
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 94, 220502(R) (2016)

Trapping centers at the superfluid–Mott-insulator criticality:
Transition between charge-quantized states

Yuan Huang,1,2 Kun Chen,1,2,* Youjin Deng,1,2 and Boris Svistunov2,3,4

1National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of
China, Hefei, Anhui 230026, China

2Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
3National Research Center “Kurchatov Institute,” 123182 Moscow, Russia

4Wilczek Quantum Center, Zhejiang University of Technology, Hangzhou 310014, China
(Received 7 August 2016; published 12 December 2016)

Under the conditions of superfluid–Mott-insulator criticality in two dimensions, the trapping centers—i.e.,
local potential wells and bumps—are generically characterized by an integer charge corresponding to the number
of trapped particles (if positive) or holes (if negative). Varying the strength of the center leads to a transition
between two competing ground states with charges differing by ±1. The hallmark of the transition scenario is a
splitting of the number density distortion δn(r) into a half-integer core and a large halo carrying a complementary
charge of ± 1

2 . The sign of the halo changes across the transition and the radius of the halo r0 diverges on the
approach to the critical strength of the center, V = Vc, by the law r0 ∝ |V − Vc|−ν̃ , with ν̃ ≈ 2.33(5).
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A two-dimensional (2D) system of bosons in a commensu-
rate external potential/lattice in the regime of superfluid–Mott-
insulator quantum criticality yields an example of nontrivial
relativistic quantum field theory [1,2], which can be addressed
experimentally with ultracold-atomic optical lattice emulators
[3–7]. Among the fundamental problems of this theory is the
question of the universal properties of polarons/impurities
[8–12]. These properties fall into two rather different
categories: transport properties and charge-quantization
properties.

In the context of polaron physics, the notion of charge quan-
tization emerges when there exist different states of a polaron
characterized by an integer quantum number representing the
number of particles of the medium bound to the impurity par-
ticle [13]. A necessary but not yet sufficient condition for po-
laron charge quantization to take place is the absence of broken
U (1) symmetry in the system of particles forming the medium.

In an incompressible medium, there exists a somewhat
different and very transparent statement of the charge-
quantization problem. Namely, the mobile impurity can be
replaced with a static center, i.e., a short-ranged potential
well/bump. Such a setup can be realized in ultracold-atomic
experiments with single-site addressing techniques [14]. The
charge of the center is then introduced as an integral of
the number density variation created by the center. In-
side the Mott insulator phase, the integer quantization of
both the polaron and the center charges is quite obvious from
the path-integral particle-hole representation of the bosonic
ground state. In this case, the long-range density fluctuations
are represented by a dilute gas of particle-hole loops, leaving
no room for either a noninteger or an ill-defined charge. At the
superfluid–Mott-insulator critical point in d � 2, where the
compressibility is zero but the gap is absent, the question of
charge quantization becomes quite subtle.

In this Rapid Communication, we address the question
of the quantization of the charge of a center ξ in the
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superfluid–Mott-insulator quantum-critical ground state in 2D.
With worm-algorithm path-integral Monte Carlo simulations
[15] we find that ξ is generically an integer.

Consistent with the quantization of ξ , varying the strength
of the center V leads to transitions between two competing
values of the charge of the center, ξ1 and ξ2 = (ξ1 ± 1). The
transition turns out to be rather nontrivial. At the critical value
V = Vc, the charge of the center is a half integer, ξ = ξ1 ± 1

2 .
This peculiar state develops by the following critical scenario.
When V is close enough to Vc, the integer total charge of the
center comes with a specific bimodal density distribution: a
half-integer core surrounded by a half-integer halo. The size
of the halo r0, playing the role of the healing length with
respect to the total charge, diverges when V → Vc,

r0 ∝ 1/|V − Vc|ν̃ , ν̃ = 2.33(5). (1)

Across the transition point, the half-integer charge of the
core remains intact while the charge of the halo changes its
sign. The half-integer quantization of the halo charge—and,
correspondingly the charge of the core—follows from the very
fact of the existence of a halo with diverging size r0. Indeed, the
relativistic long-range physics of the U (1) quantum criticality
is particle-hole symmetric. Hence, there always exist two halo
solutions that differ only by the sign of δn(r), the density
distortion. This implies that across the transition, the net charge
of the center changes by (plus/minus) two times the absolute
value of the halo charge. Given that the change of the center
charge is ±1, the halo charge then has to be ± 1

2 .
In view of the divergent radius r0 and scale invariance of

the long-wave properties of our system, the structure of the
halo has to be described by a universal scaling function fhalo,

δn(r) = ±r−2
0 fhalo(r/r0) (r � ruv). (2)

Here, ruv is a certain ultraviolet cutoff. The form of the outer
part of the halo,

fhalo(x) ∝ 1

x3
at x � 1, (3)
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has a rather simple physical nature. It corresponds to the
universal asymptotic behavior of δn(r) away from the center,

δn(r) ∝ χ (r) (r → ∞), (4)

dictated by the linear-response function

χ (r) =
∫ β

0
dτ [〈n(0,0)n(r,τ )〉 − |〈n(0,0)〉|2] (5)

featuring the universal critical behavior

χ (r) ∝ 1

r3
[U (1) critical in 2D]. (6)

Equation (6) follows by the observation that upon the in-
tegration over r up to a certain macroscopic distance R,
the right-hand side of (5) acquires the meaning of negative
ground-state compressibility −κ(R) for a subsystem of size
∼R. This quantity is known to scale as κ(R) ∝ R1−d at the
U (1) critical point in d dimensions [2]. One thus arrives at (6)
and also proves—using (4)—that in the linear-response limit,
the charge of the center equals zero.

At r 
 r0, the halo has a singular structure,

fhalo(x) ∝ 1

xs
, s = 1 + 1/ν̃ (x 
 1). (7)

Such a behavior is implied by (1). By continuity in r , the
singular part of the V dependence of the expectation value
of the center occupation number n0 [to be specific about
microscopic quantities, here we use the notation of the Bose-
Hubbard model (8) that will be introduced below] should be
consistent with Eq. (2) taken for a certain fixed microscopic
value of r ∼ ruv and V -dependent r0. On the other hand,
using the standard thermodynamic relation for the averaged
partial derivative of the Hamiltonian, we have n0 = ∂E/∂V ,
where E is the ground-state energy. The singular part of the
energy Esing comes from the halo, and thus corresponds to
the “half particle” delocalized over the radius ∼r0. With the
above-mentioned result for the finite-size compressibility, we
have Esing ∼ κ(r0). This brings us to the relation (7) upon
taking into account the scaling of r0 with |V − Vc|, Eq. (1).

We simulate the standard Bose-Hubbard model on the
square lattice [2], with the trapping center located at the site
i = 0,

H = −
∑
〈ij〉

b
†
i bj + U

2

∑
i

ni(ni − 1) − μ
∑

i

ni + V n0.

(8)
Here, b

†
i and bi are, respectively, bosonic creation and

annihilation operators on the site i; the symbol 〈· · · 〉 stands
for nearest neighbors; U is the on-site interaction in units of
hopping amplitude; the latter is set equal to unity. We work at
the unit filling factor, setting U and the chemical potential μ

equal to their critical values, Uc = 16.7424(1), μc = 6.21(2)
[16,17]. We use periodic boundary conditions, so that all the
positions for the center are equivalent. The Hamiltonian (8) is
directly relevant to optical lattice emulators [3].

To extract an accurate value of the universal critical
exponent ν̃, as well as to validate relation (7), we employ the
three-dimensional (3D) classical J -current model [18] with

L2 × Lτ sites,

H = 1

2K


J=0∑
i,ê=x̂,ŷ,τ̂

J 2
i,i+ê − V

∑
i0=(0,τ )

Ji0,i0+τ̂ . (9)

Here, Ji,i+ê are integer-valued bond currents between neigh-
boring sites. The currents are subject to the zero-divergency
constraint: For each site, the algebraic sum (incoming minus
outgoing) of all the currents has to be zero. As before, V is the
strength of the center potential. The latter acts only on Ji0,i0+τ̂

(i.e., along the imaginary-time direction at the origin). We work
with the minimalistic model in which the currents Ji,i+ê take
only three values, {−1,0, + 1}. The U (1)-type phase transition
occurs at Kc = 0.333 205(2).

Without loss of generality, we consider the repulsive case
V > 0, so that the two competing ground states of the center
have the charges ξ1 = 0 and ξ2 = −1. Our main observable
is the integral (sum) of the density deviation profile up to a
certain distance r from the center (ri is the distance of the site
i from the center),

I (r) =
∑
ri�r

(ni − 1). (10)

For a system of size L × L, the distance r is in the
range [0,L/

√
2]. The charge of the center is defined in the

thermodynamic limit,

ξ = I (∞). (11)

In view of the above-mentioned asymptotic behavior δn ∝
1/r3, the saturation of I (r) to ξ is rather slow,

I (r) = ξ ± const

r
(r → ∞). (12)

For a compelling demonstration of the quantization of ξ it
is thus very desirable to find an appropriate way of dealing
with finite-size corrections. To this end, we observe that for
the system size L � r0, Eq. (12) implies the following scaling
ansatz,

I (r) − ξ = ±L−1f (r/L) (r0 
 r � L), (13)

where f (x) is a certain scaling function such that f (x) ∝
1/x at x 
 1. An accurate calculation of ξ amounts then to
checking the consistency of ansatz (13).

Apart from the finite-size effects there are also finite-
temperature corrections. In our simulations, the temperature
is adjusted to the system size by

T = c/L, (14)

where c is the sound velocity, which is 4.8(2) for the Bose-
Hubbard model [16] (for the J -current model, c = 1 in view
of explicit symmetry between all three directions). This choice
is natural in view of the space-(imaginary-)time symmetry of
U (1) criticality. The finite-temperature effects then reduce to
a certain quantitative change of the form of the function f (x)
at x ∼ 1, which does not alter the numeric protocol.

In Fig. 1 we present the results for the case V = 3.5. This
value of V is twice smaller than Vc = 6.86(8) (established
below) and large enough for a nonlinear response to take place
at short distances. Consistency with the ansatz (13) confirms
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FIG. 1. The integral I (r) at V = 3.5 and different system sizes
L. The simulation is performed in the canonical ensemble with the
total number of particles N = L2. The inset shows consistency with
the scaling ansatz (13) with ξ = 0, thus simultaneously verifying
the linear-response asymptotic behavior (12) and the fact that the
center charge equals zero. In this and other plots, the error bars
do not exceed symbol sizes. The apparent noise—vanishing in the
long-range limit—is totally due to the discreteness of the system.

the linear-response asymptotic behavior (12) and demonstrates
that ξ = 0 within our numeric resolution.

To accurately resolve universal features of the criticality
of the transition between the ξ = 0 and ξ = −1 states, we
resort to the J -current model in a (pseudo-)grand-canonical
ensemble; see Fig. 2. In optical lattice emulators, a similar
analysis can be performed if the role of the particle reservoir is
played by the peripheral region of the system. In this case, the
total number of particles is no longer a relevant observable.
A way out is to deal with I (r) at a certain large r . To model

FIG. 2. The change in the total number of particles 
N in
the J -current model as a function of rescaled strength of the
center at different system sizes L. The simulation is performed
in the pseudo-grand-canonical ensemble containing only the two
(most relevant) sectors of the total particle number, N = L2 and
N = L2 − 1. Optimal fitting yields Vc = 1.5056(5) and ν̃ = 2.33(5).
The inset shows bare (not scaled) data.

FIG. 3. The integral I (L/2
√

2) in the Hubbard model as a
function of the rescaled strength of the center at different system
sizes. The simulation is performed in the grand-canonical ensemble.
The data are consistent with the scaling analysis of the transition
in J -current model (see Fig. 2). The value Vc = 6.86(8) is obtained
from optimal fitting with ν̃ = 2.33(5).

such a setup with the Hamiltonian (8), we take r = L/2
√

2
corresponding to one half of the largest possible r . The data
presented in Fig. 3 are consistent with what we have learned
from the J -current model.

A remark is in order here concerning the unambiguity of our
conclusion about the nature of the transition. The temperature
scaling (14) creates a potential concern that the L dependence
of the data might be merely a reflection of finite-temperature
smearing of the “first-order” transition between two distinct
(ξ = 0 and ξ = −1) ground states coexisting at V = Vc. What
excludes this scenario in our case is the value of ν̃. Indeed, the
first-order scenario would mimic ν̃ = 1, because the energy
difference between two competing states would be directly
proportional to V − Vc, so that the characteristic range of the
finite-temperature smearing would be |V − Vc| ∼ T ∼ 1/L.

In Fig. 4, we numerically validate the result (7) for the inner
part of the halo. Integration of Eq. (7) over r leads to the scaling
ansatz I (r) = ξcore ± C0(r/r0)2−s , where ξcore is the charge of
the core and C0 is a dimensionless constant. (The value of C0

depends on the free order-unity prefactor in the definition of
r0; in particular, the definition can be fixed by requiring that
C0 = 1.) In the canonical ensemble, a similar ansatz, up to
replacing r0 → L, C0 → C1, applies to a system of a finite size
at the critical point. Qualitatively, this case corresponds to r0 ∼
L, all the quantitative difference being captured by the value
of the constant C1 (sensitive, in particular, to the boundary
condition and the finite temperature T � 1/L). The data in
Fig. 4 demonstrate consistency with this scaling ansatz, with
C1 indistinguishable from 1

2 within our numeric resolution.
Comparison to the Mott insulator case. To underline the

specificity of the revealed charge-quantization properties of
trapping centers at the superfluid–Mott-insulator criticality,
it is very instructive to trace how these properties become
qualitatively different upon entering the Mott insulator phase.
In the latter case, the charge-quantization properties of trapping
centers—identically the same arguments applying to polarons
as well—are dictated by the following two circumstances:
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FIG. 4. Revealing the singularity of the inner part of the halo with
the J -current model simulated at the critical point in the canonical
ensemble N = L2. The dashed lines are only to guide the eye. In
the macroscopic limit and at r/L 
 1, the curves saturate to the
law I (r) + 1

2 = C1(r/L)2−s . The solid line represents this law with
s = 1.43 and C1 = 1

2 .

(i) the presence of a finite insulating gap and (ii) the
existence of well-defined particle/hole elementary excitations
with parabolic dispersion in the long-wave limit. The finite
insulating gap immediately guarantees the integer quantization
of the center charge in any dimension. Furthermore, the notion
of the transition between the ground states of different center
charges becomes merely nominal. As long as the energy
difference between the two states does not exceed the gap, a
decay of one into another (assisted by particle/hole emission)
is kinematically forbidden. In the vicinity of the “transition”
point Vc, we thus have two stable ground states, each in its
own charge sector. While (in the Mott insulator phase) no
physical transition occurs at Vc in the Mott insulator phase, a
new type of critical point appears, namely, the end point. For
each transition point Vc, there are two associated end points,
V+ > Vc and V− < Vc; see Fig. 5. If the transition at Vc is
between the state with the center charge ξ (at V < Vc) and the
state with the center charge (ξ − 1) (at V > Vc), then V− is the
lower end point for the state with the center charge (ξ − 1) and
V+ is the upper end point for the state with the center charge ξ .
Correspondingly, in the interval [V−,V+], both ξ and (ξ − 1)
are legitimate values of the center charge. When V approaches

Δ Δ

ξ ξ −1

VcV− V+ V

FIG. 5. Schematic behavior of the trapping center in the Mott
insulator phase: The ground-state energies, as functions of the
center strength V , for two competing ground states. The value Vc

corresponds to a nominal transition between the state of the charge
ξ and the state of the charge (ξ − 1). The values V− and V+ are the
two end points defined by the condition that the energy difference
between the two competing states is exactly equal to the insulating
gap 
.

the end point V+ from below, the charge-ξ center experiences
a dramatic evolution towards a loose dimer consisting of
a well-localized charge-(ξ − 1) center and a weakly bound
particle. At the end point V+, the particle unbinds. A similar
picture, up to interchanging ξ ↔ (ξ − 1) and replacing the
weakly bound particle with a weakly bound hole, takes place
when V approaches the end point V− from above.

The above-discussed loose-dimer scenario of the end
point rests heavily on the parabolic—as opposed to linear
at criticality—dispersion relation of particles/holes. This
explains why this scenario does not apply to the superfluid–
Mott-insulator criticality. In the latter case, in 2D, we do have
a loosely bound object—the halo—when V approaches Vc.
Nevertheless, the half-integer charged halo weakly bound to
a half-integer charged center involves a qualitatively different
critical physics.
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