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The scattering of elastic waves by three-dimensional obstacles in isotropic elastic zero-index-metamaterials
(ZIM) is theoretically investigated. We show that the zero values of each single effective parameter and their
various combinations of the elastic ZIM can produce different types of wave propagation. Particularly, there is
no mode conversion when either longitudinal (P ) wave or transverse (S) wave is scattered by the obstacles in
a specific type of double-ZIM (DZIM), possessing near zero reciprocal of shear modulus and near zero mass
density. When the obstacle is off resonance, elastic waves are scarcely scattered; nevertheless, the scattering
cross section of the obstacle can be drastically enhanced by orders of magnitude when it is on resonance. While
in another type of DZIM possessing near zero reciprocal of bulk modulus and near zero mass density, mode
conversion occurs during the scattering process and many other transmission characteristics are also different
to the former. Moreover, enhanced transmission can be realized for various types of single-ZIM (SZIM) by
introducing obstacles, and numerical analysis shows that the enhanced transmission is due to resonant modes
arisen in the embedded obstacles. We expect that our findings could have potential practical application, such as
seismic protection and on-chip phononic devices.
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I. INTRODUCTION

The scattering of elastic waves by an obstacle is a
fundamental physical problem of classical elastodynamics that
impacts a wide variety of applications, such as the dynamic
stress concentration, nondestructive testing, earth-structure
interaction in an earthquake, and calculation of band structure
of a phononic crystal [1–8]. It has attracted a great deal
of attention from numerous researchers, starting from the
pioneering work of Ying and Truell [1]; however, most of
the previous publications studied the scattering of elastic
waves by various types of obstacles in conventional elastic
media. Nowadays, the study of metamaterials has been a
very popular research topic across different disciplines due
to its many potentially revolutionary applications. Thus, it
will be an interesting problem to investigate the scattering of
elastic waves by an obstacle, but this time, in the emerging
elastic metamaterials [9–13]. A category of metamaterials
that has attracted increased attention recently is zero-index-
metamaterials (ZIM) whose permittivity and permeability
are simultaneously or individually near zero. Their exciting
anomalous properties lead to many intriguing phenomena and
applications, such as tailoring the wave fronts of radiation field,
squeezing of electromagnetic energy at will, manipulating
electromagnetic wave propagation through ZIM waveguides
by imbedding proper defects, and enhancing optical nonlin-
earities [14–25]. Meanwhile, the concept of ZIM has been
extended to acoustic and elastic media, and several schemes
have been proposed to realize them [26–36]. However, because
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of the complexity of the scattering of elastic waves in solid
structure, limited works [37–39] were devoted to elastic ZIM;
thus further research is needed.

In general, when a wave of either longitudinal (P ) or
transverse (S) type is incident on an elastic obstacle, scattered
waves of both types are produced, a process known as “mode
conversion” [40]. However, here we show that, in a specific
type of elastic double-ZIM (DZIM) possessing near zero
reciprocal of shear modulus 1/μ, near zero mass density ρ

and ordinary bulk modulus κ (denoted by type I DZIM),
mode conversion does not occur when either P wave or S

wave is scattered by the embedded obstacles. As the analog of
the ZIMs for electromagnetic waves and for acoustic waves,
when the embedded obstacle is off resonance, the type I DZIM
can serve as cloak for full elastic waves. However, note that
when the embedded obstacle is on resonance, the scattering
cross section of the obstacle can be drastically enhanced
by orders of magnitude, which results in a total blocking
of the incident wave for a very large metamaterials region
by using even a single resonant obstacle. A simple analytic
model is proposed to capture the physics of this anomalous
phenomenon, and then the elastic Mie-like scattering theory
is used to verify this analytic model. Another type of DZIM
has also been investigated. This type of DZIM has near zero
reciprocal of bulk modulus 1/κ , near zero mass density ρ

and ordinary shear modulus μ (denoted by type II DZIM).
Obviously, the type II DZIM has double near zero parameters
only for the P wave, while single near zero parameter for
the S wave. We find that unlike the type I DZIM, there
is mode conversion when the P wave is scattered by the
obstacles embedded in the type II DZIM. However, since the
wavelength of the P wave in the type II DZIM also approaches
infinity, the scattering is weak and the incident P wave can
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transmit through the type II DZIM slab with little disturbance
and preserve its P wave form, except the situation of the
appearance of resonant modes in the obstacles. In addition,
to thoroughly understand the propagation characteristic of
various kinds of elastic ZIM, we also investigate single-ZIM
(SZIM) possessing either near zero reciprocal of bulk/shear
modulus or near zero mass density. Analysis shows that only
part of the incident wave can transmit through the SZIM
slab without embedded obstacles, and the transmission is
inversely proportional to the width of the slab. However, if
obstacles are embedded into the SZIM slab, the transmission
can be strongly enhanced. The local resonant modes arisen
in the obstacles account for the enhanced transmission. Since
mode conversion does not happen and the wave natures of
the P wave and two S waves always remain intact during
the scattering process in the type I DZIM, we investigate
the possibility of independent control the propagation of the
P wave and two S waves by using complicated inclusions
(such as a cuboid obstacle). It is shown that, due to the low
symmetry of the cuboid obstacle, even the two originally
degenerate S waves can be manipulated separately. Finally,
we propose a three-dimensional (3D) phononic crystal, which
can be mapped to an elastic material with effective zero 1/μeff

and zero ρeff ; thus, it can be a good candidate to achieve the
type I DZIM structure experimentally.

II. NUMERICAL ANALYSIS OF THE SCATTERING
CHARACTERISTIC OF ELASTIC WAVES BY 3D

OBSTACLES IN THE ELASTIC ZIM

The geometry of the 3D structure under consideration is
illustrated in Fig. 1. It consists of four distinct regions: The
left and right regions are background mediums (with mass
density ρ0, bulk modulus κ0, and shear modulus μ0) and are
separated by the elastic ZIM slab with effective mass density
ρ1, bulk modulus κ1, and shear modulus μ1. A spherical solid
obstacle with radius rd , mass density ρd , bulk modulus κd , and
shear modulus μd is embedded in the ZIM slab. The periodic
boundary condition is applied to the four lateral boundaries

FIG. 1. Schematic of the unit cell of our periodic system along
the y and z direction; the unit cell consists of the background medium,
the elastic ZIM, and an embedded spherical obstacle.

in the numerical simulation. Note that the utilization of the
slab and the periodic boundary condition here is just for the
convenience of conducting the numerical simulation. It will
be shown below that the structure period a has a different
influence on the transmission characteristic of the type I DZIM
and type II DZIM slab.

A. Case of the type I DZIM

We first investigate the propagation characteristics of the
type I DZIM slab without inclusion. The governing equations
for the elastic waves in an isotropic solid can be written as
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where vi(i = x,y,z) represents the velocity field, which is
the derivative of the displacement field ui(i = x,y,z) with
respect to time, and τij (i,j = x,y,z) represents the stress
tensor. Equations (1) and (2) represent Newton’s law and
the generalized Hook law, respectively. For plane waves
in a homogeneous elastic medium propagating along the x

direction, Eqs. (1) and (2) can be simplified to
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for the P wave, respectively. In the type I DZIM region, as
1/μ1 tends to zero, the velocity fields vy in Eq. (3) and vz

in Eq. (4) must be constant to keep τxy and τxz as a finite
value, respectively. Since the displacement field is the integral
of the velocity field with respect to time, uy and uz are also
constant in the type I DZIM region for y direction S wave and
z direction S wave incidence, respectively. While for the P
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FIG. 2. The numerically simulated displacement field distributions of the incident waves transmitting through the type I DZIM slab without
inclusion (a)–(c), with steel inclusions (d)–(f), and the incident waves are totally blocked (g)–(i). The arrows denote the directions of the
displacement. Different columns represent the results of incident P wave, y direction S wave, and z direction S wave, respectively. The
simulation domain is terminated in the propagation direction with perfectly matched layers (PML), and the periodic boundary condition is
applied to the four lateral boundaries in the simulation.

wave incidence, as 1/(μ1 + κ1) tends to zero too, the velocity
field vx (and thus the displacement field ux) in Eq. (5) must be
constant to keep τxx as a finite value. Numerical simulations
are carried out by using the finite element method (FEM) to
verify the analysis. In the simulation, the background medium
is Si with ρ0 = 2.53 × 103 kg/m3, c0,l = 6.72 × 103 m/s, and
c0,t = 4.13 × 103 m/s, and we have set ρ1 = 0.001ρ0, 1/μ1 =
0.001(1/μ0), and κ1 = κ0 for the type I DZIM. The frequency
of the incident wave is f0 = 500 Hz. Figures 2(a)–2(c) show
the displacement field distributions of the P wave, y direction
S wave, and z direction S wave transmitting through the type I
DZIM slab, respectively. The displacement fields u1x , u1y and
u1z in the type I DZIM region are uniform indeed. Next, we
consider the problem of introducing solid obstacles into the
type I DZIM slab. Figures 2(d)–2(f) show the numerically
simulated displacement field distributions of the P wave,
y direction S wave, and z direction S wave transmitting
through the type I DZIM slab embedded with steel spheres
(rd = 5.3 m), respectively. Compared to Figs. 2(a)–2(c), the
displacement field distributions outside the spheres are the
same. Thus, even though inclusions have been introduced,
the displacement fields u1x , u1y , and u1z in the type I DZIM
region are still uniform, and there is no scattering and no
mode conversion occurring for all three types of incident
waves. This phenomenon can be explained by utilizing the
constitutive relation of isotropic elastic solid under which
condition μ1 diverges in the type I DZIM region. In general,
if there are elastic discontinuities, one needs to consider the

complete equation of generalized Hook’ law [Eq. (2)] instead
of Eqs. (3)–(5). Since vx , vy , and vz all appear in Eq. (2), P

wave, y direction S wave, and z direction S wave are coupled.
However, in the type I DZIM region, after both sides are
divided by μ1 and under the condition μ1 diverge, Eq. (2)
can be simplified to

0 = ∂vx

∂x
− ∂vy

∂y
− ∂vz

∂z
, 0 = −∂vx

∂x
+ ∂vy

∂y
− ∂vz

∂z
,

0 = −∂vx

∂x
− ∂vy

∂y
+ ∂vz

∂z
, 0 = ∂vx

∂y
+ ∂vy

∂x
, (6)

0 = ∂vx

∂z
+ ∂vz

∂x
, = ∂vy

∂z
+ ∂vz

∂y
.

Solutions v1x = constant, v1y = v1z = 0 (for purely P

wave), v1y = constant, v1x = v1z = 0 (for purely y direction
S wave) and v1z = constant, and v1x = v1y = 0 (for purely
z direction S wave) can satisfy Eq. (6). Thus, the purely P

wave, the purely y direction S wave, or the purely z direction
S wave can still propagate in the type I DZIM region, even
though elastic discontinuities have been introduced. However,
when the size of the embedded sphere is changed to have the
radius rd = 4.17 m, contrary to our expectation, the incident
waves are totally blocked by the type I DZIM slab, as shown in
Figs. 2(g)–2(i). Such anomalous total blocking is completely
counterintuitive, considering the wavelength in the type I
DZIM is 103 times larger than that in the background medium,
and the impedance of the type I DZIM matches with that of
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FIG. 3. The numerically calculated transmission coefficients (a)
of the type I DZIM slab with spherical obstacles and the values
of expression E11E22−E12E21 (b) as a function of the radius rd of
the spherical obstacle, respectively. In (a), the solid and dotted lines
represent the systems with different structure periods a = 30 m and
a = 45 m, respectively.

the background medium. In the following, a simple analytic
model [41] is proposed to capture the essence of the physics.
Details of the analytic model can be found in the Appendix.
As an example, steel spheres are considered here. Figures 3(a)
and 3(b) show the numerically calculated transmission coef-
ficients and the values of expression E11E22 − E12E21 as a
function of the radius rd of the sphere, respectively. Note that
the effective parameters of ZIM are almost zero only when the
frequency equals a specific frequency; thus, we have fixed the
frequency of the incident wave f0 = 500 Hz, while the radius
rd of the sphere becomes a variable in Figs. 3(a) and 3(b). It
can be seen that each time the expression E11E22 − E12E21

equals zero, the transmission coefficients of both incident S

and P waves equal zero indeed. It should be noted that both
the P and S waves are controlled by the same factor because
of the high symmetry of the spherical obstacle (the resonances
induced by the x direction vibration of the P wave and by the
y or z directions vibration of the S waves are equivalent).

It can also be seen in Fig. 3(a) that when we increase
the structure period a = 30 m to a = 45 m, total blocking
still occurs at the same radius of the sphere. In fact, we
can increase the structure period even much larger and still
achieve the total blocking at the same radius of the sphere. This
anomalous phenomenon can be explained by using the elastic
Mie-like scattering theory [3,4] to calculate the scattering

FIG. 4. (a) The n = 1 order normalized scattering cross section
of a single spherical obstacle in the type I DZIM (blue dotted line)
and in the background medium (red solid line) as a function of the
radius rd of the spherical obstacle. Inset shows the zoom-in view.
(b) The n = 0 (olive line) and n = 2 (green line) order normalized
scattering cross section of the same spherical obstacle in the type I
DZIM as a function of the radius rd .

cross section of the spherical obstacle. Figure 4(a) shows the
n = 1 order normalized scattering cross section of a single
spherical obstacle embedded in the type I DZIM (blue dotted
line) as a function of the radius rd of the sphere (around
the first resonance shown in Fig. 3); as a comparison, the
normalized scattering cross section of the same spherical
obstacle embedded in the background medium Si (red solid
line) is also presented. It can be seen in the inset of Fig. 4(a)
for the zoom-in view that the normalized scattering cross
section of the spherical obstacle in the background medium
is much larger than that of the spherical obstacle in the
type I DZIM when the obstacle is off resonance. This is
because of the wavelength in the type I DZIM is 103 times
larger than that in the background medium; thus, the wave
cannot “see” the obstacle. However, when the obstacle is
on resonance, the normalized scattering cross section of the
obstacle is drastically enhanced by orders of magnitude in the
type I DZIM. As a result, we may expect that even a single
sphere can be used to achieve the total blocking of a very
large type I DZIM region. Note that the displacement field in
the type I DZIM region disappears when the total blocking
occurs; thus, the multiple scattering among the spheres does
not need to be considered, and the total blocking condition
(E11E22 − E12E21 = 0) is unrelated to the structure period;
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a is reasonable. In addition, the normalized scattering cross
sections of the spherical obstacle in the type I DZIM for
n = 0 and n = 2 order are also calculated, respectively, and
shown in Fig. 4(b). As can be seen, the normalized scattering
cross sections for n = 0 and n = 2 order are 1015−1016 orders
of magnitude less than that of n = 1 order. Therefore, the
rationality of our analytic model considering n = 1 order
scattering only is validated.

B. Case of the type II DZIM

Having investigated the type I DZIM, we now consider the
transmission property of another type of DZIM. Possessing
near zero reciprocal of bulk modulus 1/κ , near zero mass
density ρ and ordinary shear modulus μ, type II DZIM has
double near zero parameters only for the P wave, while single
near zero parameter for the S wave. In contrast to type I DZIM,
type II DZIM exhibits a very different propagation property
because the bulk modulus instead of shear modulus diverges.
Although, the purely P wave with uniform displacement field
u1x can still propagate in the homogeneous type II DZIM
[Eq. (5)], coupled P and S waves will take the place of the
purely P wave if obstacles are introduced. We can understand
this difference using the constitutive relation of solid [Eq. (2)].
In the type II DZIM region, under the condition κ1 diverges,
Eq. (2) can be simplified to
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Obviously, solutions v1x = constant, v1y = v1z = 0 (for the
purely P wave) cannot satisfy Eq. (7); thus, coupled P and
S waves need to be considered when elastic discontinuities
appear.

Figure 5(a) shows the numerically calculated transmission
coefficients as a function of the radius rd of spherical
steel obstacle. In the simulation, we have set ρ1 = 0.001ρ0,
μ1 = μ0, and 1/κ1 = 0.001(1/κ0) for the type II DZIM. The
transmission spectrum is featured by several Fano-like dip.
The Fano resonance is created by the interference between two
different transmission channels: One is the direct transmission
process that provides a continuum spectrum as background,
and the other is associated with the discrete resonant state that
finally leads to an asymmetric line shape featured by a couple
of dips or peaks in the spectrum. In general, the Fano-like
spectrum could stem from two different mechanisms: the local
resonant modes in individual structural units and the collective
lattice resonance effect. In the current case, the collective
lattice resonance, i.e., the Wood’s anomaly occurring at the
wavelength near the structural period, obviously has no effect
on the transmission, as the wavelength of wave in the type II
DZIM is much larger than the structural period. Therefore, the
local resonant modes should be responsible for the Fano-like
dips. Any resonance associated with a single sphere should
be reflected in the Mie scattering coefficients, such as T ll

n

(for P wave to P wave scattering), with n being an integer that
denotes the order of the channel for spherical scattering waves.
Figure 5(b) shows the |T ll

n | as a function of the radius rd of

FIG. 5. The numerically calculated transmission coefficients (a)
of the type II DZIM slab with spherical obstacles and the Mie
scattering coefficients |T ll

n | (b) of the spherical obstacle in the type
II DZIM as a function of the radius rd of the spherical obstacle,
respectively. In (a), the red solid and blue dotted lines represent
the systems with different structure periods a = 30 m and a = 36 m,
respectively.

the sphere for the lowest two orders (n = 0,1). The spectra for
|T ll

0 | and |T ll
1 |, respectively, display pronounced sharp peaks,

revealing characters of local modes. Compared with Fig. 5(a),
we can see that the local resonant modes of single sphere result
in the Fano-like dips indeed. In fact, we note that there has been
a simple analytic model [42,43], which can explain the line
shapes of the observed transmission resonances. In addition, it
should be noted that when we increase the structure period a =
30m to a = 36m, the transmission dips in Fig. 5(a) become
shallower and move closer to the radii where local resonances
arise, which is totally different to the case of the type I DZIM.
The origin of this difference comes from the fact that the dis-
placement field in the type I DZIM region disappears when the
total blocking occurs; thus, the coupling of the resonant modes
between neighboring spheres does not need to be considered;
for the type II DZIM, there is coupling of the resonant modes
obviously. This implies that the displacement field still exists
in the type II DZIM region when the resonances occur.

To further distinguish the different propagation character-
istics of the two types of DZIM, Fig. 6 show the numeri-
cally calculated displacement field distributions of P wave
transmitting through the type II DZIM slab without/with steel
spheres, respectively. Figure 6(a) shows the displacement field
distributions of the P wave transmitting through the type II
DZIM slab without inclusion, and the displacement field u1x in
the type II DZIM region is uniform indeed. Figure 6(b) shows
the displacement field distributions of the P wave transmitting
through the type II DZIM slab embedded with steel spheres

224102-5



LIU, ZHANG, WEI, HU, DENG, AND WANG PHYSICAL REVIEW B 94, 224102 (2016)

FIG. 6. The numerically simulated displacement field distribu-
tions of the incident P wave transmitting through the type II DZIM
slab without inclusion (a), with spherical steel inclusions being off
resonance (b), with the inclusions having monopole resonance (c),
and with the inclusions having dipole resonance (d). The white arrows
denote the directions of the displacement.

(rd = 4.5 m), which is away from the resonant radii. It can
be seen that the displacement field is no longer uniform, and
u1x , u1y , and u1z appear (indicated by the arrow) in the type
II DZIM region. However, the wavelength of the P wave in
type II DZIM is very large, no resonant mode has arisen at
this radius, and the scattering is so weak that the incident
P wave can transmit through the slab with little disturbance
and preserve its P wave form. In Figs. 6(c) and 6(d), we
consider the embedded spheres associated with the n = 0
and n = 1 orders local resonant mode. In contrast to Fig. 2
(g), the displacement field inside the type II DZIM region
does not disappear and strong monopole and dipole resonant
modes concentrate in the spheres. Note that as the displacement
field is no longer constant in the type II DZIM region, there
is no restriction that the angular quantum number n of the
displacement fields inside the spheres must take one. Thus, the
analytic model, which explains the essence of the physics of
total reflection in the type I DZIM, can no longer be used here.

C. Case of the SZIM

To fully understand propagation feature of various kinds of
elastic ZIM, we study SZIM in this section. It is found that
various types of SZIM have similar propagation properties;
thus, only the result of the SZIM with near zero mass density
is presented as an example. We start with calculating the
transmission coefficient of the SZIM slab without embedded
obstacles. Because the geometry is very simple, the calculation
is pretty straightforward:

T = 1

1 − ik0l
l
2

, (8)

for the incident P wave and

T = 1

1 − ik0t
l
2

, (9)

FIG. 7. The numerically calculated transmission coefficients (a)
of the SZIM slab with spherical obstacles and the Mie scattering
coefficients |Tn| (b) of the spherical obstacle in the SZIM as a function
of the radius rd of the spherical obstacle, respectively.

for the incident S wave. In addition, k0l and k0t are the
wave vector of P and S waves in the background medium,
respectively. Equations (8) and (9) imply that only part of the
incident wave can transmit through the SZIM slab because
of the impedance mismatch and the transmission is inversely
proportional to the width of slab.

The transmission changes if inclusions are embedded into
the SZIM slab. We note that utilizing the condition ρ1 = 0
cannot simplify Eqs. (1) and (2), so it would be very difficult
to obtain the transmission coefficient analytically. In Fig. 7(a),
we plot the numerically calculated transmission coefficients
as a function of the radius rd of spherical steel obstacle for the
incident P wave as an example. The transmission coefficients
for the SZIM slab in the absence of obstacles are also plotted
[the black dashed line represents the numerically calculated
result, while the grey solid line represents the calculated
result using Eq. (8)]. One can see that several asymmetric
Fano-like peaks appear in the transmission spectra after the
spheres have been introduced. Again, the collective lattice
resonance does not affect the transmission, as the wavelength
of wave in SZIM is also much larger than the structural period.
So, the local resonant modes in a single sphere should be
responsible for the Fano-like peaks. Figure 7(b) shows the
|T ll

n | as a function of the radius rd of the obstacle for the
lowest several orders (n = 0 to n = 2). The spectra display
several pronounced sharp peaks, revealing characters of local
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FIG. 8. The numerically calculated transmission coefficients of the type I DZIM slab with cuboid obstacles as a function of the width w and
height h of the obstacle for incident S wave (a) and P wave (b), respectively. The numerically calculated transmission coefficients of the type
I DZIM slab with cuboid obstacles as a function of the deep d and height h of the obstacle for incident y direction S wave (c) and z direction
S wave (d), respectively. Top row represents the results of the cuboid obstacles having equal d and h. Bottom row represents the results of the
cuboid obstacles having fixed w = 5 m.

modes. Compared with Figs. 7(a) and 7(b), we can find that the
local resonant modes of single sphere result in the Fano-like
peaks indeed.

III. INDEPENDENT MANIPULATION OF THE
PROPAGATION OF THE P WAVE AND TWO S WAVES

BY USING CUBOID OBSTACLES

Since mode conversion does not happen and the wave
natures of the P wave and two S waves always remain intact
during the scattering process in the type I DZIM, we investigate
the possibility of independent control the propagation of P

wave and two degenerate S waves by using complicated
inclusions. The fact that the P wave and two S waves are
controlled by the same factor is due to the high symmetry
of the spherical obstacle. Thus, if we use obstacles with
lower symmetry, to replace the spherical obstacle, the P wave
and two S waves can be controlled by different factors, and
independent control of P wave and two S waves can be
realized. We perform the simulations for the incident P wave
and two S waves into a type I DZIM slab with embedded
cuboid obstacles. The transmission coefficients as a function
of the varying geometric parameters (deep d, width w, and
height h) of the cuboid obstacle are calculated for the P wave
and two S waves, respectively. In the first case, we would like
to independently control P waves and the S wave, and the steel
cuboid with equal d and h is imbedded. Figures 8(a) and 8(b)

show, respectively, the results for the two degenerate S waves
and for the P wave, where the x axis is w and the y axis is
h, and the color stands for transmission, with red for high and
blue for low. As can be seen clearly, in a wide range (from 5 to
9 m) of h and w, this device has remarkably different outputs
for the incidence of the two degenerate S waves and for the
incidence of the P waves. In the second case, we would like to
independently control the two originally degenerate S waves,
and the steel cuboid with fixed w = 5 m is imbedded this time.
Figures 8(c) and 8(d) show, respectively, the results for the y

direction S wave and for the z direction S wave, where the
x axis is d and the y axis is h. It can be seen clearly that in
a wide range (from 6 to 10 m) of d and h, this device also
has remarkably different outputs for the incidence of the y

direction S wave and for the incidence of z direction S wave.
Therefore, completely independent control of the P and two S

waves can be achieved by using the cuboid obstacles indeed.

IV. A 3D PHONONIC CRYSTAL CAN BE MAPPED TO AN
ELASTIC MATERIAL WITH EFFECTIVE ZERO ρeff AND

ZERO 1/μeff

Finally, we investigate the experimental feasibility of the
theoretical proposal. In Ref. [44], Chan et al. shown that a
simple cubic photonic crystal exhibits a 3D Dirac-like point
at the center of the Brillouin zone at a finite frequency. Using
effective medium theory, the structure can be mapped to an
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FIG. 9. (a) Band structure of a 3D simple cubic lattice phononic crystal consisting of rubber spheres embedded in Cu host. (b) The enlarged
view of the band dispersion near the sixfold degenerate point frequency. (c) The displacement field distributions of the eigenstates near the
sixfold degenerate point. The eigenstates are combinations of triply degenerate dipole and triply degenerate quadrupole excitations. (d) The
effective mass density ρeff , bulk modulus κeff , and reciprocal of shear modulus 1/μeff as a function of frequency near the sixfold degenerate
point. All the effective elastic parameters have been normalized to the elastic parameters of Cu. The quantity cCu,t is the velocity of transverse
wave of Cu. The lattice constant is denoted by a.

isotropic zero refractive index material in which the effective
permittivity and permeability are simultaneously zero at the
Dirac-like point frequency. The Dirac-like point is sixfold
degenerate and is formed by the accidental degeneracy of
electric dipole and magnetic dipole excitations, each with
three degrees of freedom. In this paper, we would like to
design a 3D phononic crystal system that also has Dirac-
like point at the center of the Brillouin zone and can be
mapped to an elastic material with effective mass density and
reciprocal of shear modulus equal to zero at the Dirac-like point
frequency.

Figure 9(a) shows the numerically calculated band structure
of the 3D simple cubic lattice phononic crystal consist-
ing of rubber (ρrubber = 1.3 × 103 kg/m3, crubber,l = 0.817 ×
103 m/s, and crubber,t = 0.335 × 103 m/s) spheres embedded
in the Cu (ρCu = 8.96 × 103 kg/m3, cCu,l = 4.726 × 103 m/s,
and cCu,t = 2.1 × 103 m/s) host. Figure 9(b) provides an
enlarged view of the band dispersion in the frequency range
of interest. There are two triply degenerate states at the �

point, and they correspond to dipole modes and quadrupole
modes, respectively. Through tuning the radius of the spheres,

we can make the dipole modes and quadrupole modes touch
each other at the same frequency. At the radius of the sphere
R = 0.343a, with a being the lattice constant, the accidental
degeneracy occurs at the frequency ω = 0.481(2πcCu,t /a). As
the dipole modes and quadrupole modes are each threefold
degenerate at the zone center, the accidental degeneracy gives
rise to a sixfold degenerate state at the � point. Four bands
have linear dispersions near the � point, the other two bands
are relatively flat. To understand the physical nature of the
eigenstates near the sixfold degenerate point, we calculate the
displacement field distributions of the eigenstates at the Dirac-
like point frequency. Figure 9(c) demonstrates the dipole and
the quadrupole excitations along the z direction. The arrows
show the directions of the displacement field. The eigenstates
of the other four modes at the Dirac-like point frequency
correspond to dipole and quadrupole excitations along x and
y directions (not shown here). Therefore, the 3D accidental
degeneracy-induced Dirac point can be described by dipole
and quadrupole excitations along the x, y, and z directions.

We have shown previously that in a two-dimensional (2D)
phononic crystal, the Dirac-like point that is derived from the
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accidental degeneracy of dipole and quadrupole excitations
can be mapped to a zero-refractive-index at that frequency
[39]. Is it possible to describe the Dirac-like point physics of
the 3D phononic crystal system with effective medium theory?
We apply the effective medium theory [45] to calculate the
effective medium of this 3D system. The results are plotted
in Fig. 9(d), in which the red, blue, and green lines represent
ρeff , κeff , and 1/μeff as a function of frequency, respectively.
Figure 9(d) clearly shows that ρeff and 1/μeff intersects at
zero at the sixfold degenerate point (ω = 0.481(2πcCu,t /a)).
Because the eigenmode is a combination of quadrupolar
and dipolar states only [Fig. 9(c)], κeff does not exhibit
resonant behaviors in the frequency region considered. As ρeff

and 1/μeff go through zero simultaneously and linearly, the
effective refractive index also goes through zero but the group
velocity remains finite. Consequently, we realize type I DZIM
in the 3D phononic crystal system. We consider that type II
DZIM and various types of SZIM can be realized by using 3D
phononic crystal in a similar way.

V. CONCLUSIONS

In conclusion, the scattering properties of elastic waves
by 3D obstacles in various types of elastic ZIM have
been theoretically investigated. In the type I DZIM, mode
conversion does not occur and the wave natures remain intact
during the scattering process; while in the type II DZIM
mode conversion occurs, and many other transmission features
are also different to the former. For SZIM, only part of the
incident wave can transmit through the SZIM slab without
inclusions, but the transmission can be strongly enhanced
by introducing obstacles with resonant modes. Moreover,
utilizing the propagation characteristics of the type I DZIM,
we realize completely independent control the propagation of
P wave and S waves (even the two S waves are originally
degenerate) by introducing obstacles with low symmetry.
A 3D phononic crystal system is suggested to achieve the
intriguing phenomena. Our results provide full understanding
of scattering of elastic waves by 3D obstacles in metamaterials
with zero index and thus enable a way of controlling the
propagation of them.
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APPENDIX

Let us consider using the case of the incident P wave as
an example, the derivation for incident S waves is similar.
Suppose a plane harmonic P wave uinc

x = uxe
i(k0l x−ωt) is

incident from left into the unit cell presented in Fig. 1,
where ux is the amplitude of the incident field, k0l is the
wave vector in the background medium, and ω is the angular
frequency. We omit the time variation item in the rest of this
section for convenience. Thus, the displacement field in the
left background region can be written as

u0x = ux

[
eik0l x + Re−ik0l x

]
, (A1)

while in the right background region, the displacement field
must have the form

u2x = uxT eik0l (x−l), (A2)

where R and T are the reflection and transmission coefficients.
In the type I DZIM region, the displacement field maintains
a quasistatic situation (u1x = constant, regardless of whether
there are obstacles). Then, using the continuous boundary
condition at x = l, we have uxT = u1x ; thus, T = u1x/ux .
Obviously, T = 0 (total blocking) occurs if u1x = 0, which
means that the displacement field disappears anywhere in the
type I DZIM region. In fact, it can be seen from Fig. 2(g)
that the displacement field u1x inside the type I DZIM region
disappears indeed. Then, we need to find out how to obtain
u1x = 0. In the embedded solid spheres, the displacement field
ud is described by the elastic wave equation

(λd + 2μd )∇(∇ · ud) − μd∇ × ∇ × ud + ρdω
2ud = 0,

(A3)
where λd represents the Lame constant. The azimuthal
symmetry of the sphere implies that the displacement field
in the solid sphere may be expressed in terms of potential
functions as

ud = ∇φ + ∇ ×
(

∂ψ

∂θ
�eϕ

)
. (A4)

The solutions for φ and ψ may be written, respectively, as

φ =
∞∑

n=0

An1jn(kdlr)Pn(cos θ ), (A5)

ψ =
∞∑

n=0

An2jn(kdt r)Pn(cos θ ), (A6)

where kdl = ω
√

ρd/(κd + μd ) and kdt = ω
√

ρd/μd , jn(x) are
the n th-order spherical Bessel function and Pn(x) is the n

th-order Legendre polynomial. The displacement continuity
across the sphere boundary requires that

udr |r=rd
= u1x cos θ, udθ |r=rd

= −u1x sin θ, (A7)

which means that in Eqs. (A5) and (A6), we have to keep only
the terms with n = 1 to produce the necessary θ dependence.
This leads to a set of linear equations

E11A11 + E12A12 = rdu1x, E21A11 + E22A12 = rdu1x,

(A8)
where Eij is defined as E11 = j1(kdlrd ) − kdlrdj2(kdlrd ),
E12 =−2j1(kdt rd ), E21 =j1(kdlrd ), and E22 = −2j1(kdt rd ) +
kdt rdj2(kdt rd ). Solving Eq. (A8), we obtain

u1x = E11E22 − E12E21

(E22 − E12)rd

A11 = E11E22 − E12E21

(E11 − E21)rd

A12.

(A9)
From Eq. (A9), we can see that if E11E22 − E12E21 = 0,

then u1x = 0; thus, T = 0, in which case the total blocking
happens. For the incident y direction or z direction S

waves, after a similar processing, we find the same condition
(E11E22 − E12E21 = 0) needs to be satisfied to obtain T = 0.
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