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Superconducting correlations above Tc in the pseudogap state of Bi2Sr2CaCu2O8+δ

cuprates revealed by angular-dependent magnetotunneling
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We present an angular-dependent magnetotunneling technique, which facilitates unambiguous separation of
superconducting (supporting circulating screening currents) and nonsuperconducting (not supporting screening
currents) contributions to the pseudogap phenomenon in layered Bi2Sr2CaCu2O8+δ cuprates. Our data indicate
persistence of superconducting correlations at temperatures up to 1.5Tc in a form of both phase and amplitude
fluctuations of the superconducting order parameter. However, despite a profound fluctuations region, only a
small fraction of the pseudogap spectrum is caused by superconducting correlations, while the dominating part
comes from a competing nonsuperconducting order, which does not support circulating orbital currents.
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How high can the superconducting transition temperature
be? This principle question has been discussed for many
decades [1]. The debate is fueled by an obscure border between
superconducting and normal states in cuprate superconductors,
caused by the presence of a normal-state pseudogap [2–8]. The
pseudogap bears some similarities with the superconducting
gap, which has led to a suggestion that the pseudogap is a pre-
cursor of superconductivity [6,9–15]. In this view the onset of
Cooper pairing occurs at a temperature Tc0, significantly higher
than Tc, but the macroscopic phase coherence is suppressed by
strong fluctuations of the phase, but not the amplitude, of the
order parameter [9]. Such precursor correlations are different
from ordinary superconducting fluctuations [16,17] in a sense
that the locus of ordinary fluctuations coincides with Tc and
both amplitude and phase fluctuations occur simultaneously
at T > Tc. However, a direct association of the pseudogap
with the superconducting gap is confronted by evidence for
the existence of nonsuperconducting competing orders in
the pseudogap state [18–21]. Spectroscopic techniques (like
photoemission or surface tunneling) usually measure the total
gap. Separation of superconducting and nonsuperconducting
contributions to the total gap is not trivial and requires a
more diversified analysis [5,7,19,22]. Direct phase sensitive
experiments did not reveal an appreciable Cooper pair con-
centration well above Tc [23]. Therefore, the question about
the extent of superconducting correlation above Tc remains
open.

The key character of magnetic field response of supercon-
ductors is the appearance of circulating screening currents,
which eventually suppress superconductivity at the orbital
upper critical field Hc2. However, such orbital currents are
absent in the two-dimensional (2D) case when the field is
applied parallel to the planes. In this case superconductivity is
suppressed by Zeeman splitting of spin-singlet Cooper pairs,
which occurs at a significantly higher paramagnetic field [24].
The corresponding large in-plane to out-of-plane magnetic
anisotropy is generic for quasi-2D superconductors, such as
Bi2Sr2CaCu2O8+δ (Bi-2212) [25]. The strong anisotropy is not
inherent to other types of orders (e.g., charge or spin density
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waves), which do not produce circulating screening currents
in magnetic field. This is a central point that we will exploit
in this work for discrimination between superconducting and
nonsuperconducting contributions to the pseudogap.

In this work we develop an angular-dependent magneto-
tunneling technique, based on two specific phenomena for
layered Bi-2212 cuprates: (i) large magnetic anisotropy caused
by in-plane locking of screening currents and (ii) an interlayer
tunneling mechanism of c-axis transport [26] facilitating in-
trinsic tunneling spectroscopy [27,28]. This technique enables
selective probing of superconducting parts of spectra and
allows unambiguous discrimination between superconducting
and nonsuperconducting contributions to the pseudogap. We
report that superconducting correlations persist well above Tc,
but the superconducting contribution to the tunneling density
of states is rapidly decaying with increasing temperature and
the locus of superconducting amplitude fluctuations is bound
to Tc, rather than to some higher onset temperature Tc0.
The pseudogap amplitude is decaying much slower and well
above Tc may exceed the superconducting counterpart by more
than three orders of magnitude. Therefore, we conclude that
the major contribution to the pseudogap phenomenon is of
nonsuperconducting origin.

We study small mesa structures made from two batches
of crystals with different Tc. Each sample contains several
mesas with attached top electrodes, as sketched in Fig. 1(a).
Details of sample fabrication and the experimental setup can
be found in the Supplemental Material [29]. We studied
about ten samples, all showing similar behavior. Figure 1(b)
shows measured zero-bias c-axis (Rc, magenta) and in-plane
(Rab, blue) resistances versus temperature for a moderately
underdoped crystal from batch No. 1. The semiconducting-
type Rc(T ) dependence at T > Tc is due to the presence of the
pseudogap [8,39]. The Tc � 80 K is determined by the onset of
the c-axis critical current, which corresponds approximately
to the middle of the in-plane Rab(T ) transition [40].

Figure 1(c) shows the current-voltage (I -V ) characteristics
of one of the mesas at the same sample for zero field (black)
and 10 T along the planes (red). Multiple branches at low
bias, seen at zero field, are due to one-by-one switching of in-
trinsic Josephson junctions from supercurrent to quasiparticle
branches [28]. The number of branches is equal to the number
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FIG. 1. (a) Sketch of a sample with contact configurations for measurements of c-axis (top) and in-plane (bottom) characteristics.
(b) Resistive transitions R(T ) of the base crystal in the ab plane (blue) and of a mesa in the c-axis direction (magenta). (c) Current-voltage
characteristics of the same mesa in zero field (black) and at 10 T parallel to the planes (red). (d) dI/dV vs voltage per junction at T = 2 K
in zero field and at 10 T parallel and perpendicular to the planes. (e) dI/dV characteristics in parallel and perpendicular fields at different T .
(f) Ratios of dI/dV characteristics at parallel to that at perpendicular field of 10 T. Such angular-dependent magnetotunneling is selective to
the anisotropic superconducting contribution and allows discrimination between superconducting and nonsuperconducting parts to the spectra.

of junctions in the mesa N . At higher bias there is a sum-gap
kink at V = 2�N/e, where � is the superconducting gap,
followed by an Ohmic tunnel resistance [8,28,40,41]. This is
a typical behavior for superconducting tunnel junctions [25],
which enables intrinsic tunneling spectroscopy (for a brief
overview see the Supplemental Material [29]).

The ultimate resolution of our technique is limited by
temperature stability during fairly long measurements [2–3 h
per dI/dV (V ) curve]. To avoid associated thermal drifts we
performed our experiment in the following way. Measurements
are done in a cryostat with a superconducting magnet and a
rotation stage allowing accurate alignment of the sample. First
the temperature of the cryostat was thoroughly stabilized with
a mK/h accuracy. After that the first measurement was done.
Then the sample was slowly rotated to the orthogonal orienta-
tion, which does not disturb the thermal stability, and the sec-
ond measurement with exactly the same settings was repeated.

Figure 1(d) shows dI/dV vs voltage per junction for the
same mesa at zero field (black), and at 10 T parallel (red)
and perpendicular (blue) to the ab planes. It is seen that the
orientation of the field has a large effect. The parallel field
does not affect the curves: the black and red curves practically
merge in Figs. 1(c) and 1(d). It only suppresses the Josephson

current, which leads to the disappearance of multiple branches
in Fig. 1(c). On the other hand, the perpendicular field strongly
suppresses the sum-gap peak [25]. Such a strong angular-
dependent magnetotunneling effect is a consequence of the
quasi-2D superconductivity in Bi-2212. The perpendicular
field induces screening currents in CuO2 layers adding to the
overall energy, and thus suppressing superconductivity. To the
contrary, the parallel field does not induce screening currents
and thus has a negligible effect on superconductivity (provided
the field is much smaller than the paramagnetic field).

Figure 1(e) shows dI/dV (V/N ) curves at 10 T parallel
(thick) and perpendicular (thin lines) to the planes at different
T . It is seen that superconducting features are rapidly washed
away as T → Tc. Above Tc the sum-gap peak is not seen, but
zero-bias conductance remains suppressed due to the presence
of the pseudogap, consistent with previous results obtained
by different techniques [11,13,42] (see also the Supplemental
Material [29]). It is seen that field orientation has a profound
effect on the superconducting peak but not on the pseudogap
hump [43]. Thus, angular-dependent magnetotunneling en-
ables selective probing of superconducting parts of the spectra.

Figure 1(f) represents ratios of dI/dV characteristics at
parallel to that at perpendicular field orientations for T � Tc.
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FIG. 2. (a) and (b) Angular-dependent magnetotunneling curves above Tc at H = 10 T for mesas at (a) Bi-2212 No. 1 and (b) Bi-2212
No. 2 crystals. (c) Low-bias parts of the curves for the Bi-2212 No. 1 mesa. The zero-bias maximum is due to an interlayer Josephson current.
(d) Angular dependencies of in-plane resistances at 10 T for the Bi-2212 No. 1 crystal. The 2D-superconducting cusp at � = 0 is distinguishable
up to ∼100 K. (e) Temperature dependencies of the superconducting (SC) peak and the pseudogap (PG) hump voltages for Bi-2212 No. 1.
(f) Amplitudes of the PG hump, the SC peak, the 2D cusp in the in-plane angular magnetoresistance, and the Josephson c-axis supercurrent.

It is seen that the ratio dI/dV (‖ / ⊥) greatly emphasizes
all superconducting features, such as the sum-gap peak and
the subsequent dip, and even reveals a small subharmonic
singularity at eV/N = � [44]. Simultaneously it removes
the nonsuperconducting background, as seen from an almost
flat curve above Tc, which has to be compared with strongly
nonlinear pseudogap characteristics from Fig. 1(e) with a dip
at V = 0 followed by a hump. The selective enhancement
of superconducting features in dI/dV (‖ / ⊥) is caused by
the quasi-2D nature of superconductivity in Bi-2212, which
leads to the appearance of screening supercurrents only in
perpendicular field but not in parallel field. Similarly, the
removal of pseudogap characteristics from dI/dV (‖ / ⊥)
ratio indicates the absence of circulating orbital currents in the
pseudogap state. This is consistent with previously reported
weak magnetic field dependence of the pseudogap [25,43,45],
governed by Zeeman spin splitting rather than orbital ef-
fects [46].

A rapid flattening of dI/dV (‖ / ⊥) at T → Tc, seen from
Fig. 1(f), indicates that the amplitude of the superconducting
condensate rapidly decreases with approaching Tc, but it does
not vanish completely. In Fig. 2(a) we show data for the same
mesa at T � Tc. It is seen that the superconducting peak
survives up to several tens of degrees above Tc. Figure 2(b)

shows a similar data set for a slightly underdoped mesa with
higher Tc � 92 K made on a crystal from batch No. 2. It is seen
that the sum-gap peak (and a corresponding zero-bias dip) are
still recognizable 50 K above Tc.

Figure 2(c) represents a detailed view of the low-bias part
of dI/dV (‖ / ⊥) curves near Tc. The central peak at V = 0
is a signature of an interlayer superconducting (Josephson)
current. It is seen that the Josephson current is rapidly
vanishing just a few degrees above Tc, where the sum-gap
peak is still clearly visible. This is evidence for profound
interlayer phase fluctuations leading to phase diffusion [47],
which suppress the Josephson current close to Tc [23], well
before vanishing of the amplitude of the superconducting order
parameter.

Figure 2(d) shows angular dependencies of the in-plane
resistance Rab(�) measured at 10 T for the same Bi-2212 No.
1 sample. Below Tc the magnetoresistance shows a cusplike
minimum at a parallel field orientation � = 0, which is typical
for 2D superconductors [48,49]. This is again caused by orbital
currents present in perpendicular fields and absent in parallel
fields. The cusp is smeared out at T > Tc [50], but remains
distinguishable few tens of degrees above Tc � 80 K, clearly
indicating persistence of long-range in-plane superconducting
correlations.
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Figure 2(e) shows voltages of the superconducting peak and
the pseudogap hump for Bi-2212 No. 1. The superconducting
gap is rapidly (in a BCS mean-field manner) decreasing at
T → Tc [28,40]. However, our analysis reveals that it does
not vanish, but persists well above Tc. The peak is smeared
out with increasing T > Tc [error bars in Fig. 2(e) represent
the width of the peak]. The dashed line corresponds to
eV/2N = kBT . It indicates that the peak voltage at T > Tc is
essentially determined by kBT (increases with T ). Therefore,
the voltage of so much smeared peak at T > Tc, cannot
be straightforwardly associated with the gap value. The
residual peak simply indicates persistence of superconducting
correlations, which modify the overall tunneling density of
states, in general agreement with theoretical predictions from
Ref. [17]. As for the pseudogap hump, it shows little T

dependence [28,40] and remains visible up to much higher
T ∗ ∼ eVHump/2NkB [8,41].

Figure 2(f) summarizes our results. It shows T evolution
of amplitudes of superconducting and pseudogap features
for the Bi-2212 No. 1 sample. Squares represent the sum-
gap peak, dI/dV‖/⊥(VPeak)-dI/dV‖/⊥(V = 0) [see Fig. 2(a)];
solid circles the zero-bias Josephson (c-axis supercurrent) peak
[see Fig. 2(c)]; triangles the strength of the 2D cusp in the ab-
plane magnetoresistance dRab/d� (� = +0) [see Fig. 2(d)];
and open circles represent the amplitude of the pseudogap
hump [dI/dV (VHump)-dI/dV (V = 0)]/dI/dV (VHump). All
of them decay monotonously with increasing T , but with
different paces. The c-axis supercurrent is sensitive to the
fragile Josephson phase coherence. Therefore, it is destroyed
first by interlayer phase fluctuations, just a few K over
Tc. The in-plane paraconductivity [16] depends both on the
amplitude of the superconducting order parameter and on
the more robust in-plane phase coherence. Therefore, the
cusp in Rab(�) survives up to a significantly higher T ∼
20 K above Tc. Finally, the superconducting peak in the
quasiparticle density of states depends solely on the amplitude,
but not the phase, of the order parameter. Therefore, it is
distinguishable up to even higher T ∼ 1.5Tc. On the other
hand, the pseudogap hump shows little change in this T range.
At 120 K it exceeds the amplitude of the superconducting
peak by three orders of magnitude, implying that the major
part of the pseudogap is not related to superconductivity.
This is consistent with a disparity between superconducting

and the pseudogap characteristics observed in a very low-Tc

Bi-2201 cuprate [45].
To conclude, we demonstrated an angular-dependent mag-

netotunneling technique which facilitates unambiguous sep-
aration of superconducting and nonsuperconducting contri-
butions to tunneling spectra of Bi-2212 cuprates. Our data
indicated persistence of superconducting correlations several
tens of degrees above Tc, qualitatively consistent with previous
reports obtained by other techniques [10,13–15]. This can be
viewed either as a BCS-like state with strong fluctuations
caused by low dimensionality [16,17], or as evidence of
precursor pairing above Tc, which undergoes Bose-Einstein
condensation (BEC) [51–54] at Tc. The BCS-BEC crossover,
however, has no distinct border [51] and the difference is
rather quantitative. In the weak-coupling BCS case Cooper
pairing and BEC occurs simultaneously at Tc and only rapidly
decaying fluctuations remain above Tc [16]. In a strongly
coupled BEC scenario the condensate amplitude also decays
with increasing T , but remains large at Tc [52]. Observation
of a rapid BCS-like decay of �(T → Tc) [see Fig. 2(e)],
suggests that cuprates are far from the unitary BEC limit
and resemble more the BCS case [40], albeit with profound
superconducting fluctuations. Importantly, we do not see
any additional temperature, other than Tc, for the onset of
pairing. Superconducting fluctuations have their locus at Tc

and rapidly decay with increasing T − Tc [see Fig. 2 (f)].
Although we cannot quantify the value of the superconducting
order parameter above Tc, we can definitely conclude that
only a small fraction of the c-axis pseudogap is caused by
superconducting correlations, while the dominating part of
the electronic density of states at the chemical potential is
suppressed by a competing nonsuperconducting order, which
does not support circulating orbital currents and, therefore,
does not exhibit angular-dependent magnetotunneling effect.
Most likely the pseudogap state is a combination of various
types of competing charge and spin density wave or orbital
orders, which were reported recently in various cuprates and
by various techniques [18–21].
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