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In the conceptual framework of phase ordering after temperature quenches below transition, we consider the
underdamped Bales-Gooding-type “momentum conserving” dynamics of a 2D martensitic structural transition
from a square-to-rectangle unit cell. The one-component or NOP = 1 order parameter is one of the physical
strains, and the Landau free energy has a triple well, describing a first-order transition. We numerically study
the evolution of the strain-strain correlation, and find that it exhibits dynamical scaling, with a coarsening length
L(t) ∼ tα . We find at intermediate and long times that the coarsening exponent sequentially takes on respective
values close to α = 2/3 and 1/2. For deep quenches, the coarsening can be arrested at long times, with α � 0.
These exponents are also found in 3D. To understand such behavior, we insert a dynamical-scaling ansatz into
the correlation function dynamics to give, at a dominant scaled separation, a nonlinear kinetics of the curvature
g(t) ≡ 1/L(t). The curvature solutions have time windows of power-law decays g ∼ 1/tα , with exponent values
α matching simulations, and manifestly independent of spatial dimension. Applying this curvature-kinetics
method to mass-conserving Cahn-Hilliard dynamics for a double-well Landau potential in a scalar NOP = 1
order parameter yields exponents α = 1/4 and 1/3 for intermediate and long times. For vector order parameters
with NOP � 2, the exponents are α = 1/4 only, consistent with previous work. The curvature kinetics method
could be useful in extracting coarsening exponents for other phase-ordering dynamics.
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I. INTRODUCTION

Interacting systems such as magnets, binary fluids, liquid
crystals, and quantum spin models can be probed by the
dynamical evolutions of order parameters, after temperature
or coupling-constant quenches below transition [1–13]. Such
phase ordering can be quantitatively described by a time-
dependent, two-point, order-parameter correlation C( �R,t), that
can exhibit dynamical scaling, dependent on space and time
through a single scaled variable [1,5–13] R̄ ≡ | �R|/L(t), with
consequent data collapse onto a single scaled curve G(R̄). The
coarsening length L(t) is a measure of the typical spacing
between domain walls separating competing order parameter
(OP) phases. It can increase as L(t) ∼ tα , where the exponent α
is independent of material parameter values, but could depend
on the nature of the OP dynamics, the number of components
of the order parameter NOP, the number of competing low-
temperature variants NV , and the spatial dimension d. There
can be a sequential appearance of different exponents, during
coarsening [1].

In various dynamic models, the exponents α have been es-
timated by heuristic arguments, energy dissipation matchings,
Gaussian fluctuations of domain wall profiles, self-consistent
correlation function dynamics, and through numerical simula-
tions [1,5–12]. The Allen-Cahn relaxation equation [1] for a
nonconserved OP and the Cahn-Hilliard equation [1,4] for a
locally conserved OP are familiar models, both with a single
time derivative, and typically use a double-well Landau free
energy describing a second-order transition. It is of much
interest to explore other phase-ordering dynamics; and to
develop systematic methods of estimating coarsening-length
exponents.

Solid-solid structural transitions have NOP strain-tensor
components as the order parameters [14–21], with Landau free

energies having NV competing minima, for the NV different
unit cells, or “variants.” The high-temperature high-symmetry
crystal structure is “austenite,” and the low-temperature low-
symmetry structures are “martensite.” Martensitic transitions
can be described by a Bales-Gooding or BG-type strain
dynamics [19] that has several features [19,20], which differ
from the more familiar magnetism-inspired phase orderings.
Firstly, the Landau free energy [16] can have triple wells
in the OP, describing a first-order phase transition, with
a minimum also at zero values of the OP. Secondly, the
dynamics is underdamped, with a Newtonian inertial term
or double time derivative, describing acceleration of the order
parameter. Thirdly, there is global momentum conservation,
with the single time derivative damping term, suppressed at
long wavelengths [19,20]. Fourthly, with a 2D dynamics [20]
generalized from [19] 1D, the order parameters have an
additional power-law anisotropic interaction, coming from an
elastic Saint-Venant compatibility constraint [15,16], as used
in several contexts [21].

Monte Carlo simulations in 2D of a discretized-strain
martensitic model Hamiltonian with power-law anisotropic
(PLA) interactions show interesting evolutions under a tem-
perature quench. For example, for successive quenches ap-
proaching the transition from below, the conversion time
from seeded austenite evolving to martensite domains rises
sharply, with these time delays caused by entropy barriers [18].
Clearly, martensites with continuous-strain dynamics [19,20]
are worth examining, in the framework of phase ordering
ideas [1]. We here focus on effects of the triple-well Landau
term in the underdamped dynamics, and suppress the power-
law anisotropic interaction, which will be considered in a
subsequent publication.

In the first part of this paper, we apply phase-ordering ideas
to the BG strain dynamics, with d = 2, NOP = 1, and NV = 2,
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in a sixth-order Landau polynomial in the scalar OP strain. We
consider only Landau and Ginzburg terms in the OP dynamics
to numerically determine the dynamic structure factor or
OP-OP correlation, finding dynamical scaling in a coarsening
length L(t) ∼ tα . The exponent takes on sequential values such
as α = 2/3 and 1/2 over time windows, whose widths depend
on the quench temperature T . For deep quenches, there is an
exponent α = 1/3, and a final α � 0 flattening to a constant,
analogous to “coarsening arrest” [22]. These 2D results are
found to persist for 3D.

In the second part of the paper, we use a scaled form of the
underdamped OP dynamics, to obtain a dynamics for the OP-
OP correlation C(R,t). Inserting the dynamic scaling form,
C = G(R/L(t)), yields a nonlinear, underdamped kinetics for
the curvature or inverse coarsening length g(t) ≡ 1/L(t), with
coefficients evaluated at dominant coarsening-front separation.
Here, to close what would otherwise be an infinite hierarchy,
a spatial average of internal domain-wall factors is made,
reducing the correlation between the chemical potential and
order parameter, to the OP-OP correlation G(gR). The
curvature kinetics solutions from balancing kinematic and
force terms are simple power-law decays g(t) ∼ 1/tα in se-
quential time windows, showing exponents α = 2/3 and 1/2
values, independent of d, in agreement with simulations. For
deep quenches, a toy model including higher powers of the
curvature, explains the α = 0 coarsening arrest, as a metastable
trapping of curvature to a nonzero value.

As a check, the curvature kinetics method is applied
to Cahn-Hilliard dynamics, yielding the well-known [1,8,9]
values of α = 1/3 for a scalar order parameter NOP = 1,
and α = 1/4 for vector order parameters with NOP � 2, all
independent of d.

The plan of the paper is as follows. In Sec. II, we state
the Cahn-Hilliard and Bales-Gooding types of OP dynamics,
and scale to absorb all, or most, of the OP temperature
dependencies. Section III defines the OP-OP correlation
functions and their dynamical scaling. Section IV shows
the coarsening textures, numerically demonstrates dynamical
scaling of the two-point correlation function, and states the
obtained exponents. The second part of the paper, starting
in Sec. V, obtains the correlation function dynamics, and
inserts a dynamical-scaling ansatz. Section VI extracts the
curvature kinetics and predicts power-law exponents α that
match the numerics. Finally, Sec. VII contains a discussion and
comments on future work. Details are given, in Appendix A,
of the closure approximation; in Appendix B, of coefficient
signs in the curvature kinetics; in Appendix C, of estimation
of coarsening exponents.

II. DIFFERENT ORDER PARAMETER DYNAMICS

A. Cahn-Hilliard type dynamics

The simplest order parameter dynamics is the purely
relaxational or overdamped Allen-Cahn equation [1] for a
nonconserved order parameter that says the damping force
balances the chemical-potential driving force from the free
energy, ė ∼ −∂F/∂e. Another dynamics is the Cahn-Hilliard
equation [4] describing the evolution of a conserved order
parameter e(�r,t) that could be a mass-concentration density or

a magnetization,

γ ė(�r,t) = (−�∇2)

[
− ∂F (e)

∂e(�r,t)
]
. (2.1)

This can be written as a continuity equation

∂e(�r,t)/∂t + �∇ · �j (�r,t), (2.2a)

where the diffusion current density is driven by spatial
gradients of the chemical potential

�j = −D �∇μ(�r,t), μ ≡ ∂F (e)

∂e(�r,t) . (2.2b)

The diffusion constant is the inverse friction coefficient,
D = γ −1. Since ė(�k,t) ∼ −k2μ(�k,t), the uniform order pa-
rameter k → 0 is independent of time, i.e., the spatial average
of the order parameter is conserved.

The free energy in terms of the OP is typically taken as a
Ginzburg or gradient term, plus a Landau term for a second-
order transition, F = FG + FL, where FG = E0

∑
�r ξ 2

0 ( �∇e)2,
FL = E0

∑
�r [εe2 + e4/2]. Here, ξ0 is a bending length, ε ≡

(T − Tc)/Tc, and E0 is an energy density.
Redefining space and time variables to make them di-

mensionless, in units of a numerical grid length a0, and a
chosen time unit, r → a0r; t → (γ /2E0)t, the Cahn-Hilliard
equation of (2.2) becomes

∂e(�r,t)
∂t

= �∇2
�r μ(�r,t), (2.3a)

where the chemical potential has Landau and Ginzburg terms,

μ = μL − ξ 2
0

�∇2e, (2.3b)

where μL ≡ (1/2)∂fL/∂e = −(|ε| − e2)e.

B. Bales-Gooding type dynamics

Bales and Gooding (BG) have used a Lagrangian formalism
to obtain [19] a continuous-strain, underdamped, momentum-
conserving dynamics in 1D, for a one-component order
parameter, or NOP = 1. For 1D, there is only one type of
strain e = ∂u(x)/∂x or gradient of displacement u(x), that is,
the OP. The free energy F = E0

∑
x f where the free energy

density f = fL + fG is a sum of a triple-well Landau term
fL = e6 − 2e4 + τe2, and a Ginzburg term fG ∼ ξ 2

0 (∂e/∂x)2.
The Lagrangian density is ρ0ė

2 − f where in the “kinetic-
energy” term, ρ0 is the mass of the unit cell of volume ad

0 , and
the “potential-energy” is f . With a Lagrangian minimization
and adding a Rayleigh dissipation term ∼ − γ ė, one gets [19]

ρ0ë(x,t) =
(−∂2

∂x2

)[ −∂F

∂e(x,t)
− γ ė(x,t)

]
. (2.4)

Note that the long-wavelength k → 0 limit enforces global
conservation of the total system momentum, with nonzero
damping only for �k �= 0 internal momenta.

For higher spatial dimensions d = 2 and 3, there are
multiple strain components, describing the physical shear,
compression and “deviatoric” or rectangular, distortions of
the unit cell. A subset of the physical strains are the NOP

order parameter components that enter the nonlinear Landau
free energy. The remaining non-OP physical strains are linked

224101-2



DYNAMICAL SCALING FOR UNDERDAMPED STRAIN . . . PHYSICAL REVIEW B 94, 224101 (2016)

-1.5 0 1.5
e

-1

0

f L
(e

)

τ=1
 =0.6
=-0.1

-3 -2 -1 0 1 2
τ

0

1
ε
ε

b

-3 -2 -1 0 1 2
τ

0

1

2
ξ

sc
t
scη
sc

(a) (b) (c)

FIG. 1. BG case temperature dependent parameters: (a) Landau
free energy density fL vs order parameter e, for various temperatures
τ . There are well-minima at ε̄, and barrier-maxima at ε̄b. (b) Mean-
field order parameter ε̄ and barrier ε̄b vs τ . (c) Scaling length ξsc,
scaling time tsc, and residual T -dependence of ηsc(τ ) vs τ .

to the OP strains by [15,16] “compatibility constraints” that
ensure the distorted unit cells fit together in a smoothly com-
patible way, without dislocations. A constrained minimization
yields an OP-OP effective interaction with an elastic constant
prefactor A1, that is, power-law and anisotropic, inducing
preferred diagonal domain-wall orientations [15,16]. We will
throughout, set A1 = 0, and consider these compatibility-
induced interactions, elsewhere.

For a square-to-rectangle transition, the OP is the deviatoric
strain written as e, and as before, the free energy F =
E0

∑
[fL + fG]. The triple-well Landau term as shown in

Fig 1(a) has minima at e = 0, e = ±ε̄(τ ),

fL = [(τ − 1)e2 + e2(e2 − 1)2], (2.5)

with a scaled temperature defined as

τ (T ) ≡ T − Tc

T0 − Tc

. (2.6a)

The minima are at e = ±ε̄(τ ), where

ε̄2 ≡ 2
3 [1 +

√
1 − 3τ/4], (2.6b)

while the barriers between the austenite and martensite wells
are at ε̄b(τ )2 ≡ 2

3 [1 − √
1 − 3τ/4]. Here, just below T = T0,

or τ (T0) = 1, when the triple wells are degenerate, the OP
jumps from zero to unity ε̄(1) = 1. Below the austenite
spinodal T = Tc or τ (Tc) = 0, the barriers vanish, ε̄b(τ = 0) =
0, and the metastable austenite minimum at e = 0 disappears
(when the martensite minima are at ε̄(0) = ±√

4/3). At zero
temperature, τ (0) = −Tc/(T0 − Tc) (see Fig. 1).

The Ginzburg term is

FG = E0

∑
ξ 2

0 ( �∇e)2, (2.7)

where ξ0 is an OP bending length scale.
The underdamped dynamics is [20]

ρ0ë(�r,t) = c2
0
�∇2

(
∂F

∂e
+ γ ė

)
, (2.8)

where c0 = 1
2 is a normalization. Here with a compatibility

term fC ∼ A1 = 0 suppressed, f = fL + fG, and

∂f

∂e(�r,t) = ∂fL

∂e
− 2ξ 2

0
�∇2e. (2.9)

Redefining space and time variables as before, r →
a0r; t → (γ /2E0)t , (2.8) becomes

�
∂2e(�r,t)

∂t2
= �∇2

�r

[
μ(�r,t) + ∂e(�r,t)

∂t

]
, (2.10)

where the dimensionless � ∼ γ −2 is an inverse-damping
squared and, with the unit-cell length a0 = 1, is

� ≡
(

2E0ρ0

c2
0

)
1

γ 2
. (2.11)

The chemical potential is

μ(�r,t) = μL − ξ 2
0

�∇2
�r e(�r,t), (2.12)

where μL ≡ (1/2)∂fL/∂e = e[τ − 4e2 + 3e4].

C. Scaling out the OP T dependence

As is well-known [1,2,4], the CH dynamics can be cast in T -
independent form, by scaling the OP by its Landau-minimum
value, and introducing T -dependent length and time scales, as

e → ε̄e; r → rξsc(T ); t → t tsc(T ), (2.13)

where ε̄ = |ε|1/2. The kinetic term on the left side of (2.3)
then has a factor ξ 4

sc/tsc, while the Landau term on right side
has a factor ξ 2

scε̄
2. Setting both equal to unity, the scaling

length is seen to be the Ginzburg-Landau correlation length
ξsc = 1/ε̄ = 1/|ε|1/2 = ξGL(T ), while the scaling time is tsc =
1/ε̄4 = 1/|ε|2. The OP-scaled CH dynamics is then in the
T -independent form,

∂e/∂t = �∇2μL − ξ 2
0

�∇4e, (2.14)

where μL = −ef0(e), with a scaled factor f0 = (1 − e2), that
vanishes in the bulk.

For the BG case, the OP-scaling of (2.13) yields factors
of the same type (ξ 2

sc/tsc)2, and ξ 2
sc/tsc, for the inertial and

damping terms, respectively, while the Landau term has
a factor ξ 2

scε̄
4. Setting these to unity, ξsc = 1/ε̄2(τ ),tsc =

1/ε̄4(τ ). The OP-scaled BG dynamics without compatibility
interactions is

�∂2e/∂t2 = �∇2[μL + ∂e/∂t] − ξ 2
0

�∇4e, (2.15)

where μL = −ef0(e) with f0 = 3(1 − e2)(e2 − ηsc(T )). Thus,
for a first-order transition, scaling the OP by its Landau value
still leaves behind a residual temperature dependence, through

ηsc(T ) ≡ τ/3ε̄4, (2.16)

that is negative for τ < 0 below the spinodal, and for τ > 0 is
essentially the (positive) ratio of barrier height to well depth,
ηsc = [ε̄b(τ )/ε̄(τ )]2 [see Fig. 1(c)].

For the numerical simulations of Sec. IV, we will use the
unscaled or T -dependent forms (2.3), (2.10), and only later
multiply the curvature-evolution data by the scaling lengths
and times. For the theoretical analysis of Sec. V, we will use
the “OP-scaled” forms (2.14) and (2.15).

III. STRAIN CORRELATIONS AND
DYNAMICAL SCALING

In this section, we define the OP-OP and related correla-
tions, and their dynamical scaling forms. For a one-component
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martensitic-strain order parameter e(�r,t), we consider a two-
point correlation between OP’s at �r = �R + �r0, and �r ′ = �r0 on
a d-dimensional lattice, and at equal times t . With an average
over all origins �r0 and over many runs, OP-OP correlations are
dependent only on the separation �R = �r − �r ′,

C( �R,t) = 〈e(�r,t)e(�r ′,t)〉, (3.1a)

= 1

N

∑
r0

〈e( �R + �r0,t)e(�r0,t)〉. (3.1b)

With a Fourier expansion e(�r,t) = 1√
N

∑
�k ei�k·�re(�k,t), we

get

C( �R,t) =
∑

�k
S(�k,t)ei�k· �R, (3.2a)

where the time-dependent structure factor is

S(�k,t) = 〈|e(k,t)|2〉. (3.2b)

Since the OP is real, its Fourier coefficients e(�k,t)∗ = e(−�k,t)
and so S(�k,t) = S(−�k,t).

Another correlation that enters is the chemical potential-
order parameter or μ-OP correlation:

C(μ)( �R,t) = 〈μ(�r,t)e(�r ′,t)〉 (3.3a)

=
〈

1

N

∑
r0

μ( �R + �r0,t)e(�r0,t)

〉
. (3.3b)

With a Fourier expansion μ(�r,t) = 1√
N

∑
�k ei�k·�rμ(�k,t), we

get

C(μ)( �R,t) =
∑

�k
S(μ)(�k,t)ei�k· �R, (3.4a)

where only the symmetric part survives, and the μ-OP Fourier
correlation is the real part,

S(μ)(�k,t) = Re〈μ(�k,t)e(�k,t)∗〉. (3.4b)

Since the anisotropic compatibility interaction is switched off,
the system is isotropic, and we can work throughout with aver-
ages 〈. . . 〉 that now include angular averages, so correlations
become C( �R,t) → C(R,t) and S(�k,t) → S(k,t),S(μ)(�k,t) →
S(μ)(k,t), where R ≡ | �R|, and k ≡ |�k|.

The OP-OP correlation C(R,t) for a given time t will show
a fall-off in separation R; while at a given separation R, it
will increase with time. Since ∼L(t) is the scale of the OP-
correlation region, it will also increase with t . As L(t) is also
the separation of the OP dips at domain walls, these strain
patterns must coarsen with time.

Dynamical scaling says that [1,13] (i) the time t enters only
through the length L(t); (ii) the separation R appears only in
scaled form as R̄ ≡ R/L(t) [and in Fourier space, the wave
vector k appears only as k̄ ≡ kL(t)]. Further, in a common
assumption, (iii) the coarsening length scale grows as a power
law L ∼ tα , which is plausible [1], but here is justified. The
OP-OP correlation is then

C(R,t)/C(0,t) = G(R/L(t)) ≡ G(R̄). (3.5)

We find later that the zero-separation values, in a few
hundred time steps, on the onset of dynamical scaling, are
insensitive to time, C(0,t) � C(0,tonset), so we henceforth
suppress the constant denominator.

In Fourier space, the scaling behavior is

S(k,t) = Ldχ (kL(t)) ≡ Ldχ (k̄). (3.6)

For sharp domain walls, of widths small compared to L(t),
Porod’s law holds for the Fourier space structure factor [1,7]

χ (k̄) � 1/[k̄]d+NOP . (3.7)

For NOP = 1, we have χ � 1/(kL)d+1, and a log-log plot of
S(k,t) versus k will be a straight line with slope −(d + 1),
with the length L(t) extracted from the intercepts log10 χ =
−(d + 1) log10 k − log10 L(t). Then with this scaling length,
replots of log10 χ versus log10(k̄), as well as G(R̄) versus R̄,
will show data collapse of different-time curves.

The coarsening curvature is defined [1] as (d − 1)/L(t), but
we will simply work with an inverse length, or

g(t) ≡ 1/L(t), (3.8)

and call this the “curvature,” as it indeed is, for d = 2. Thus
the scaled variables are

R̄ ≡ g(t)R; k̄ ≡ k/g(t). (3.9)

We later show that the correlation dynamics results in a
nonlinear kinetics for the curvature g(t), that has power-law
solutions g ∼ 1/tα , explaining the observed coarsening-length
behavior L ∼ tα .

IV. NUMERICAL RESULTS ON DYNAMICAL SCALING

In this section, we present numerical work, showing
domain-wall (DW) textures, demonstrating dynamical scaling,
and extracting exponent behavior of coarsening curvatures. In
an actual experimental quench, the physical temperature is
changed suddenly, and the coarsening probe is followed in
physical time. Any universal curve independent of quench
temperatures T , is obtained only by later scaling the measured
physical values, by factors dependent on T . As mentioned, we
mimic this experimental procedure in simulations by using the
unscaled forms of both the CH and BG dynamics in Eqs. (2.3)
and (2.10); only then doing scaling on the numerical data
obtained.

The initial high-temperature state for both the CH and
BG cases, corresponds to a single well, with a minimum at
e(�r,t = 0) = 0, plus a few local fluctuations of the ordered
variants. A numerical “quench” then corresponds to evolving
at some suddenly lower temperature T . There will be an
early-time regime where the ordered phases expand, to crowd
out the initially dominant e = 0 background as a DW vapor
phase; while at intermediate and long times, there will be only
competing variants, separated by domain walls, as a DW liquid
phase.

We thus start with a dilute set of initial seeds of both
martensite variants equally, in a sea of e = 0 austenite. The
martensite conversion fraction nm(t) ≡ 1

N

∑
�r e2(�r,t)/|ε̄| is

initially nonzero only at 2% random sites surrounded by
2 × 2 unit cells where e = ±ε̄, with e = 0 elsewhere, and
so nm(0) = 0.08.
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FIG. 2. Ordered-fraction evolutions. (a) BG case martensitic-
ordered fraction nm vs scaled time t ε̄(τ )4, for quenches τ =
−0.1,0.2,0.6. (b) CH case ordered fraction nm vs scaled time
t ε̄4 = tε(T )2, for quenches to ε ≡ (T/Tc − 1) = −0.5,−0.1,−0.02.
Critical slowing down is seen close to Tc, with ordered-fractions rising
only slowly, within the holding-time t < th.

We use an Euler-discretized dynamics of (2.3), (2.10) to find
the OP evolution of e(�r,t), focusing on � = 1. We take time
steps t = 0.05; and spatial derivatives ∇ν as finite-difference
operators (a0)−1ν on a square unit lattice. For wave vectors
�k in the Brillouin zone, ν → 2 sin(kνa0/2), with the grid
scale set to a0 = 1. A fast Fourier transform yields the Fourier
coefficient e(�k,t); and hence the angularly averaged dynamic
structure factor S(k,t) = 〈|e(�k,t)|2〉 of (3.2). (To focus on DW
time scales, a “strain-hardening” procedure is used [9].) Run
averages are taken, over Nrun = 5. A reverse FFT yields the
OP-OP correlations C(R,t) of (3.1). The quench temperature
T is held fixed, for a holding time th = 20 000 steps. The 2D
system is of size L2

sys = 81922.
Figure 2(a) shows the BG case single-run martensite or

ordered-fraction nm(t) versus scaled time t ε̄4(τ ). For temper-
atures just below T = T4 or τ = τ (T4) = 0.74 the martensite
fraction rises slowly towards unity, with larger delays, closer
to T4. Above T4 there is no conversion at all, as the initial
martensite seeds dissolve back into the fourfold symmetry
austenite. We will quench to temperatures sufficiently below
T4 so conversion delays are small.

Figure 2(b) shows the CH case ordered-fraction nm(t)
versus scaled time t/tsc = tε2, where its slow rise for T close
to Tc is due to critical slowing down near a second-order
transition. As will be seen, these intermediate times can
nonetheless show exponent behavior.

Figure 3 shows snapshots of evolving relief plots of the OP
e(�r,t) versus position (x,y), for early time evolutions for t =
100, 250, and 1500, and deep quenches. The strain textures or
DW patterns, clearly coarsen with time.

Figure 4 again shows snapshots of coarsening, but now
as evolving contour plots, for shallow, moderate and deep
quenches. We will later consider several such quenches
just below τ = +0.6, +0.3, and +0.05, corresponding to
τ (T ) ≡ τ (T ) − τ (T4) = −0.1, −0.5, −0.8. The first row is
for a shallow quench, to τ = 0.6, and shows, in a background
of e = 0 austenite, many whorl-texture droplets at early times,
like a DW vapor. The second and third rows are for moderate
and deep quenches around τ = 0.2,−0.1, with wandering
martensite-martensite interfaces, like a DW liquid. For deep
quenches, the coarsening seems to slow, or be arrested to form
a DW glass, as discussed later.

FIG. 3. Relief plot of coarsening. Snapshots for various times,
showing coarsening of the OP strain e(�r,t) after a quench, for system
size 5122. Positive/negative/zero strains are red/blue/green. See cross-
sectional slices. The top of the relief plot shows positive (red) regions,
plunging down through valleys, to reach complementary negative
(blue) values, passing through domain walls regions, where order
parameters go through zero (green).

As a benchmark, we start with the familiar CH case, in 2D
and with a scalar NOP = 1 order parameter. Figure 5 shows
the well-known results of dynamical scaling.

Figure 5(a) shows C(R,t) versus R curves at different
times for a given quench, with ε(T ) = −0.5 shown. Extract-
ing the coarsening length and replotting, we find (i) data
collapse of different-time curves on to a common scaling
curve C(R,t) = G(g(t)R), for that quench; further, (ii) data
collapse of different-quench scaling curves G(R̄) onto a single
T -independent curve. This is consistent with (2.14), which
predicted a OP-scaled CH dynamics would be independent of
temperature. The curvature exponents are consistent with the
literature, with a long-time exponent [1] of α = 1/3 and, for
temperatures close to Tc, an intermediate-time exponent [5]
α = 1/4. Simulations in d = 3 show [8] the same asymptotic
α = 1/3 exponent, that is, thus independent of spatial dimen-
sion.

Figure 6 shows CH case log-log plots of the scaled curvature
g/ε̄ = g/|ε|1/2 versus scaled time t ε̄4 = t |ε|2, showing data
collapse, not only for all times, but also for all temperatures,
as expected from the OP-scaled form of (2.14). Existing
results [1,8,9] have temperature-independent exponents at
intermediate-times where g(t)ξGL(T ) > 1 as α = 1/4; and
a long times where gξGL(T ) < 1 as the Lifshitz-Slyozov
exponent of α = 1/3. Extracting exponent values from data
(as for BG case of Appendix C), we find averaged exponents
and standard deviations as

α = 0.27 ± 0.02 and 0.34 ± 0.02, (4.1)

close to 1/4 and 1/3, as in previous work.
Turning to the BG case quenches, Bales and Gooding

in 1D find a backward-bending phase boundary of inverse
damping versus temperature. Figure 7 shows that in the 2D
case, the phase diagram of inverse damping

√
� ∼ 1/γ versus

temperature τ (T ) also has the transition occurring at lower τ ,
for decreasing damping. Below the boundary, the dilute initial
seeds with small nm, evolve to nm → 1 (martensite), while
above it, nm → 0 (austenite). All quenches are to below the
phase boundary.

For d = 2 in previous Monte Carlo simulations of a related
model, a complex textural energy was parametrized by a
surrogate-droplet energy that was a universal inverted parabola
versus a scaled evolving textural parameter [18]. As a check,
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t=100 t=2000 t=8000 t=20000

t=100 t=2000 t=8000 t=20000

t=100 t=2000 t=8000 t=20000

FIG. 4. Contour-plots of strain evolutions. Snapshots of e(�r,t) textures, held at fixed quench temperatures, up to a holding time th = 20 000
for system size 81922; the pictures are zoomed in to an area of 40962. (a) First row: shallow quench to τ = 0.6, or τ = −0.1. (b) Second
row: moderate quench to τ = 0.2, or τ = −0.5. (c) Third row: deep quench to τ = −0.1, or τ = −0.8, when coarsening seems to slow,
suggesting a glassy state.
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FIG. 5. Cahn-Hilliard OP correlations for various quenches.
(a) For ε = −0.5, data for C(R,t) versus R for various times t .
(b) Porod’s Law behavior in scaled structure factor χ (kL) vs scaled
wave vector kL(t), showing data collapse in Fourier space, for all
times and temperatures. (c) Dynamical scaling in G(R̄) vs scaled
separation R̄ ≡ R/L, showing data collapse in coordinate space, for
all times, and temperatures. (d) Log-log plot of unscaled curvature
g(t) ≡ 1/L(t) vs time t , showing guide to the eye indicated exponents
α = 1/4,1/3, seen within the holding time th.

our BG case dynamical evolutions were benchmarked against
this energy parametrization [23].

The BG case plots of Figs. 8–10 show numerical re-
sults analogous to the CH case, demonstrating dynamical
scaling, for the three quench regimes each, just below τ =
0.6, 0.3, and 0.05, as mentioned. More in detail, all the figures
show the following: (a) correlations C(R,t) versus R curves at
different times, for quench to a given τ (T ); (b) scaled structure
factor χ (kL), using the extracted L(t), versus k̄ = kL showing

1 1000 1000000
t∈2
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FIG. 6. CH curvature coarsening and scaled variables. (a) Plot of
previous CH data of Fig. 5(d), in scaled variables, showing g/ε̄ =
g/|ε|1/2 vs t ε̄4 = t |ε|2. There is data collapse for all temperatures, and
guide to the eye lines indicate exponents of α = 1/4 for intermediate
times, crossing over to α = 1/3 for long times.
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FIG. 7. Phase diagram. Inverse damping � vs scaled quench
temperature τ , with austenite above the transition-temperature curve,
and martensite, below it.

Porod’s tail behavior of exponent −3 and Fourier data collapse;
(c) dynamical scaling with data collapse of different-time
curves on to a common scaling curve C(R,t) = G(g(t)R),
for that τ quench. However, the scaling curves G(R̄), are
different for different τ , especially for the shallow quenches
of Fig. 8; while for deeper quenches of Figs. 9 and 10, the
curves are closer. This is consistent with the OP-scaled result
of (2.15), that shows a residual T dependence of the BG
dynamics, through ηsc(T ) = τ (T )/3ε̄(T )4, that is, insensitive
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FIG. 8. Bales-Gooding OP correlations for shallow quenches.
(a) For τ = 0.6, data for C(R,t) versus R for various times.
(b) Porod’s Law behavior in scaled structure factor χ (kL) vs
scaled wave vector kL(t) showing data collapse in Fourier space,
for all times. (c) Dynamical scaling in G(R̄) vs scaled separation
R̄ ≡ R/L showing data collapse in coordinate space, for all times.
The scaled curves actually have slightly different shapes, for different
temperatures, due to residual τ dependence, and the τ = 0.6 curve
is shifted downwards by 0.1, to highlight this. For decreasing
temperatures τ = 0.5,0.4 the curves are closer in shape and values,
so the data are not relatively shifted. (d) Log-Log plot of scaled
coarsening curvature g(t)/ε̄(τ )2, vs t ε̄(τ )4, with indicated exponents
α = 2/3 seen, within the holding time th.
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FIG. 9. Bales-Gooding OP correlations for moderate quenches.
(a) For τ = 0.3, data for C(R,t) vs R for various times.
(b) Porod’s Law behavior in scaled structure factor χ (kL) vs
scaled wave vector kL(t), showing data collapse in Fourier space
for all times. (c) Dynamical scaling in G(R̄) vs scaled separation
R̄ ≡ R/L, showing data collapse in coordinate space, for all times,
and approximately for all temperatures. (d) Log-Log plot of scaled
coarsening curvature g(t)/ε̄(τ )2 vs scaled time t ε̄(τ )4, with indicated
exponents α = 2/3,1/2 seen within the holding time th.

to τ at low temperatures. Also they show (d) log-log plots
of the coarsening curvature versus time, showing different
indicated exponents in different time windows, within the
holding time th.
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FIG. 10. Bales-Gooding OP correlations for deep quenches,
including below the τ = 0 spinodal. (a) For τ = 0.05, data for C(R,t)
vs R for various times t . (b) Porod’s Law behavior in χ (kL) vs
scaled wave vector kL(t) showing data collapse in Fourier space,
for all times, and temperatures. (c) Dynamical scaling in G(R̄) vs
R̄ ≡ R/L showing data collapse for all times and approximately for
all temperatures. (d) Log-Log plot of scaled coarsening curvature
g(t)/ε̄(τ )2 vs scaled time t ε̄(τ )4 with indicated exponents α =
1/2,1/3,0, seen within the holding time th.
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FIG. 11. Contour plots of 3D strain evolutions. Snapshots for
various times show the OP strain e(�r,t) evolving after a quench, in a
system of size 5123.

Figure 8 shows α = 2/3; Fig. 9 shows α = 2/3 followed
by 1/2; Fig. 10 shows α = 1/2 followed by α = 1/3, and a
peculiar flattening to α = 0 at low temperatures. The trapped
curvature g0 = 0.1 is not just a finite-size effect, as for our
system sizes, g0 � 1/Lsys ∼ 10−4.

The exponent mean values and standard deviations, with
simple arithmetic average over all temperatures, are

α = 0.66 ± 0.02 and 0.53 ± 0.02, (4.2)

that are close to α = 2/3 and 1/2. See Appendix C for a
time-window procedure for extracting exponents.

All this is for 2D. We have also considered 3D coarsening
textures, as shown in surface contour plots of Fig. 11. The 3D
case also shows dynamical scaling as shown in Fig. 12, with the
Porod’s law exponent now −(d + 1) = −4, and data collapse
as before. For successively deeper quenches, the exponents
are found to be again close to α = 2/3, 1/2, 1/3, and 0, so the
coarsening exponents are independent of spatial dimension.
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FIG. 12. Bales-Gooding OP correlations in 3D for τ = 0.01.
(a) Dynamical scaling in G(R̄) vs R̄ ≡ R/L for various times t ,
showing data collapse in coordinate space. (b) Porod’s law behavior
in χ (kL) vs kL showing data collapse in Fourier space, with slope
−(d + NOP) = −4. (c) Log-Log plot of scaled coarsening curvature
g(t)/ε̄2 vs scaled time t ε̄4 showing various indicated exponents. (d)
Fitted exponent values α vs quench temperature τ , showing that the
3D values close to 2/3, 1/2, 1/3, 0 are the same as in 2D.

V. CORRELATION-FUNCTION DYNAMICS AND
DYNAMICAL SCALING

The exponent behavior has been extracted from various
OP dynamics by many authors [1,5,6,11], including Siggia
through insightful heuristic arguments; Bray and Rutenberg
through matching global and local dissipation; Ohta, Jasnow,
and Kawasaki; Bray, and Puri, and Mazenko, through a
fluctuating domain wall approach; and Langer et al. through
a self-consistent truncation of correlation function dynamics.
We suggest a complementary, and systematic curvature kinet-
ics approach, to extract exponent behavior.

In our theoretical analysis, we will use throughout, the
OP-scaled form of the CH and BG dynamics, that fully or
mostly, scales out the OP temperature dependence. We first
obtain the dynamics of the two-point OP-OP correlation as
done previously, elsewhere [5].

A. Evolution of correlation function

The correlation function dynamics can be derived [5,24].
from a given order parameter dynamics, such as the OP-scaled
dynamics of (2.14) and (2.15). From (2.14), the “mass-
conserving” Cahn-Hilliard correlation function dynamics is

∂

∂t
C(R,t) = �∇2

�RC(μ)(R,t). (5.1)

From (2.15), we similarly get a “momentum-conserving”
Bales-Gooding correlation dynamics,

�
∂2

∂t2
C(R,t) = �∇2

�R

[
C(μ)(R,t) + ∂C(R,t)

∂t

]
. (5.2)

The chemical potential-order parameter correlation or μ −
OP correlation of (3.3), has separate Landau and Ginzburg
contributions,

C(μ)(R,t) ≡ C(μL)(R,t) + C(μG)(R,t), (5.3)

where the Ginzburg term depends directly on the OP-OP
correlation,

C(μG)(R,t) ≡
〈[

1

2

∂fG

∂e(�r,t)
]
e(�r ′,t)

〉

= −�∇2
�RC(R,t), (5.4a)

while the Landau contribution carries the higher powers of the
strain

C(μL)(R,t) ≡
〈[

1

2

∂fL

∂e(�r,t)
]
e(�r ′,t)

〉

≡ −〈f0(e(�r,t))e(�r,t)e(�r ′,t)〉, (5.4b)

where the BG-case scaled polynomial factors f0(e) have been
given earlier.

B. Dynamic scaling ansatz

We assume the correlation functions have a dynamic scaling
form, and insert this as an ansatz or trial solution,

C(R,t) = G(R̄), (5.5a)
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where the argument of the scaling function is henceforth

R̄ ≡ g(t)R. (5.5b)

For the Landau part of μ − OP correlation function with
three lengths ξ0, R, and L, we can similarly assume a general
scaling form in ratios R/L(t),ξ0/L(t):

C(μL)(R,t) = (gξ0)δLG(μL)(R̄,gξ0), (5.6)

where G(μL) is some scaling function, and δL some universal
exponent.

The model dynamics can be written in terms of R̄

derivatives of the scaling functions, and time-derivatives of
the curvature g(t). The Laplacians are derivatives in R̄, with
no angular derivative surviving, when acting on isotropic
functions

�∇2
�R = g2D̂; D̂ ≡

[
∂2

∂R̄2
+ (d − 1)

R̄

∂

∂R̄

]
. (5.7)

The time derivatives are

∂G(gR)

∂t
=

{
ġ

g

}
R̄G′(R̄), (5.8a)

∂2G(gR)

∂t2
=

{
g̈

g

}
R̄G′(R̄) +

{
ġ

g

}2

R̄2G′′(R̄), (5.8b)

where primes denote derivatives G′ ≡ dG/dR̄,G′′ ≡
d2G/dR̄2 and so on. Note the prefactors of the curvature
time-derivatives contain G′(R̄), which is slowly varying at
its turning points G′′(R̄ = R̄0) = 0.

The Cahn-Hilliard (CH) dynamics is, setting ξ0 = 1,{
ġ

g

}
R̄G′(R̄) = gδL[g2D̂G(μL)(R̄,g)] − g4[D̂]2G. (5.9a)

The Bales-Gooding (BG) dynamics is

�

[{
g̈

g

}
R̄G′(R̄) +

{
ġ

g

}2

R̄2G′′(R̄)

]

= g2+δL [D̂G(μL)(R̄)] − g4[D̂2G] + g2

{
ġ

g

}
D̂(R̄G′).

(5.9b)

The derivative operators of (5.7) yield

D̂G(μL) = 1

R̄2
[(d − 1)R̄G(μL)′ + R̄2G(μL)′′], (5.10a)

D̂2G = 1

R̄4
[(3 − d)(d − 1)(R̄G′ − R̄2G′′)

+ 2(d − 1)R̄3G′′′ + R̄4G′′′′], (5.10b)

D̂[R̄G′] = 1

R̄2
[(d − 1)R̄G′ + (d + 1)R̄2G′′ + R̄3G′′′].

(5.10c)

Collecting terms above, and dividing through by R̄G′(R̄),
we have for the CH case,

−ġ

g
= J3(R̄)g2+δL + J4(R̄)g4, (5.11a)

and for the BG case,

−�

[
g̈

g
+ I2(R̄)

{
ġ

g

}2]
+ K1(R̄)

{−ġ

g

}
g2

= J3(R̄)g2+δL + J4(R̄)g4. (5.11b)

Here, Jn are R̄-dependent coefficients of powers gn of the force
terms, while K1(R̄) is a coefficient of the kinetic damping term.
(The Landau term coefficient is called J3(R̄), as δL = 1, later.)

The coefficients in Eq. (5.11) are

K1(R̄) ≡
[−1

R̄2

]
[(d − 1) + (d + 1)I2 + I3], (5.12a)

J3(R̄,T ) ≡
[−1

R̄2

]
[(d − 1)R̄G(μL)′ + R̄2G(μL)′′]/R̄G′,

(5.12b)

J4(R̄) ≡
[

1

R̄4

]
[(3 − d)(d − 1)(1 − I2)+2(d − 1)I3+I4],

(5.12c)

with all in terms of the derivative ratios of G(R̄),

I2 ≡ R̄2G′′(R̄)

R̄G′(R̄)
,

I3(R̄) ≡ R̄3G′′′(R̄)

R̄G′(R̄)
, I4(R̄) ≡ R̄4G′′′′(R̄)

R̄G′(R̄)
. (5.13)

So far, this is formally exact, with the only input being
a dynamical-scaling trial solution. The coefficient J3 con-
tains the yet unspecified G(μL), that carries the higher-order
correlations in the OP. Its further evolution equations would
induce a dynamically coupled, infinite hierarchy [5] . A closure
approximation is needed, and there must be a coefficient
evaluation at some physically motivated, expanding-front
value of R̄.

C. Approximations

1. Closure approximation

The correlation between the Landau chemical potential and
the OP is

C(μL) = −〈f0(e(�r,t))e(�r,t)e(�r ′,t)〉, (5.14a)

and the factor f0(e) carries higher order powers of e, that
induce the correlation hierarchy. For a uniform or bulk
order parameter e = ±1, the Landau part of the chemical
potential vanishes, μL ∼ ∂fL/∂e = −ef0(e) = 0. The corre-
lation C(μL)(R,t) has contributions only from the nonuniform
OP regions around domain walls, where f0(e) �= 0 over a
thickness ξ0 between the competing bulk values. Thus C(μL)

is a correlation between an OP and many possible DW. It
decreases for decreasing DW thickness ξ0, and C ∼ (gξ0)δL

as in Eq. (5.6). Interpreting the scaling function G(μL) as a
correlation between the OP and a single DW the prefactor is
then the probability of finding a DW, enabling an estimate of
δL.

In a coarsening volume L(t)2, the probability of finding
a scalar-OP DW is roughly (ξ0L)/L2 = ξ0/L = ξ0g. The
exponent in Eq. (5.6) for NOP = 1 is then δL = 1.
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As Bray [1] has noted, for general number of OP compo-
nents, and in d spatial dimensions, the vanishing at a DW of
all the NOP components, corresponds to a “surface” of reduced
dimension d − NOP > 0. Thus more generally, in a coarsening
volume Ld , the probability of finding a DW is roughly
(ξNOP

0 Ld−NOP )/Ld = (ξ0/L)NOP = (ξ0g)NOP . The exponent for
general NOP is then δL = NOP, and (5.6) is taken as

C(μL)(R,t) = (gξ0)NOPG(μL)(R̄,gξ0). (5.14b)

We make a simple closure approximation for the domain-
wall scaling function G(μL)(R̄,gξ0). To leading order in gξ0,
we take G(μL)(R̄,gξ0) � G(μL)(R̄,0). [However, in Sec. VI, we
will consider possible higher curvature corrections in gξ0 from
G(μL)(R̄,gξ0), in a toy model for coarsening arrest.] We then
replace the DW factor f0(e) by its spatial average f̄0(T ) =
〈f0(e(�r))〉. This yields, as in Appendix A,

G(μL)(R̄,gξ0) � G(μL)(R̄,0) = −f̄0(T )G(R̄). (5.14c)

Thus, reasonably, G(μL) has the same R̄ dependence as G,
as also holds in other approximations [5].

Inserting this closure approximation into the Landau term
coefficient of (5.12b),

J3(R̄) � f̄0(T )

R̄2
[(d − 1) + I2(R̄)]. (5.15)

2. Coefficient evaluations

The correlation-function dynamics of (5.11) is now closed,
but has a peculiar form, of an equation nonlinear in the
curvature g(t) and its time derivatives; with coefficients linear
in G(R̄) and its scaled space derivatives.

The coefficients are evaluated at some constant separation
R̄. As the slope G′(R̄) is a prefactor in the kinetic terms, it
is natural to focus on where it is slowly varying, at its own
turning point, G′′(R̄0) = 0. This defines a dominant curvature
front R = R̄0L(t). For both CH and BG dynamics, G(R̄) first
has a minimum (G′′ > 0), and then a maximum (G′′ < 0), so
this point where G′′ = 0 is somewhere in between. We evaluate
all coefficients at the first turning point R̄ = R̄0 of G′(R̄), that
is also a nonstationary inflection point of the scaled correlation
G(R̄).

With G′′(R̄0) = 0 and hence I2(R̄0) = 0, the coefficients
are

K10 ≡ K1(R̄0) =
[−1

R̄2
0

]
[I3(R̄0) + (d − 1)], (5.16a)

J30 ≡ J3(R̄0) = f̄0(T )(d − 1)

R̄2
0

, (5.16b)

J40 ≡ J4(R̄0)

=
[

1

R̄4
0

]
[I4(R̄0) + 2(d − 1)I3(R̄0) + (3 − d)(d − 1)].

(5.16c)

Note that I2 = 0 in the inertial term of (5.8b), suppresses
nonlinearities, leaving just a curvature acceleration, ∼�g̈/g.
Fits to G(R̄) in Appendix B yield R̄0 > 1.

An alternative, and equivalent choice for coefficient evalua-
tion is where the OP gradient-gradient correlation, or effective

DW-DW correlation

�(R̄) ≡ g−2〈∇�re(�r,t).∇�r ′e(�r ′,t)〉 (5.17)

flattens to zero. Figure 15(d) of Appendix B shows that this
flattening occurs near the previous choice, of the first inflection
point R̄/R̄0 = 1. This gives a physical justification to our
evaluation choice. The simple approximations made here are
solely for the limited purpose of determining the now-constant
coefficients, of a curvature kinetics.

VI. CURVATURE KINETICS

The dynamics is now in terms of g(t) only, and can
yield exponent behavior for appropriate coefficient signs; with
possible crossovers in time between these exponents.

The curvature kinetics, derived from a given order param-
eter dynamics, yields five main results. (i) There are time
regimes where the curvatures decay as single power laws in
time g ∼ 1/tα . (ii) The exponents α are ratios of integers,
induced directly from the integer powers of the curvatures,
in each derived kinetics. (iii) In addition to the long-time
exponents, there can also be different exponent behavior at
intermediate times, from two different force terms sequentially
balancing the kinetic term. (iv) The exponents are manifestly
independent of spatial dimension d that can be scaled out,
but can depend on the number of order parameter components
NOP. (v) The scaled kinetics can be solved analytically in
some cases, providing a universal scaling function of curvature
versus time.

The curvature kinetics for the CH case is

−ġ

g
= J30g

2+NOP + J40g
4. (6.1)

The curvature kinetics for the BG case is

−�

[
g̈

g

]
+ K10

{−ġ

g

}
g2 = J30g

2+NOP + J40g
4. (6.2)

We now scale times and curvatures in crossover values
tcr,gcr, and define

t̄ ≡ t/tcr, ḡ ≡ g/gcr. (6.3)

The “dot” notation henceforth is Ẋ ≡ dX/dt̄ , and we pull out
the coefficient signs σn through Jn0 = σn|Jn0|.

The curvature kinetics for the CH case is

− ˙̄g/ḡ = σ3
{
tcrg

2+NOP
cr |J30|

}
ḡ2+NOP + σ4

{
tcrg

4
cr|J40|

}
ḡ4.

(6.4a)

Choosing both the curly brackets to be unity,

gcr =
[ |J30|
|J40|

]1/λ

, tcr =
[ |J40|2+NOP

|J30|4
]1/λ

, (6.4b)

where λ = 2 − NOP. For the special case NOP = 2, there is a
line of possible scalings, tcrḡ

4
cr = 1/(|J30| + |J40|).

As discussed in Appendix B, we find from the CH case fits
to the data, that R̄0 ∼ 4.4, independent of τ , and J30,J40 are
positive, or σ3 = σ4 = 1. The CH scaled curvature kinetics is
then

− ˙̄g/ḡ = ḡ3 + ḡ4. (6.4c)
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The curvature kinetics for the Bales-Gooding case is

−{
�/t2

cr

}
¨̄g/ḡ + σ1

{|K10|g2
cr/tcr

}
ḡ2(− ˙̄g/ḡ)

= σ3
{|J30|g2+NOP

cr

}
ḡ2+NOP + σ4

{|J40|g4
cr

}
ḡ4. (6.5a)

Dividing through by {|K10|g2
cr/tcr}, and choosing the crossover

scales such that the resultant prefactors are unity as before,

gcr =
[ |J30|
|J40|

]1/λ

, tcr = |K10|
[ |J40|NOP

|J30|2
]1/λ

,

�′ ≡ �

|K10|g2
crtcr

= �|J40|
|K10|2 . (6.5b)

where �′ is independent of NOP.
For the BG case, R̄0 and hence the coefficients, depend on

τ , as in Fig. 15(c) of Appendix B. While K10,J40 are positive,
or σ1 = σ4 = +1, the sign σ3 of J30 is that of f̄0 ∼ (1 − τ/τf ),
as in Appendix B. The BG scaled curvature kinetics is then

−�′ ¨̄g/ḡ + ḡ2(− ˙̄g/ḡ) = σ3ḡ
3 + ḡ4. (6.5c)

Note that in both the CH and BG cases, d only enters the
coefficients, and can be scaled out. The exponents are then
predicted to be independent of spatial dimension, as is indeed
found in simulations, for the CH case [1,9], and in the BG
case of Fig. 12. We now turn to power-law solutions and their
regimes.

A. Exponent regimes for CH equation

For a pure power-law decay, ḡ(t) = ḡα/t̄α , the time deriva-
tive terms in Eq. (5.11) are independent of the prefactor ḡα;
and the time powers are independent of α:

˙̄g

ḡ
= −α

t̄
;

¨̄g

ḡ
= α(1 + α)

t̄2
. (6.6)

For asymptotic vanishing of the curvature ḡ(t) → 0, the
balancing of kinetic terms with the lowest power of g < 1
determines the long-time behavior; while a balancing with
higher powers of curvature determines the intermediate-time
behavior.

With σ3 = σ4 = +1, as in Appendix B, the CH curvature
kinetics is (− ˙̄g/ḡ) = ḡ3 + ḡ4. The kinetic term can balance the
two forces sequentially, resulting in two exponents: (− ˙̄g/ḡ) =
ḡn, with n = 3,4, with power-law solutions ḡ = ḡα/t̄α , with
α = 1/n and ḡα = (1/n)1/n.

In previous results [9], from heuristic arguments, the t̄1/4-
regime is associated with diffusion of material along interfaces,
while the t̄1/3-regime is associated with bulk diffusion. In the
curvature kinetics approach, these physical results are derived
directly, yielding the 1/4 exponent from the Ginzburg term,
and the 1/3 exponent from the Landau term.

We go back to the scaled CH dynamics of (6.4c) and note it
can be integrated exactly to yield a theoretical scaling function.
For NOP = 1,

t̄ = I (1/ḡ), (6.7a)

where

I (Y ) =
[ ∑

�=1,2,3

{(−1)�+1Y �/�} − ln |1 + Y |
]
, (6.7b)

where the sum is the first three terms of an expansion of the
logarithm ln(1 + (1/ḡ)). For Y � 1, the leading term is Y 4,
yielding ḡ ∼ 1/t̄1/4, while for Y � 1 the leading term is Y 3,
yielding ḡ ∼ 1/t̄1/3.

For multicomponent [1,10] or “vector” OP with NOP �
2, the Landau term ḡ2+NOP is comparable to the Ginzburg
term ḡ4 for NOP = 2; and smaller than it, for NOP > 2. Hence
the long-time exponent is predicted to be α = 1/4 for vector
order parameters. This is again consistent with known 2D
simulation results [1], that yield a long-time falloff of ḡ ∼
1/(t log10 t)1/4 for NOP = 2, and of ∼1/t1/4 for NOP > 2. The
intermediate time exponents are predicted to be α = 1/(2 +
NOP), or 1/5,1/6.. for NOP = 3,4, . . . .

B. Exponent regimes for BG equation

From Appendix B, the coefficient J30 ∼ f̄0(T ) ∼ −(1 −
τ/τf ) goes from negative to positive on cooling through
τ = τf ∼ +0.3. Simulations further show there is a possible
flattening of the curvature for quenches below some τg ∼
−0.3. Hence we consider three temperature quench ranges,
with characteristic exponents.

1. τ > τ f > τg quench range

Here, σ3 = −1, and the scaled curvature kinetics is

−�′ ¨̄g/ḡ + ḡ2(− ˙̄g/ḡ) = −ḡ2+NOP + ḡ4. (6.8)

For scalar order parameters NOP = 1, a balance between
the Landau term ḡ3 and the acceleration term �/t̄2 yields
ḡ ∼ 1/t̄2/3. A balance between the Ginzburg term ḡ4 and
the damping term ḡ2/t̄ supports ḡ ∼ 1/t̄1/2. Since damping
should dominate acceleration at late times, the kinetics predicts
α = 2/3 in the acceleration-dominated or inertial regime at
intermediate times; and α = 1/2 in the damping-dominated
regime at long times. This explains the behavior of Figs. 8–10.
Simulations in other models with inertial terms, Ref. [10], can
show other exponent sequences of α = 1 and 1/2.

For vector order parameters with NOP > 2, the acceleration
dominated intermediate-time regime shows exponents α =
2/(2 + NOP) = 2/5, 1/3, . . . for NOP = 3, 4, . . . ; while the
damping dominated late-time regime shows exponent α = 1/2
as before. For the special case NOP = 2, one needs higher order
curvature terms, similar to the toy model as given below, that
could yield α = 2/5, in this quench range.

2. τ f � τ > τg quench range

Here, σ3 = +1, and the Landau term is the wrong sign to
balance the acceleration. In fact, going back to the unscaled
kinetics if τ = τf , then J3 = 0, and only the Ginzburg term
survives, to balance both the acceleration and damping.
Inserting a pure power-law solution ḡ = ḡα/t̄α ,

ḡ4
α/t̄4α − (

ḡ2
α/t̄1+2α

) + (�′α(α + 1)/t̄2) � 0. (6.9)

This gives α = 1/2, with a prefactor from solving the quadratic
as ḡ2

1/2 = (1/4)(1 + √
1 − 12�′). There is also the possibility

of the damping and Landau terms balancing, to give in a narrow
τ region, a small final tail ḡ ∼ 1/t � 1 with α = 1, but after
inaccessibly long crossover times [25].
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FIG. 13. Curvature potential. (a) Schematic plot of parameter
θ (τ ) = 1 − J (τ0)/J (τ ) vs τ , showing linear approximation and
special temperatures τ = τ0,0,τg . (b) Plot of curvature potential V (ρ)
vs scaled curvature ρ, for various decreasing values of the scaled
variable θ̄ (τ ). Note onset of a metastable minimum in curvature,
below θ̄ = −1, at a coarsening arrest onset temperature τg .

3. τ < τg < 0 quench range

For deep quenches well below the τ = 0 spinodal, simu-
lations show a peculiar curvature flattening g(t) → g0, or the
exponent α = 0 of Fig. 10, corresponding to the possible DW
glass [26] of Fig. 4(c). A similar “coarsening arrest” has been
considered elsewhere [22]. We here suggest a toy model, to
provide some understanding.

C. Coarsening arrest: a toy model

The closure approximation (5.14c) had kept only the lead-
ing term in gξ0, approximating G(μL)(R̄,gξ0) � G(μL)(R̄,0) =
−f̄0G(R̄), as is reasonable for an asymptotically vanish-
ing curvature. However, if for deep quenches the curva-
ture is constant, then with higher terms, G(μL)(R̄,gξ0) �
[−f̄0 + f̄1(gξ0) − f̄2(gξ0)2]G, where f̄n are constants. For
(6.2) in the damping-dominated regime,

K10

{−ġ

g

}
g2 = [J30 − X40g + X50g

2]g3 + J40(τ )g4

= J30g
3 + {J40(τ ) − X40}g4 + X50g

5, (6.10)

where X40 ∼ f̄1,X50 ∼ f̄2 are the extra coefficients, assumed
for simplicity to be positive, τ -independent constants.

Figure 15(c) of Appendix B shows J40(τ ) has a dip near
τ = 0. Just above this, the falling J40(τ ) could cross the
constant at some positive τ = τ0 > 0 where J40(τ0) = X40.
Then doing scaling as before to absorb |J30|,|J40(τ )|, and with
the scaled version of the coefficient X50 factor written without
subscripts, as X̄,

ḡ2(− ˙̄g/ḡ) = ḡ3 + θ (τ )ḡ4 + X̄ḡ5, (6.11)

where

θ (τ ) ≡ 1 − J40(τ0)/J40(τ ) � b(τ/τ0 − 1) (6.12)

and θ (τ0) = 0.
Drawing on the J40(τ ) behavior of Fig. 15(c), we assume

a θ versus τ curve as in the schematic of Fig. 13(a), and for
ease of discussion, assume linearity around τ0, as in Eq. (6.12),
followed by a low-temperature levelling (dashed curve). The
slope b, in terms of the J40(τ ) values at τ = τ0,0, is b =
(J (τ0)/J (0)) − 1 > 0.

Forces in Eq. (6.11) vanish at the usual zero-curvature ḡ = 0
final value. However, for τ/τ0 < 1, i.e., for θ < 0, the net
forces can also vanish at a nonzero, metastable curvature ḡ0.
Absorbing X̄ by defining scaled curvatures and temperature
deviations,

ρ ≡ g
√

X̄; θ̄ (τ ) = θ (τ )/2
√

X̄, (6.13)

we find (6.11) becomes

ρ̇ = −ρ2

√
X̄

[1 + 2θ̄ρ + ρ2] ≡ −1√
X̄

∂V

∂ρ
, (6.14)

where V is an effective curvature potential

V (ρ,θ̄ ) = ρ3

3
+ θ̄ρ4

2
+ ρ5

5
(6.15)

with maxima/ minima at roots

ρ±(τ ) = −θ̄ (τ ) ±
√

θ̄(τ )2 − 1 (6.16)

provided θ̄ < 0 and θ̄2 > 1. The roots are real only for
(subspinodal) deep quenches τ < τg , below the glassy or
coarsening-arrest temperature τg < 0, defined by θ̄(τg) ≡ −1.
Here,

τg/τ0 = −[(
√

4X̄/b) − 1] < 0, (6.17)

and ρ(τg) = 1. See Fig. 13(a).
The curvature potential V is plotted in Fig. 13(b), showing

manifestly metastable minima. To check that parameters
are reasonable and obey required constraints, we draw on
Fig. 15(c) to estimate values as τ0 � +0.025, J (τ0) �
10, and J (0) � 1 so that b � 10 > 0. Taking X̄ = 100, one
has τg � −0.025 < 0 and θ (τg) � −20. The trapped curvature
is then g0(τg) � 0.1, comparable to the flat value of Fig. 10.

The intermediate-time curvature decay towards the
metastable value g0, is dominated by the highest power,
˙̄g � −X̄ḡ4, that yields ḡ ∼ 1/t̄1/3, or α = 1/3, preceding
the curvature flattening, as is indeed the case in Fig. 10.
The (d-independent) toy model thus explains the relevant
coarsening-arrest features seen in Fig. 10 for 2D and in Fig. 12
for 3D.

VII. DISCUSSION AND FUTURE WORK

Dynamical scaling is found in numerical simulations for
martensitic models with first-order transitions and Bales-
Gooding dynamics. The coarsening exponent values include
α = 2/3 and 1/2 for intermediate and long times. For deep
quenches, there is some indication α = 1/3 can occur, before
an α = 0 value of coarsening arrest.

The simulation exponents are theoretically understood
through a curvature kinetics, can be generally derived as
follows. (i) Derive the dynamics of the two-point OP-OP
correlation function, from a given OP dynamics. (ii) Insert
a dynamical scaling form, as an ansatz solution, with partial
time derivatives now yielding total time derivatives of the
curvature, multiplying space derivatives of the scaled corre-
lation function. (iii) Make approximations that (a) treat the
chemical potential-OP correlation as a DW-OP correlation
and (b) spatially average the internal DW profile to yield
a two-point OP-OP correlation, providing closure of the
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hierarchy. (iv) Evaluate coefficients at a dominant curvature
front, yielding a characteristic curvature kinetics for the given
OP dynamics. (v) Balance kinetic and force terms, to find
power-law contributions, and their exponents.

We will elsewhere study the effects of compatibility-
induced power-law anisotropic interactions. Since the Fourier
kernels are scale-independent, dynamic scaling could again
hold. Further work could study multicomponent martensitic
order-parameter dynamics with NOP = 2, 3 and NV = 3, 4, 6;
and for both 2D and 3D.

More generally, the curvature kinetics method could be
tried out on other models such as binary fluids, where different
sequential exponents α = 1/3, 1, and 2/3 also occur [1]. Of
course, in the case of fluids, we have to deal with two coupled
equations for the composition and velocity fields.
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APPENDIX A: CLOSURE APPROXIMATION FOR
CORRELATION DYNAMICS

The DW-OP correlation of (5.14a) is

C(μL) = −〈f0(e)e(�r,t)e(�r ′,t)〉, (A1)

where the factor f0(e) vanishes for the equilibrium uniform
OP, f0(ε̄) = 0, and is nonzero only in a region of order ξ0

around the domain walls, i.e. in a relative volume (ξ0/L). In
a closure approximation, we spatially average at each domain
wall, the factor as 〈f0(e(x))〉 ≡ f̄0(T ) so

C(μL)(R,t) � −(ξ0/L)f̄0(T )G(R/L). (A2)

Note that [1] the total chemical potential around a spherical
domain wall is a constant μ < 0 inside, and μ ∼ −σ/R =
−σ/R̄L outside, where σ is the surface tension. Hence, for
fixed R̄, one also has effectively, μ ∼ 1/L.

Now we estimate the average f̄0 for a domain wall. For
the CH case and a double-well scaled Landau potential,
fL = −e2 + e4/2, so f0(e) = 1 − e2, as plotted versus e in
Fig. 14(a). In a direction perpendicular to the domain wall and
a thickness ∼ξ0, we take a linear profile e = x for |x| < 1;
and flat at e(x) = ±1 for |x| > 1. Then spatially averaging,
〈x̄2〉 = 1/3 and

f̄0 = (2/3) (A3)

is constant, as in Fig. 14(b). Thus, for the CH case, J3 ∼ f̄0 > 0
is always positive, or σ3 = +1 as used in the text.

For BG dynamics, and a triple-well scaled Landau po-
tential, f0(e) = 3[1 − e2)(e2 − ηsc(τ ))] as plotted versus e in
Fig. 14(c), where ηsc ≡ τ/3ε̄4. We take linear profiles e = x

as before, for simplicity (although the martensitic profiles
actually are different [14]), to obtain

f̄0 = 3[(1 + ηsc)〈x2〉 − 〈x4〉 − ηsc] (A4)

or

f̄0(τ ) = (2/5)[1 − 5ηsc(τ )]. (A5)
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FIG. 14. Evaluation of prefactor f̄0. First row: (a) plot of CH
case f0(e) vs e, showing it has a maximum at e = 0, at the center
of a domain wall, and is zero in the bulk on either side. (b) CH case
average f̄0(T ) vs ε showing constant positive value. Second row:
(c) plot of BG case f0(e) versus e for τ = 0,0.6, showing a double
peak, with a minimum at e = 0, that can give a negative f0(e). (d)
BG case average f̄0(T ) vs τ showing change of sign from negative
to positive, on cooling through τ = τf . The approximation gives
τf = 0.7, while the simulation suggests from exponent change, that
τf � 0.3.

From Fig. 14(d), f̄0(τ ) changes sign from negative to positive
on cooling through some τ = τf . The temperature dependence
of f0(T ) comes from the first-order nature of the Landau free
energy fL(e). A linear form is

f̄0(τ ) = (2/5)[1 − τ/τf ]. (A6)

The exponent α = 2/3 is supported for τ >τf when f̄0 <0,
and simulations find this exponent for τ < τf � +0.3. How-
ever, the above mean-field-like approximation yields a higher
value, τf � +0.7.

APPENDIX B: COEFFICIENTS OF CURVATURE
KINETICS

The coefficients J3(R̄), J4(R̄), and K1(R̄) are evaluated at
some dominant scale R̄0. The scaled function G(R̄) is fitted to
a hexic-exponential function

G(R̄) =
[

1 +
6∑

�=1

b�R̄
�

]
e−λR̄ (B1)

from the origin at R̄ = 0 to R̄ = 10. We choose R̄0 as
the nonstationary inflection point where G′′(R̄0) = 0, while
G′(R̄0) �= 0.

The CH value is R̄0 = 4.4, independent of temperature,
as expected from the OP-scaled CH dynamics with a
second-order transition. The coefficients are positive, J30 =
+0.03; J40 = +0.25, so the signs are σ3 = σ4 = +1.
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FIG. 15. Signs of BG case curvature-dynamics coefficients.
(a) Plot of coefficient-evaluation choice R̄0(τ ) vs τ from data, with
dashed lines as guides to the eye. Arrows mark local maxima near
τ = 0 and τ = τf = 0.3. (b) Plot of J30 ∼ f̄0(T )/R̄0(τ ) vs τ , showing
the change in sign at τf � 0.3. (c) Log-linear plot of (positive)
coefficients log10(J40), log10(K10) vs τ . Arrows mark local minima
near τ = 0, 0.3. (d) Plot of domain-wall correlation �(R̄) vs R̄/R̄0(τ ),
showing that it flattens to zero, close to our inflection-point choice of
R̄/R̄0(τ ).

The BG value R̄0(τ ) is temperature-dependent through the
residual ηsc(τ ) of (2.16) in the OP-scaled BG dynamics with
a first-order transition. Figure 15(a) shows the values of R̄0

versus τ , and Fig. 15(c) shows the coefficients evaluated at this
R̄0(τ ). Since K10 > 0,J40 > 0, the signs are σ1 = σ4 = +1
always. From Fig. 15(b), the sign of J30 ∼ f0(T )/R̄0(τ ) is
negative for τ > τf (supporting an exponent α = 2/3), but
changes sign to positive on cooling through τf . These results
are used in the curvature kinetics of the text.

The text also has a toy model for coarsening arrest [22] with
the g4 effective-coefficient dependent on J40(τ ) − X̄, where X̄

is a constant. Note the Fig. 15(a) local maxima in R̄0 at τ = 0
and 0.3, show up in the Fig. 15(c) curves of J40(τ ) ∼ 1/R̄0(τ ),
as local minima. Thus the fall of J40(τ ) for temperatures just
below the τ = 0 spinodal, can make the effective g4 coefficient
J40(τ ) − X̄ go negative at low temperatures, supporting a
metastable glassy state of trapped curvature.

An alternate choice of R̄ for coefficient evaluation, is where
the domain-wall correlations fall to zero. As domain walls
carry nonzero OP gradients, we define the gradient-gradient
OP correlations scaled in the curvature as

�(R̄) ≡ g−2〈∇�re(�r,t).∇�r ′e(�r ′,t)〉 = g−2∇�r .∇�r ′G(R̄)

= −D̂G(R̄) = −[G′′ + (d − 1)G′/R̄]. (B2)

This is a measure of DW correlations during coarsening, and
also appears in the correlation dynamics of (5.9a) and (5.9b).
Figure 15(d) shows that �(R̄) flattens to zero close to R̄/R̄0 =
1, so this alternative choice gives the same coefficient signs,
as our G-inflection choice.

0 10000 20000 30000 40000
tε4

0

2

4

6

8

10

Y
2/3

Y
1/2

100 1000 10000 100000
tε4

10
-3

10
-2

10
-1

10
0

g/
ε2

(b)(a)

0.662

0.534

t
1/6

t
-1/6

FIG. 16. Intermediate and late time BG exponents for τ = 0.2.
(a) Plot of data for Yα defined in the text vs t ε̄4, for test values α =
2/3,1/2. Flat regions are from dominance of single power laws, with
exponents close to these test values. Horizontal bars denote the time
windows taken, for numerical fits. (b) Plot of log10 g/ε̄2 vs log10 t ε̄4

showing lines numerically fitted, within the time windows (see
text).

APPENDIX C: COARSENING EXPONENTS

We here outline the procedure for numerically extracting,
from curvature falloffs, the exponent values given in the text.
A possible diagnostic for whether g(t) has a power-law decay
component ∼1/tα is to plot tαg(t) versus t . It will flatten,
where α is the most prominent contribution, and fall (or rise) as
tα−β , where another exponent β contributes more substantially.
Figure 16(a) shows the variable

Yα = (t ε̄4)α(g/ε̄2), (C1)

plotted versus (t ε̄4) for the test or trial values α = 2/3 and 1/2.
This shows clear signatures of single power-law decay con-
tributions, with actual exponents close to these trial values.
A supporting width diagnostic for the time windows, is
d log10 g/d log10 t versus t (not shown): although the data is
noisy, it also shows flat regions as in Fig. 16(a). Figure 16(b)
shows linear fits in log-log plots within these single-power-law,
dominance windows, that yield the actual, numerically fitted
exponents.

With this procedure, in the dominance time-windows,
the exponent mean values and standard deviations, for
τ = 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05 are found to be,
respectively, α = 0.619 ± 0.012; 0.680 ± 0.018; 0.688 ±
0.014; 0.683±; 0.662 ± 0.015; 0.636 ± 0.013; 0.649 ±
0.026, which are all close to 2/3. For τ = 0.3, 0.2, 0.1, 0.05,
the exponents are found to be α = 0.555 ± 0.03; 0.534 ±
0.02; 0.543 ± 0.01; 0.497 ± 0.01, which are all close to 1/2.
The exponents are expected to be τ independent, and a simple
arithmetic average yields α = 0.661 ± 0.017; α = 0.531 ±
0.016. Keeping two significant figures for consistency,

α = 0.66 ± 0.02 and 0.53 ± 0.02. (C2)

For deep quenches of Fig. 10, the other exponents seen are
α = 0.35 ± 0.03; α = 0.001 ± 0.002, which are close to 1/3
and 0. See Sec. VI on coarsening arrest.
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