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The martensitic start temperature Ms is one of the key characteristics of shape memory materials. High-
temperature shape memory alloys are a special class of materials where transformation temperatures between
the martensite and austenite phase above 373 K are desirable. For the design of new high-temperature shape
memory alloys it is therefore important to understand and predict the dependence of Ms on the composition of
the material. Using density functional theory in combination with the quasiharmonic Debye model, we evaluate
the different contributions to the free energy to determine the transition temperature T0 over a wide range of
compositions in Ti-Ta alloys. Our approach provides physical insight into the various contributions that explain
the strong composition dependence of Ms that is observed experimentally. Based on our calculations, we identify
the relative phase stability at T = 0 K and the vibrational entropy difference between the involved phases as
critical parameters to predict changes in T0. We propose a simple, one-dimensional descriptor to estimate the
transition temperature that can be used in the identification of new alloys suitable for high-temperature shape
memory applications.
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I. INTRODUCTION

Due to a reversible martensitic transformation, shape
memory alloys (SMAs) exhibit unique functional properties
which can be used in sensors or actuators for automotive and
aerospace industrial applications and many more [1–3]. In
order to extend the applicability of SMAs to high temperatures,
a high martensitic transformation temperature Ms > 373 K is
required [1]. β-type Ti-base shape memory alloys such as
Ti-Mo, Ti-Nb, Ti-Ta, etc., are a class of materials that do
not only exhibit a high martensitic transformation temperature
[4–6], but also show excellent cold workability [7], which
makes them attractive as potential high-temperature SMAs
(HTSMAs). In Ti-base SMAs, the reversible martentsitic trans-
formation occurs between the cubic β phase (high-temperature
austenite) and the orthorhombic α′′ phase (low-temperature
martensite). These alloys are sensitive to aging at intermediate
temperatures (373–673 K), where the ω phase is formed
in either a hexagonal or a trigonal crystal structure [8,9].
The ω phase can cause embrittlement and destroy the shape
memory effect. The formation of the detrimental ω phase can
be suppressed by β-stabilizing elements such as Mo, Nb, or
Ta, where Ta was found to be most effective [2,10]. But the
increase in β stabilizing elements also decreases Ms. When
adding Ta, Ms decreases by 30 K at. %, for Nb Ms decreases by
40 K at. % [2,11]. Experimentally, Ti-32Ta has been confirmed
to exhibit a stable shape memory effect with high Ms and is
thus considered a suitable candidate for HTSMAs [2].

A detailed theoretical understanding of the composition
dependence of Ms in Ti-Ta alloys is to the best of our
knowledge still missing. Buenconsejo et al. performed exper-
iments with ternary alloys keeping the Ta content at 30 at. %,
where they again observed a decrease in Ms with an increase
in alloying elements, but could not identify any correlation
between Ms and the number of valence electrons per atom
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(e/a) [12]. Further parameters that have been discussed in
literature include the austenite elastic properties [13–19]. In
particular for Ni-Ti base SMAs these parameters have been
discussed in detail. As an example, Ren et al. explained the
composition dependence of the Ms in Ni-Ti alloys based on the
elastic constants showing that C ′ and C44 both increase with
the addition of Fe to Ni-Ti alloys [20], which improves the
dynamical stability but lowers Ms. Another study of ternary
and quaternary Ni-Ti alloys revealed that an increase in valence
electron concentration (cv) with additional alloying elements
causes higher elastic moduli which ultimately decreases Ms

[21]. Overall, these studies suggest that with a change in
composition the elastic moduli change which in turn influence
the Ms [22,23]. However, Frenzel et al. [24] showed in
their study that it is not the change in valence electrons
but the stabilization of the B2 phase by the formation of
Ni-antisite defects that is the key parameter for explaining the
concentration dependence of Ms in Ni-Ti binary alloys. For
Ti-Ta HTSMAs, the picture is less clear and the aim of this
study is to provide a more comprehensive understanding of the
composition dependence of the transformation temperature in
these alloys. In particular for the design of new alloys a simple
descriptive parameter to estimate the transition temperature
would be very useful.

Using density functional theory (DFT) calculations in com-
bination with the quasiharmonic Debye model, we determine
the free energies of the martensite and austenite phase in Ti-Ta
alloys as a function of composition. From the free-energy
differences we evaluate the transformation temperature T0.
The change in T0 as a function of composition is in excellent
agreement with experimentally measured values of Ms. From
the analysis of our calculations we identify the relative phase
stability at T = 0 K and the difference in the vibrational
entropy of the involved phases as the two key parameters
in predicting the composition dependence of T0. These two
parameters can be combined into a simple, one-dimensional
descriptor that provides a good prediction of T0 in these
alloys.
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The paper is organized as follows: In Sec. II, we summarize
the computational details. In Sec. III, a description of the
structure of the involved phases is given. Section IV comprises
the methodology that we use to compute the different contri-
butions to the free energy of the phases. We discuss our main
results in combination with available experimental findings in
Sec. V. We propose a new parameter in Sec. VI for the further
development of HTSMAs in particular in computationally
guided high-throughput research and summarize our findings
in Sec. VII.

II. COMPUTATIONAL DETAILS

Density functional theory (DFT) calculations were carried
out using the projector augmented wave (PAW) [25] method
as implemented in the Vienna ab initio simulation package
(VASP) [26–28]. The PAW potentials include 3p and 5p

electrons in the valence shell for Ti and Ta, respectively. The
Perdew-Burke-Ernzerhof parametrization of the generalized
gradient approximation was used for the exchange-correlation
functional (PBE-GGA) [29]. The calculations were performed
with an energy cutoff of 300 eV for the plane waves
and the Methfessel-Paxton scheme was used to integrate
the Brillouin zone (BZ) with a smearing of σ = 0.05 eV.
Within our computational setup total energies were converged
to within 4 meV/atom. Structures were relaxed until all
forces were below 10−3 eV/Å. Single-crystal elastic constants
were obtained from the stress-strain relationship using the
symmetry-general least-squares extraction method proposed
by Le Page and Saxe [30] as implemented in VASP. The
Monkhorst-Pack [31] scheme was used to distribute the k

points in the reciprocal space.

III. THE MARTENSITE AND AUSTENITE PHASE IN Ti-Ta

Within our study we consider five compositions of Ti-Ta
alloys, namely, Ti with 12.5%, 18.75%, 25%, 31.25%, and
37.5% Ta. For each composition we fully optimize the lattice
vectors and internal coordinates. To represent the chemical

FIG. 1. SQSs of the α′′ phase for different Ta content. Light blue
and gold atoms represent the Ti and Ta atoms, respectively.(a) Ti28Ta4;
(b) Ti26Ta6; (c) Ti24Ta8; (d) Ti22Ta10; (e) Ti20Ta12.

FIG. 2. SQSs of the β phase for different Ta content. Light blue
and gold atoms represent the Ti and Ta atoms, respectively. (a)
Ti14Ta2; (b) Ti13Ta3; (c) Ti12Ta4; (d) Ti11Ta5; (e) Ti10Ta6.

disorder in the Ti-Ta alloys, we use the special quasirandom
structure (SQS) method [32] as implemented in the modified
version [33,34] of the ATAT package [35].

The equilibrium lattice vectors of the orthorhombic α′′
phase (low-temperature martensite) were obtained by fitting
the energy versus volume curves with the Murnaghan equation
of state [36,37] where for each volume the b/a and c/a ratios
were optimized. The Wyckoff positions of the atoms in the
α′′ phase are given by (0,0,0), (1/2,1/2,0), (0,1 − 2y,1/2),
and (1/2,1/2 − 2y,1/2), with y ≈ 0.2. The y value was fully
relaxed for all structures. For all compositions, (2 × 2 × 2)
supercells containing 32 atoms were used with [7 × 6 × 6]
Monkhorst-Pack [31] k-point meshes. The values of the
correlation function for the corresponding SQSs were 0.0165,
0.0105, 0.0045, 0.0044, and 0.0045 for 12.5%, 18.75%, 25%,
31.25%, and 37.5% Ta, respectively. The SQS supercells of
the α′′ phase for different Ta contents are shown in Fig. 1.
The optimized lattice vectors are compiled in Table I. With
increasing Ta content, the volume/atom of the α′′ phase
increases which is consistent with previous theoretical and
experimental studies [38–43].

The β phase (high-temperature austenite) has a body-
centered-cubic (bcc) structure. For all compositions, we used
(2 × 2 × 2) supercells containing 16 atoms with [12 × 12 ×
12] Monkhorst-pack k-point meshes. Atomic positions were
fully relaxed. The lattice vectors of the β phase were opti-
mized by fitting the energy-volume curves with Murnaghan’s
equation of state. The correlation function values of the SQSs
in this case were 0.0722, 0.0439, 0.0236, 0.0121, and 0.008,
respectively. The supercells of the SQS of the β phase for
different Ta content are shown in Fig. 2. In Table I, the
optimized lattice constants of the β phase are compiled. We
find a similar trend of the volume/atom with composition
as in the α′′ phase, however, the absolute volume/atom
differs between the two phases at the same composition. The
composition dependence of the lattice constant of the β phase
is in good agreement with previous studies [38–43].
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TABLE I. Optimized lattice parameters a0, b0, and c0 (in Å), ratio of lattice parameters, and volume/atom �0 (in Å
3
) of the α′′ and β

phases for different Ta content.

Martensite (α′′) Austenite (β)

Composition a0 b0 c0 b0/a0 c0/a0 �0 a0 �0

Ti-12.5Ta 3.083 4.948 4.587 1.605 1.488 17.49 3.260 17.32
Ti-18.75Ta 3.232 4.861 4.463 1.504 1.381 17.53 3.263 17.37
Ti-25Ta 3.310 4.767 4.454 1.440 1.345 17.57 3.265 17.40
Ti-31.25Ta 3.333 4.750 4.452 1.425 1.335 17.62 3.270 17.48
Ti-37.5Ta 3.343 4.721 4.485 1.412 1.341 17.69 3.274 17.55

IV. FREE-ENERGY CONTRIBUTIONS

The martensitic transformation is a diffusionless first-order
transformation where it is assumed that the composition is
identical in the two phases. We therefore compare the free
energies of the martensite and austenite phases in Ti-Ta at the
same composition to obtain the transformation temperature. In
order to access the free energy at finite temperatures, we apply
an adiabatic approach to evaluate the different contributions
separately:

F (V,T ) = E(V ) + Fel(V,T ) − T Smix + Fvib(V,T ), (1)

where E(V ) is the T = 0 K total energy, Fel(V,T ) the
electronic contribution, Smix the configurational entropy, and
Fvib(V,T ) the vibrational contribution.

The 0-K total energies are directly obtained from our DFT
calculations. The electronic contribution to the free energy
Fel(V,T ) is extracted from the DFT calculations based on the
Fermi-Dirac smearing [44]. We apply an appropriate smearing
width σ to obtain the total energy for a particular temperature
T using σ = kBT . The total energy is then subtracted from
σ = 0 (i.e., T = 0) calculations to get the electronic entropy
at T .

The configurational entropy of a binary solid solution can
be approximated within the ideal mixing approach Smix =
−kB[x ln x + (1 − x) ln(1 − x)] where x is the fraction of one
of the components. Within this approach, the contribution to
the free energy is constant for a particular composition and
the configurational entropy term cancels out when calculating
free-energy differences between phases with the same chemi-
cal composition.

A commonly used approach to obtain the vibrational free
energy Fvib(V,T ) is based on the phonon density of states
(DOS) [45]. This is not applicable if the considered phase is
dynamically unstable at T = 0 K as reflected by imaginary
phonon frequencies. In this case, finite-temperature tech-
niques need to be considered including, e.g., self-consistent
ab initio lattice dynamics (SCAILD) [46] or molecular dynam-
ics (MD) simulations [47]. These approaches are computation-
ally very demanding, in particular for systems with low crystal
symmetry. In Ti-Ta alloys, the high-temperature austenite
phase is dynamically unstable for low Ta concentrations at
T = 0 K exhibiting imaginary phonon branches throughout
the entire Brillouin zone [43]. We have verified this for our
SQS supercells where these structures produce a large number
of displacements owing to their low crystal symmetry, making
phonon calculations computationally very expensive.

In this study, we use the quasiharmonic Debye model [48]
to calculate the vibrational free energy as implemented in
the GIBBS code [49]. The quasiharmonic Debye model has
been applied successfully to several systems [50–53] including
pure Ti [54,55], where the reported results compare well to
results from the other methods discussed above. Although the
free energies obtained within the Debye model might not be
highly accurate, we can obtain reliable trends as a function of
composition within this computationally efficient approach.
Within the Debye model [56], the vibrational free energy is
given by

Fvib[�D(V ),T ] = nkBT

[
9

8

�D(V )

T
+ 3 ln(1 − e−�D(V )/T )

−D[�D(V )/T ]

]
, (2)

where 9
8kB�D is the zero-point vibrational energy, kB is the

Boltzmann constant, V is the volume, T is the temperature,
and n is the number of atoms per formula unit. D(�D

T
) is the

Debye function given by

D(�D/T ) = 3

(
T

�D

)3 ∫ �D/T

0

x3

ex − 1
dx. (3)

�D is the Debye temperature which for an isotropic solid can
be calculated from

�D = �

kB
[6π2V 1/2n]1/3f (ν)

√
BS

M
, (4)

where � is the reduced Planck constant, M is the molecular
mass per unit formula, and BS is the adiabatic bulk modulus
which is assumed as static compressibility and further simpli-
fied in this model [49]

BS
∼= B(V ) = V

d2E(V )

dV 2
. (5)

The function f (ν) of the Poisson ratio ν is given by

f (ν) =
{

3

[
2

(
2

3

1 + ν

1 − 2ν

)3/2

+
(

1

3

1 + ν

1 − ν

)3/2]−1}1/3

. (6)

In the quasiharmonic Debye model, �D is a function of the
volume which changes with temperature. The approximation
to �D(V ) given in Eq. (4) was suggested by Slater [57], where
the calculation of transversal and longitudinal sound velocities
is replaced by elastic constants. It is thus important to obtain
reliable values of the elastic constants for the investigated
structures.
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FIG. 3. 0-K energy difference between austenite and martensite
as a function of Ta content. Blue squares represent the ordered
structures taken from our previous work [43], red circles represent
the disordered SQSs used in this work.

Although we find in our previous work [43] that the
austenite structures exhibit imaginary phonon frequencies, the
calculated elastic constants in this study still fulfill the elastic
stability criteria [58] and all eigenvalues of the elastic tensor
matrix are positive, which allows us to obtain a reasonable
estimate of the Poisson ratio ν. The imaginary phonon fre-
quencies belong to both optical and short-wavelength acoustic
branches, whereas the elastic constants originate from the
long-wavelength acoustic phonon branches, and we do not
observe any imaginary acoustic branches near the 
 point in
the phonon DOS. We also obtain a good description of the
mechanical compressibility BS .

To calculate the Poisson ratio ν for the anisotropic Ti-Ta
alloys, we use the average bulk and shear modulus of the Voigt
and Reuss bounds for polycrystalline materials [59–61]

ν = 3B − 2G

2(3B + G)
, (7)

where B and G are the average bulk and shear modulus

B = 1
2 (BV + BR) (8)

and

G = 1
2 (GV + GR), (9)

and BV , BR , GV , and GR are the bulk and shear modulus
from the Voigt and Reuss equations, respectively. The relation
between the bulk and shear modulus and the elastic constants
is discussed in Appendix A.

V. COMPOSITION-DEPENDENT TRANSFORMATION
TEMPERATURE

A. Total-energy difference

The first contribution to the free energy in Eq. (1) is the
total energy. As we are interested in the free-energy differences
between the austenite (β) and martensite (α′′) phases, we show
in Fig. 3 the 0-K total-energy difference �E = E(β) − E(α′′)
as a function of Ta content. The positive-energy difference

implies that the martensite is energetically more favorable than
the austenite within the studied composition range. The energy
difference decreases with increasing Ta content. The linear fit
of the data points yields a slope of ∼ − 2 meV/atom at. %
which translates to ∼24 K at. % Ta.

We also compare the results from the SQS supercells
with our previous study (blue squares in Fig. 3) where we
considered chemically ordered structures [43]. There is no
significant difference between the results from the chemically
ordered and disordered structures which is due to the small
ordering energy in Ti-Ta alloys. The linear dependence of
the energy difference on the composition can be rationalized
within a simple d-band model [62] where with the increase
in Ta content the number of electrons in the Ti-Ta alloy
increases, which in turn stabilizes the bcc structure of the
β phase (austenite). Thus, the filling of the d band leads to a
gradual change in relative phase stability. The calculated phase
stability at 0 K between the martensite and the austenite is in
good agreement with experimental findings [41,42].

The behavior of the relative phase stabilities in Ti-Ta
alloys differs significantly from Ni-Ti based SMAs. The main
difference occurs due to their structural arrangements. Ti-Ta is
a disordered alloy whereas Ni-Ti exhibits an ordered structure.
In the ordered Ni-Ti phases, the formation energy difference
is strongly influenced by the local relaxations around antisite
defects [24]. The energy difference between the B2 (austenite)
and B19′ (martensite) phases remains roughly constant up to
an equiatomic composition, then a sharp drop in the energy
difference is observed which is a consequence of stabilization
of the B2 phase by the structural relaxations around Ni antisite
atoms.

B. Vibrational free energy

The Debye temperature depends mainly on the Poisson’s
ratio ν and thus a reliable estimate of ν is necessary for a
good description of the vibrational entropy contribution. Since
the Voigt and Reuss approximations are based on uniform
strain and stress, respectively, applied on an aggregate, any
measured moduli should lie between these limits. The upper
and lower limits of ν for α′′ and β as a function composition
are compiled in Table II. At low Ta content, the upper and
lower bounds of ν differ significantly for both phases. This is
clearly a consequence of the highly anisotropic nature of the
phases at low Ta content. With increasing Ta concentration, the
difference between the upper and lower limits of ν decreases
for both phases, indicating a decrease in anisotropy. The
variation of ν as a function of composition is shown in Fig. 4.
The black and red symbols indicate the Poisson ratio of the
martensite and austenite, respectively. The ν values of the two
phases show a different dependence on the composition: for
the martensite ν initially decreases, reaches a minimum value
at 25% Ta, and then increases with further addition of Ta.
For the austenite ν monotonically decreases over the entire
composition range.

The behavior of ν as a function composition is inverse to
the corresponding Debye temperature compiled in Table II. In
Fig. 5, we plot the Debye temperature (�D) of both phases and
their difference (��) at 0 K as a function of composition. Both
phases have a similar �D at low and high Ta concentrations
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TABLE II. Calculated Voigt (νV ), Reuss (νR), and the average Poisson’s ratio (νH ) of the martensite and austenite as a function of
composition. The corresponding Debye temperature (�D) is also shown.

Martensite (α′′) Austenite (β)

Composition νV νR νH �D νV νR νH �D

Ti-12.5Ta 0.380 0.478 0.429 224 0.399 0.497 0.448 189
Ti-18.75Ta 0.352 0.417 0.384 271 0.397 0.457 0.427 215
Ti-25Ta 0.341 0.372 0.356 291 0.393 0.438 0.415 224
Ti-31.25Ta 0.342 0.365 0.353 284 0.386 0.414 0.400 240
Ti-37.5Ta 0.349 0.366 0.357 273 0.384 0.404 0.394 241

but with increasing Ta content �D of the austenite increases
approximately linearly over the entire composition range,
whereas for the martensite it reaches a maximum at 25% Ta and
then starts to decrease again. The strong correlation between ν

and �D indicates that the Poisson ratio is central to the Debye
temperature which in turn determines the vibrational entropy
of the two phases.

C. Free-energy calculations

In Fig. 6, we show the free-energy difference �F =
Fβ − Fα′′ for five different compositions. For �F > 0 the α′′
phase (martensite) is more stable and for �F < 0 the β phase
(austenite). At low temperatures, the martensite is the stable
phase for all compositions and the transition temperature T0

is extracted from �F = 0. The red lines in Fig. 6 describe
the total free-energy difference (�F ), black lines indicate the
difference in vibrational free energy (�Fvib), and the green
lines depict the difference in electronic free energy (�Fel)
between austenite and martensite. The value of �Fvib at
T = 0 K has a minimum at about 25% and also the slope
of the �Fvib curves is different for the five compositions.
This is mainly due to the difference in the Debye temperature
between the phases (��) which has a maximum at 25% Ta
content as discussed in Sec. V B. The difference in the elec-
tronic free-energy contribution �Fel does not change much
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ν Η
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Martensite (α")

10 15 20 25 30 35 40
Ta content (at%)
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ν H
(β

 -
 α

")

FIG. 4. 0-K Poisson’s ratio of the martensite (black) and the
austenite (red) as a function of Ta content (upper panel) and their
difference (lower panel).

with composition. As the overall difference increases with
increasing temperature the electronic contribution changes T0

significantly for large transition temperatures. For 12.5% Ta
content, T0 is overestimated by ∼170 K (∼ 15%) if �Fel is
not taken into account. For 25% Ta, on the other hand, �Fel

changes T0 only by ∼30 K (∼ 6%). The total free-energy
difference �F at T = 0 K decreases more quickly up to 25%
Ta and continues to decrease relatively slowly for higher Ta
concentrations. The transition temperature T0 decreases with
the addition of Ta over the entire composition range which is
in agreement with experimental findings [2].

In Fig. 7, the predicted transition temperatures T0 (blue
squares) are compared to experimentally measured values
of Ms (red circles) [63]. With increasing Ta content, the
calculated T0 values initially decrease linearly, showing a
strong composition dependence. The effect of additional Ta
alloying becomes weaker for higher concentrations and T0

seems to become almost independent of the composition.
Within a composition range of 17% � Ta � 32% the absolute
values as well as the trend in T0 compare very well to
the experimentally measured Ms. For high and low Ta
concentrations there are, however, some deviations. There
are several possible reasons for the observed discrepancies,
including the limitations of the Debye model, an accurate
description of the two phases within the employed supercells,
as well as the occurrence of mixed phases in the experiments.
At very low Ta content (12.5%), it is unlikely to observe a
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FIG. 5. 0-K Debye temperature of the martensite (black) and the
austenite (red) (upper panel) and difference (lower panel).
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FIG. 6. Calculated free-energy difference between austenite and
martensite as a function of alloying element. The red, black, and
the green lines indicate the difference of total, vibrational, and the
electronic free energies between the phases, respectively.

stable martensitic transformation as the detrimental ω phase
is likely to form [43]. Also, the Debye temperatures of the
two phases are very similar at this composition which together
with a large total energy-difference at T = 0 K leads to a
very high transformation temperature. At high concentrations
of 36% and 40% Ta, a mixture of the α′′ and β phases was
observed experimentally [2], whereas within our calculations
we consider single-phase materials. A direct comparison of
the measured Ms with the calculated T0 might therefore not
be applicable for these compositions. In addition, we assume
both phases to be at least metastable at T = 0 K for all
compositions. Despite the discussed deviations between the
experimental and theoretical results, the overall agreement
in the trend as well as the absolute values of T0 and Ms as
shown in Fig. 7 is remarkable considering the approximations
underlying our approach.
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FIG. 7. Calculated transition temperatures between austenite and
martensite (blue squares) and compared with experiments [63] (red
circles). The open squares and the error bars represent the mean value
and standard deviation over 100 calculations by randomly varying the
elastic constants of one phase by ±10% and the difference in elastic
constants between the two phases by ±3%.

The largest uncertainty in the transition temperature arises
due to the inaccuracy in the calculation of elastic constants.
To estimate the corresponding error in T0 we have randomly
varied the elastic constants of one phase within an interval
of ±10% and the difference in elastic constants between the
two phases by ±3%. For each composition, 100 transition
temperatures were calculated within the interval including
also the electronic entropy contributions. The mean values and
corresponding standard deviation are shown as open squares
and error bars in Fig. 7.

In the upper x axis of Fig. 7 we also show the number
of valence electrons per atom (e/a) at each composition. As
the e/a ratio increases linearly with increasing Ta content,
T0 decreases with increasing valence electron number. This
analysis is again different from the binary Ni-Ti system where
instead of the e/a ratio the structural stabilization of the
austenite determines the composition dependence of Ms [24].

Similar ab initio approaches have recently been applied to
determine the phase stability in binary Ti-Ta alloys including
a phase diagram [64,65]. Huang et al. [64] compared the
calculated phase boundaries with experimental Ms [2] and
found a much worse agreement with experiment than we
observe in Fig. 7. The reason for this is that they only
considered the transition between the β and α/ω phases,
whereas the martensitic transformation in Ti-Ta HTSMAs is
between the β and α′′ phases as discussed in this work.

VI. A SIMPLE APPROXIMATION TO Ms

The total-energy difference �E and the difference in
vibrational free energy �Fvib are the main contributions to
�F . To simplify, we therefore approximate the total free-
energy difference between the phases as

�F ≈ �E + �Fvib = [Eβ − Eα′′ ]

+ [Fvib
(
�

β

D

) − Fvib
(
�α′′

D

)
], (10)

where Eβ and Eα′′ are the T = 0 K total energies and �β

and �α′′ are the Debye temperatures of the austenite (β)
and martensite (α′′), respectively. We have evaluated Eq. (10)
analytically within the harmonic approximation for different
values of �E and �� = �β − �α′′ and determined T0 from
�F = 0. The corresponding plot of T0 as a function of �E and
�� is shown in Fig. 8. The red line in Fig. 8 indicates a value
of T0 = 373 K above which ideal candidates for HTSMA can
be found, i.e., the contour plot can be used as a map to quickly
evaluate transition temperatures of alloys. Since the α′′ phase
is stable at low temperatures and the β phase needs to become
stable at high temperatures, we require �E > 0 and �� < 0
to observe a crossing of the free-energy curves. Figure 8 shows
that T0 is proportional to �E and 1/��, i.e., T0 increases as
the difference in E increases and the difference in � decreases
between the two phases, respectively.

It is straightforward to show that in the high-temperature
limit a linear dependence of T0 on �E and 1/�� is obtained:

T0 ∝ −�E

��
= U

�D
. (11)

A derivation of this relationship is given in Appendix B.

224104-6



UNRAVELING THE COMPOSITION DEPENDENCE OF THE . . . PHYSICAL REVIEW B 94, 224104 (2016)

FIG. 8. Transition temperature T0 as a function of �E and ��.

In Fig. 9, the values extracted from Fig. 8 are shown in
a one-dimensional plot. The black circles in Fig. 9 are the
average values of the slope from the �E versus �� curve for
a particular temperature. The error bars represent the deviation
of T0 from a perfect linear behavior. The error bars increase
with increasing of T0, implying that the simple harmonic
approximation strictly only holds for low temperatures. The
red circles in Fig. 9 are the values of T0 taken from Fig. 7
which are calculated within the quasiharmonic approximation,
i.e., �� depends on the volume and therefore on T . It can
be seen that our simple analytic model works well for low
temperatures, but for higher values of T0 there are larger
deviations. This is due to the fact that at higher temperatures
the electronic contributions play a more significant role as well
as quasiharmonic effects. It follows from Eq. (11) that the
larger �E and the smaller �� the larger is T0 and vice versa,
which again nicely explains our results shown in Fig. 7. In
Ti-Ta alloys, �E decreases (Fig. 3) and �� increases (Fig. 5)
for low Ta concentrations and therefore T0 strongly decreases.
For higher concentrations, however, starting from 25% Ta both
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Θ

) 
x1

0-4
 (

eV
/K

)
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Quasi-harmonic Debye

FIG. 9. Parameter �E/�� as a function of transition tempera-
ture T0 for harmonic and quasiharmonic Debye models.

�E and �� decrease in a similar fashion, so that T0 is almost
constant.

Overall, the agreement of our simple model with the ex-
perimentally observed composition dependence of martensitic
transformation temperatures is remarkable. We conclude that
the total-energy difference as well as the difference in elastic
properties (and thus in the Debye temperature) are indeed
the two critical parameters that control the transformation
temperature in this alloy system. The ratio �E/�� can
therefore serve as a simple, one-dimensional descriptor to
estimate T0 (and therefore Ms), e.g., in high-throughput
screening of ternary or multicomponent alloys for the further
development of HTSMAs. To obtain an alloy with a high
transformation temperature, there should be a large difference
in the phase stability between the martensite and austenite at
T = 0 K, and the difference in the Debye temperature via the
elastic properties between the two phases should be as small
as possible.

VII. CONCLUSION

We have used DFT calculations in combination with the
quasiharmonic Debye model to unravel the strong composition
dependence of the martensitic start temperature Ms in Ti-Ta
high-temperature shape memory alloys. Within this special
class of materials systems we find that there are two physical
key parameters that determine the transformation temperature:
(a) the relative phase stability of the martensite and austenite at
T = 0 K and (b) the difference in the elastic properties of the
two phases that directly influence the vibrational contribution
to the free energy. From the analysis of our computational
results, we identify a simple, one-dimensional descriptor that
may be used to estimate Ms in high-throughput screening of
ternary or multicomponent alloys for a computationally guided
development of high-temperature shape memory alloys.
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APPENDIX A: RELATIONSHIP BETWEEN
SINGLE-CRYSTAL ELASTIC CONSTANTS AND

POLYCRYSTALLINE PROPERTIES

The full elastic tensor matrix for an orthorhombic crystal
structure is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C22 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For a cubic crystal, C11 = C22 = C33, C12 = C13 = C23, and
C44 = C55 = C66. Using special quasirandom structures to
describe the disordered β phase results in a lowering of the

224104-7
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symmetry and slight differences in the elastic constants that
are equivalent in the cubic phase. To obtain the values for the
cubic structures, we have averaged the corresponding elastic
constants as follows:

C11 = (C11 + C22 + C33)/3,

C12 = (C12 + C13 + C23)/3,

C44 = (C44 + C55 + C66)/3. (A1)

The relationship between the single-crystal elastic constants
and their inverse matrix elements with the polycrystalline bulk
and shear moduli are discussed [66,67] and recalled here:

(i) Cubic phase:

BV = BR = (C11 + 2C12)/3, (A2)

GV = (C11 − C12 + 3C44)/5, (A3)

GR = 5(C11 − C12)C44/[4C44 + 3(C11 − C12)]. (A4)

(ii) Orthorhombic phase:

BV = 1
9 (C11 + C22 + C33) + 2

9 (C12 + C23 + C13), (A5)

GV = 1
15 [C11 + C22 + C33 − (C12 + C23 + C13)]

+ 1
5 (C44 + C55 + C66), (A6)

1

BR

= (S11 + S22 + S33) + 2(S12 + S13 + S23), (A7)

1

GR

= 1

15
[4(S11 + S22 + S33) − (S12 + S13 + S23)

+ 3(S44 + S55 + S66)], (A8)

where S11, S12, etc., are the elastic compliance matrix elements
and can be obtained from the mathematical relationship be-
tween the matrix stiffness Cij and the compliance coefficients
Sij .

APPENDIX B: RELATIONSHIP BETWEEN
�E, ��, AND T0

We choose an expansion parameter �D = 1
2 [�β

D + �α′′
D ];

�� = [�β

D − �α′′
D ]. Assuming �D � �� and expanding

Fvib(�) in a Taylor series around �D we obtain

Fvib(�D ± ��) = Fvib(�D) ± F ′(�D)��

+ 1
2F ′′(�D)��2 + . . . . (B1)

For the free energies of the two phases we correspondingly
obtain

Fvib
(
�

β

D

) = Fvib(�D) + 1
2F ′(�D)�� + . . . ,

Fvib
(
�α′′

D

) = Fvib(�D) − 1
2F ′(�D)�� + . . . , (B2)

and, thus,

�Fvib = Fvib
(
�

β

D

) − Fvib
(
�α′′

D

) ≈ F ′(�D)��. (B3)

At the transition temperature T0, �F = 0 which yields

�E + F ′(�D)�� = 0. (B4)

Both �E and �� are treated within the harmonic approxima-
tion and considered to be temperature independent.

For the Debye model in Eq. (2), it is straightforward to
show that

dF

d�D
= U

�D
, (B5)

where U is the internal energy of the system. Therefore, from
Eq. (B4) we expect

−�E

��
≈ dF

d�D
= U

�D
. (B6)

As U − U0 = 3NkBT in the high-temperature limit, we expect
�E/�� to be a linear function of T above �D.
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