roughly equal to αj and assuming that
α(Si

2 − S
j

2 ) is small, we can approximate Di/Dj by the ratio
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FIG. 15. Self-diffusion ratio Di/Dj of Al and Cu species as a
function of the partial entropy ratio S

j

2 /Si
2 for all compositions.

of partial excess entropies S
j

2 /Si
2. Indeed, Fig. 15 shows that

both quantities correlate very well. Our findings may help in
determining easily the full set of self-diffusion coefficients of
constituents in an alloy using macroscopic quantities readily
obtainable from standard experiments and simulations. The
peculiar case of Al-based alloys is mainly of interest, as
the accurate determination of self-diffusion coefficients of
elements like Al is an experimentally difficult task [67,68].

IV. CONCLUSION

In summary, we have used ab initio molecular dynamics
simulations to study structural and dynamic properties of liquid
Al1−xCux alloys.

First, we determine that self-diffusion coefficients and
viscosity of these liquids display a monotonous composition
dependence within the investigated concentration range, while
their temperature dependence follows an Arrhenius-type be-
havior, except for x = 0.4 at low temperatures.

Second, we evidence a strong evolution of local structural
ordering around each species as a function of composition,
characterized by an increase of interplay between CSRO
and ISRO that depends on composition and temperature.
On one side, we show that such a local ordering cannot be

captured by composition and temperature evolution of the
interatomic distances found in liquid phases. This can explain
the inability of the SE relation to describe the relationship
between diffusivity and viscosity using effective diameters of
Al and Cu atoms taken from them. On the other hand, we
demonstrate that the partial structural entropies for Al and Cu
atoms are indicators to establish a clear correlation between
local ordering and transport properties in liquid Al1−xCux

alloys.
All these findings lead us to propose an approach to

describe transport properties of metallic liquids using AIMD
simulations on the basis of Rosenfeld’s scaling law and
partial structural entropies. More specifically, we show that
the breakdown of the SE relation in the liquid regime can
be related to the “nonparallel” behavior of partial structural
entropies when transport properties display an Arrhenius-type
behavior. This “nonparallel” behavior can be related to the
nonsimilarity of local ordering around Al and Cu species at
low Cu composition. For x = 0.4, we obtain that dynamic
heterogeneities are at the origin of the breakdown of the SE
relation, even in the liquid phase, and are characterized by a
change in the slope of both partial structural entropies.

We also derive a simple relation between the ratio of
self-diffusivities of the two components and the ratio of their
corresponding pair partial structural entropies. In the peculiar
case of Al-based alloys, it is of primary interest because
the accurate determination of self-diffusion coefficients of
elements like Al is an experimentally difficult task.

We think that our findings will trigger more experimental
and theoretical studies, since structural entropies used in the
present paper to discuss the applicability of the SE equation are
easily obtained from standard experiments and simulations.
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