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Multiple critical velocities in oscillatory flow of superfluid 4He due to quartz tuning forks
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We report recent investigations into the transition to turbulence in superfluid 4He, realized experimentally
by measuring the drag forces acting on two custom-made quartz tuning forks with fundamental resonances at
6.5 kHz and 55.5 kHz, in the temperature range 10 mK to 2.17 K. In pure superfluid in the zero temperature limit,
three distinct critical velocities were observed with both tuning forks. We discuss the significance of all critical
velocities and associate the third critical velocity reported here with the development of large vortical structures
in the flow, which thus starts to mimic turbulence in classical fluids. The interpretation of our results is directly
linked to previous experimental work with oscillators such as tuning forks, grids, and vibrating wires, focusing
on the behavior of purely superfluid 4He at very low temperatures.
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I. INTRODUCTION

To this day, turbulent motion of fluids remains the last
unresolved problem of classical physics and presents many
practical challenges across many different areas of industry. In
contrast to its classical counterpart, quantum turbulence may
only occur in superfluids and was historically first observed
in superfluid helium [1]. In 4He at very low temperature,
quantum turbulence takes the form of a dense dynamic tangle
of singly quantized vortices moving in a fluid with virtually
no viscous dissipation. Compared to classical turbulence, it
can be regarded as a conceptually simpler system to develop
theoretical models for and to simulate numerically [2] and may
provide a stepping stone to a better understanding of turbulence
in general. This is supported by the mounting evidence that
quantum turbulence, when probed at large length scales, shares
many of the general properties of turbulence in classical
viscous fluids [3]. Abounding evidence on the quasiclassical
nature of certain quantum flows can be readily found in the
literature on steady-state and decay experiments using channel
flow setups in the two fluid regime [4,5], on measurements
of vortex tangle decay at low temperatures [6,7], numerical
simulations [8], or even Andreev reflection experiments [9] in
3He. It is currently understood [10] that these classical-like
properties are related to partial polarization of quantized
vortices that effectively form bigger bundles within a turbulent
tangle, mimicking the appearance of large energetic eddies in
classical turbulence [11]. Recent developments in quantum
turbulence in 4He are summarized in several review articles
[12–16].

One of the signs of quasiclassical behavior expected in
turbulent flows due to submerged oscillators is that the
drag coefficient should display a plateau at a value near
unity at higher velocities (c.f. oscillating cylinder in water
[17,18]). In analogy to classical fluid dynamics, we define
the drag coefficient as CD = 2F/(Aρv2) with F , A, ρ, and
v representing the peak force, cross-sectional area of the
body perpendicular to the direction of motion, fluid density,
and peak velocity, respectively. It is therefore somewhat
surprising that the reported drag coefficients are typically one

or even two orders of magnitude lower [19–22] and that no
distinct crossover between “ultra-quantum” (unpolarized) and
“quasiclassical” (polarized, with larger structures) oscillatory
flow has been directly observed in the zero temperature limit
so far. It should, however, be noted that exceptions exist,
where drag coefficient of order unity has been obtained even at
millikelvin temperatures with grids [23] or commercial tuning
forks [24] (the latter converted to drag coefficient in Ref. [25],
Fig. 5).

It was shown that in purely superfluid 4He in the zero
temperature limit (effectively a physical vacuum with ballis-
tically propagating thermal excitations), quantum turbulence
can be generated by a mechanical oscillator above some
clearly defined critical velocity [19,20,25,26]. Usually, it is
observed that the drag force acting on such an oscillator
increases sharply at this critical velocity and later tends
towards an approximately quadratic velocity dependence. The
behavior close to the initial instability may be hysteretic
[19,26–28], and generally the nucleation of turbulence may
appear to be history dependent [29]. Additionally, previous
work [20–22,30,31] has reported the observation of two critical
velocities, interpreting the lower one as an initial instability
typically described as the formation of a thin layer of quantized
vorticity near the oscillator and the higher one (marking a rapid
onset of extra dissipation) as the production of large amounts
of quantized vorticity or as the flow developing large vortical
structures similar to those in turbulent classical fluids.

On the other hand, instabilities in classical flows due to
oscillating objects related to the onset of turbulence are not
governed by any well-defined critical value of velocity, but
rather by dimensionless parameters such as the Reynolds
number, the Stokes number, the Keulegan-Carpenter number
[17,18], or by the Strouhal number in case of periodic vortex
shedding by a bluff body in steady flow [32]. This leads to the
suggestion that in superfluid helium above 1 K (in the “two-
fluid regime”), several scenarios of transition to turbulence are
possible, depending on whether the normal component or the
superfluid component becomes unstable first, and on the degree
of coupling between them [16]. In this case, the turbulent
flow created at high velocity exhibits a drag coefficient near
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unity [19,23–25,33], in striking contrast to the situation at
low temperatures. However, for a better understanding of the
situation in the two-fluid regime, it is essential to first study the
limiting cases, i.e., the behavior of a fully classical fluid above
the superfluid transition (Tλ = 2.178 K), as well as that of
pure superfluid in the zero temperature limit, and connect them
with systematic measurements throughout the entire range of
temperatures.

In this paper, we will focus on the behavior of isotopically
pure superfluid 4He in the zero temperature limit (with higher-
temperature data shown for comparison), specifically on the
flow due to quartz tuning forks, and we will present convincing
evidence for three distinct hydrodynamic critical velocities and
suggest a tentative explanation of the related flow instabilities.

II. EXPERIMENTAL DETAILS

Quartz tuning forks are now well-established probes of
cryogenic helium flow [34]. They have been used to produce
and detect turbulence in superfluids and usually exhibit a
distinct critical velocity that can be determined from the
measurement of the drag force as a function of velocity [19,33].
When sufficient care is taken to eliminate parasitic effects
such as cavitation [35,36] or acoustic emission [37,38], the
frequency dependence of this critical velocity is consistent
with the square root dependence which can be expected in
both classical [39] and quantum [40] turbulence.

The experiments presented here were conducted in Prague
and Lancaster independently, using quartz tuning forks pro-
duced from the same monocrystalline wafer. The Prague
experimental cell (a gold-plated copper cylinder of 32 mm
diameter and 172 mm height) contains—amongst other types
of vibrating structures that will not be discussed here—a tuning
fork resonating at 6.5 kHz. Its dimensions are given as length
L = 3.50 mm, tine thickness (parallel to the direction of
motion [34]) T = 90 μm, and width W = 75 μm (original
wafer thickness). The distance between its two prongs is
D = 90 μm. The tuning fork was enclosed in a 10 mm
long open-topped stainless steel capillary of 2.4 mm inner
diameter to restrict the geometry and to help suppress acoustic
damping. The 6.5 kHz tuning fork was used in two different
flexural resonant modes—the fundamental resonance at 6.5
kHz and the first overtone at 40.0 kHz. The gold-plated copper
cell was mounted on to the mixing chamber of a Leiden
Cryogenics MNK126-400 3He /4He dilution refrigerator with
a base temperature below 10 mK. The cell was filled with
isotopically pure [41] 4He with 3He content below 10−13 via a
thin thermally-anchored stainless steel capillary. The temper-
ature of the mixing chamber was monitored by a calibrated
ruthenium oxide thermometer attached to the mixing chamber
flange.

Another tuning fork produced from the same single-crystal
wafer with a resonance frequency of 55.5 kHz was used in
Lancaster [19]. This tuning fork was part of an array of five
tuning forks and has the same dimensions T , W , and D as the
6.5 kHz fork described above, but its tines are considerably
shorter, L = 1.20 mm. The entire array was placed in a square
cylinder cell [19] with dimensions 15 × 15 × 21 mm3. The
55.5 kHz tuning fork was used only in its fundamental mode, as
the overtone at 340 kHz was severely damped due to acoustic

Reference
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Agilent 
A33220 Drive conditioning

Cryostat

I/V converter

Lock-in
amplifier
SR-830

(a) direct

(b) attenuator (c) transformer

FIG. 1. Diagram of the principal measurement scheme used in
Prague. To achieve the full range of velocities, the applied voltage was
either (a) directly fed to the tuning fork, (b) attenuated by one or more
inline attenuators, or (c) amplified by a transformer with a voltage
ratio of 7.31 at the 6.5 kHz fork’s fundamental resonance and 2.00
at the overtone. The transformer’s output was constantly monitored
by a Keithley Model 2000 digital multimeter. An I/V converter [43]
with a conversion ratio of 1000 V/A was used to convert the current
signal into voltage prior to detection with the SR-830 lock-in.

emission [38], and even at its fundamental resonance, signs
of acoustic damping were found. Additionally, the results
obtained with another 6.5 kHz fork in Lancaster are presented
for comparison.

It ought to be pointed out that these tuning forks were
designed specifically to minimize the effects of surface rough-
ness deemed responsible for the irreproducibility of previous
experiments. According to the manufacturer’s specifications
[42], the surface roughness is below 1 μm on the original
surface of the wafer and about 2 μm on the etched sides.
This is a significant improvement over the previously used
commercial tuning forks [25], which have typical surface
roughness in excess of 10 μm, with occasional large defects
exceeding even 20 μm.

The forks are driven by applying an ac voltage V from a
functional generator to the metallic electrodes deposited on
the surface of the quartz. The resulting electric field causes
a perturbation in the crystal lattice of the quartz through the
piezoelectric effect, which in turn results in a piezocurrent I

measured using an IV converter [43] with a gain of 103/V/A
and a lock-in amplifier. The measurement scheme for the
Prague experiment is shown in Fig. 1, the arrangement in the
Lancaster experiments was similar, but slightly more complex,
as an entire array of five tuning forks (resonating at different
frequencies) was connected.

The driving force applied to the fork is given by F = aV/2,
and the velocity of the top of the tines is v = I/a, where a

stands for the experimentally determined fork constant given
by [34,38]:

a =
√

4πmeff�f I

V
. (1)

Here, meff is the effective mass of the fork at (any) resonance
and �f is the measured width of the resonance. The effective
mass of the tuning fork is given by meff = T WLρq/4,
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where ρq = 2650 kg m−3 is the density of the fork material
[38]. By performing frequency sweeps in vacuum at low
temperatures, the experimental fork constants are estimated to
be af = 3.665 × 10−7 C m−1 and ao = 1.409 × 10−6 C m−1

for the fundamental mode and overtone of the 6.5 kHz fork,
respectively. For the 55.5 kHz fork, the fork constant of the
fundamental mode is given as af = 9.45 × 10−7 C m−1 in
Ref. [38]. On resonance, the driving force is balanced by the
dissipative drag force acting on the two prongs, so the power
dissipated by the fork is equal to the supplied electrical power
given by q̇ = Fv = IV/2, using peak values for F , v, I , and
V . When obtained from measurements in vacuum, the fork
constants are found to be within approximately 10% of the
more precise value determined by optical interferometry [44].

To obtain the best results at low temperatures both in
vacuum and superfluid helium, the Prague cell containing the
oscillators was flushed repeatedly with dry nitrogen gas prior
to cooling. Each time it was pumped down to ≈10−5 mbar
using a turbomolecular pump backed by a membrane pump,
simultaneously through the thin (0.2 mm diameter) filling lines
and through a direct connection bypassing them. After the last
careful evacuation (to ≈ 10−6 mbar), the direct connection was
closed off. With reasonable confidence that no helium film or
any ices could form on the forks at low temperature, the cell
was cooled to 10 mK under vacuum. At this point the tuning
fork calibration was made. Afterwards, it was filled very slowly
over a period of 48 hours with isotopically pure superfluid 4He.
Similar precautions were taken in the Lancaster experiment as
well.

Here, we should also mention that the exact temperature
of the tuning fork is, strictly speaking, unknown during the
vacuum measurements, as the fork is thermalized only via its
Cu/NbTi leads. However, judging from the properties of the
fundamental mode of the 6.5 kHz fork in vacuum (resonant
frequency f0 = 6491.3096 Hz, linewidth �f = 0.0082 Hz),
and in superfluid helium at the temperature of ≈20 mK
(observed linewidth varied between 0.006 and 0.009 Hz),
the temperature of the tuning fork does not appear to differ
from that of the mixing chamber enough to affect the
calibration. Note also the high quality factor of the resonator
Q = f0/�f ≈ 8 × 105. To avoid nonlinear behavior of the
oscillator (expected for such a high Q device), up to 70 dB
attenuation was used during the calibration procedure to ensure
operation in the linear regime.

III. EXPERIMENTAL RESULTS

In this section, we present the results obtained in Prague for
the 6.5 kHz tuning fork together with a description and esti-
mates of various drag forces acting on the fork under different
circumstances. We will only discuss this tuning fork at this
point, because it is mostly unaffected by acoustic emission,
which simplifies the matter considerably. Traditionally, the
obtained results are first shown as the dependence of the peak
velocity v on the peak driving force F , see Fig. 2. The observed
dependencies at the indicated temperatures agree with previous
results obtained with the same type of tuning fork to a very
good degree [19]. It is important, however, that we are now
able to notably extend the range of available velocities using
kHz-frequency step up transformers (see Fig. 1).
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FIG. 2. Peak velocity of the 6.5 kHz tuning fork oscillating at its
fundamental frequency (bottom) and at the first overtone (top) as a
function of the applied force in helium at various temperatures.

As expected, the 6.5 kHz tuning fork exhibits linear
damping at low velocities at all temperatures. Upon increasing
velocities, one or more distinct changes in the force-velocity
dependence can be observed occurring at fairly well-defined
values of velocity that appear to be independent of temperature
T in the studied range 20 mK < T < 1100 mK. We
will analyze these events in greater detail in the following
section and compare our findings with a number of available
experiments. Here we start with a brief discussion of the linear
damping forces observed at low velocities.

The linear damping forces can be fully described and
understood as a combination of tuning fork intrinsic damping
(dominant at lowest T ) and ballistic phonon drag (∝T 4),
which gradually changes into hydrodynamic viscous damping
at higher T . The relevant dependencies are summarized in
Fig. 3, which presents the linear proportionality constant λ

given by F = λv. We obtain the value of λ by fitting the
linear (low-drive) part of the force-velocity dependence (see
Fig. 2). The lower panel of Fig. 3 shows the temperature
dependence of the ratio of the λ coefficient obtained for the
fundamental mode and the first overtone, denoted as λf and λo,
respectively. At the lowest temperatures, the role of the steeply
frequency dependent intrinsic damping is apparent, which
likely consists of relatively small losses due to stress-strain
hysteresis in the quartz and comparatively larger losses due to
sound waves propagating away through the base and leads. We
note that sound emission through the surrounding fluid can be
safely neglected for the fundamental mode of the tuning fork
[37,38] and represents a very small contribution to the overtone
damping as well [19]. We will see later that the 55.5 kHz tuning
fork displays a measurable acoustic contribution to the drag
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FIG. 3. Analysis of linear drag forces acting on the 6.5 kHz
tuning fork with changing temperature. The λ coefficients for the
fundamental mode and overtone (at the specified frequencies) are
plotted vs temperature in the top panel. The low-temperature part of
each dependence fits well to a sum of ballistic phonon drag (∝ T 4)
and intrinsic TF damping (constant), while at higher temperatures,
deviations occur due to viscous damping from the normal component
gradually taking over the part of the ballistic phonon drag. In the
lower panel, the ratio λo/λf is shown, highlighting the frequency
dependencies of the linear damping in different regimes. The
frequency-independent ballistic limit, as well as the viscous limit
with square root frequency dependence [39], is clearly indicated.

force, dependent on tuning to or detuning from the acoustic
resonances of the surrounding volume.

After examining the linear damping forces acting on the
6.5 kHz fork, we concentrate on experimental data that show
nonlinear resonant response. It should be noted that unlike
previous work with the same tuning fork [19], we have used
full frequency sweeps as a standard measurement technique
in the Prague experiment, while amplitude sweeps were used
in the Lancaster work. This enables us to monitor all complex
features of the resonant responses and examine where the first
signs of any type of nonlinear behavior occur, whether it is
Duffing-like behavior [45,46], or the onset of a nonlinear drag
force. A series of full frequency sweeps taken at 20 mK with
the 6.5 kHz fork is shown in Fig. 4. Both the fundamental
and overtone modes display Lorentzian resonant responses
at the lowest drives and wide flat-top peaks at high drives,
due to a nonlinear damping force. Moreover, in a given
range of driving voltages, the fundamental resonance directly
displays nonlinearities similar to frequency softening in a
negative Duffing resonator (c.f. curves for 83.7 μV, 144 μV,
and 249 μV in Fig. 4). Note that this type of nonlinearity
appears before the nonlinear drag sets in—without thorough
investigation of the shape of the frequency response, this
might lead to an incorrect interpretation of the critical velocity
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FIG. 4. Selected frequency sweeps of the 6.5 kHz tuning fork at
the indicated driving voltages at 20 mK for the fundamental mode
(bottom) and overtone (top). The vertical solid blue lines mark the
position of the resonance peak at low drives. The red dotted lines
estimate the velocity at which the frequency softening sets in for
the fundamental mode and the frequency shift becomes apparent for
the overtone; the black dashed lines mark estimated velocities at
which nonlinear damping becomes apparent. Note that the behavior
of the overtone at low drives has almost systematic variations of the
resonant frequency. This is not fully understood at this point and
is likely related to very weak coupling to resonances of the fork’s
mechanical support or to the acoustic resonances of the capillary
enclosing the fork. See also Fig. 5 for comparison of the resonance
frequencies and Fig. 6 in the next section for the corresponding drag
coefficients.

(velocities) related to the nucleation of quantized vortices
and the eventual production of quantum turbulence. The
frequency shifts measured at all temperatures are summarized
in Fig. 5. Switching between two metastable states was also
observed at intermediate driving voltages but was not studied
systematically within this work.

The values of velocity at which frequency softening, and
later nonlinear drag, occur are independent of temperature
and will be later shown to correspond to the first and second
critical velocity as known from other experiments with tuning
forks or vibrating grids. Hence we label these values as vcf1 =
0.02 m s−1 and vcf2 = 0.06 m s−1 for the fundamental mode,
with vco1 = 0.03 m s−1 and vco2 = 0.12 m s−1 for the overtone.
At this point, we may consider the numerical values only as
approximate (determined up to a factor of two); more precise
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FIG. 5. Resonant frequency shift plotted vs tuning fork peak
velocity for the 6.5 kHz tuning fork (outliers removed). The red
dotted lines mark the onset of the shifts in frequency and coincide
with those in Fig. 4; the black dashed lines from Fig. 4 are included for
comparison. The horizontal solid blue lines mark zero frequency shift
with respect to the resonance at low drives. The onset of the frequency
shifts seems to be independent of temperature for either mode in the
investigated range. Examples of individual frequency sweeps taken
at 20 mK are shown for comparison in Fig. 4, and corresponding drag
coefficients can later be found in Fig. 6. The red dotted lines mark
the estimated first deviation of the resonance frequency.

values will be given below, as well as a comparison with the
55.5 kHz tuning fork.

IV. DISCUSSION—MULTIPLE CRITICAL VELOCITIES

A. Prague experiment

The in-line forces acting on an oscillator submerged in a
fluid can be divided into a dissipative drag force in phase
with the velocity and an inertial force that is in phase with
the object’s acceleration and does not contribute to energy
dissipation. Examining the results shown above, it should be
first noted that the frequency shifts observed above vcf1 or
vco1 cannot be explained by any increase in dissipative forces,
as dissipation stays approximately constant until vcf2 or vco2

is reached, respectively. Even for higher velocities, a simple
estimate yields that the observed frequency shift is roughly one
order of magnitude higher than that caused by the increased
dissipation. Hence, the resonance peaks are shifted mainly due
to a Duffing-like nonlinearity, i.e., one related to restoring or
inertial forces acting on the fork.

As the elastic and geometric properties of the tuning fork
prong are hardly affected at the oscillation amplitudes in
question (c.f. vacuum data in Fig. 4), we are left to surmise
that it is the hydrodynamic added mass that becomes amplitude
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FIG. 6. Dimensionless drag coefficient as a function of peak
velocity for the 6.5 kHz tuning fork at various temperatures—
fundamental mode (bottom) and overtone (top). Each point is
obtained from a full frequency sweep at constant drive. The green
dash-dotted horizontal line highlights the value CD = 1, while the
red dotted and black dashed vertical lines mark the first two critical
velocities, respectively, and correspond to the same lines in Figs. 4 and
5. The blue solid line in the overtone drag coefficient (top) shows the
value of a third hydrodynamical critical velocity vco3 = 1.5 m s−1. The
existence of such a third critical velocity for the fundamental mode
(bottom) remains unclear, as higher velocities cannot be attained with
this tuning fork using the fundamental resonance—the displacement
becomes comparable to the prong spacing and at higher drive the two
prongs start hitting each other at ≈1.8 m s−1.

dependent at vcf1 or vco1. This can be understood in terms of
a thin layer of quantized vortex loops “coating” the surface
of the tuning fork as suggested before [22,30,31,47]. Through
pressure forces, vortex tension, and Kelvin waves, the layer of
vortex loops affects the coupling between the oscillator and the
fluid, resulting in a gradually changing hydrodynamic added
mass as the oscillation peak velocity (and the number of such
vortex loops) is increased. The lack of increase in the drag
force suggests that the vortices stay mostly attached to the
surface of the fork and do not carry momentum away into the
bulk superfluid. Recently, an experiment on vortex pinning at
a nearly-spherical protrusion has shown that such pinning can
be stable at low flow velocities [48].

The drag coefficients versus velocity for the fundamental
mode and the overtone of the 6.5 kHz tuning fork are
plotted in Fig. 6. To calculate the drag CD = 2F/(Aρv2)
from the dissipative force F , we have assumed that A equals
to the cross-sectional area of a tuning fork prong WL, that the
relevant fluid density is the total density of 4He, and we use
the tuning fork peak velocity for v.

As in many experiments with submerged oscillators at
very low temperatures, we are not able to observe the
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FIG. 7. Peak nonlinear drag force (see text) as a function of
velocity for the 6.5 kHz tuning fork at the temperatures indicated—
fundamental mode (bottom) and overtone (top), with outliers re-
moved. The meaning of lines is the same as in Fig. 6. Additionally, a
slanted straight line is used as a guide for the eye; its slope corresponds
to a power law with an exponent of approximately 2.3.

nucleation of quantized vortices directly through means such
as second sound measurements or flow visualization. As the
well-established charged vortex ring technique [49] is not
available (and would be difficult to use in the given geometry),
we have to rely on the drag force measurements as the only
indication of the dissipative phenomena occurring in the flow.
In practice, this means that the production of quantized vortices
becomes apparent in the drag force measurements only when
the drag force from the vortices becomes comparable in
magnitude to the sum of all pre-existing dissipative forces
(such as intrinsic damping, acoustic drag, phonon drag, or
viscosity). Consequently, all drag force measurements have
to be treated with sufficient care, especially when trying to
determine critical parameters related to flow instabilities. For
example, any critical velocity value determined from these
measurements is prone to be overestimated—as we do not
necessarily observe the initial instability per se but only the
ensuing change in the drag force when it affects the total of
pre-existing drag forces noticeably.

Figures 6 and 7 demonstrate that the onset of nonlinear
dissipation corresponds very well to the velocities vcf2 and
vco2 obtained in our preliminary analysis. The onset velocities
again appear to be independent of temperature (see esp. Fig. 7).
However, the most important and perhaps surprising result in
Fig. 6 is the appearance of a third critical velocity in the over-
tone drag coefficient, which will be further discussed below.
Whether such a critical velocity exists for the fundamental
mode cannot be determined with the 6.5 kHz tuning fork, see
caption to Fig. 6.

Note that one might be tempted to interpret the bending in
the higher temperature data for the fundamental mode as a third
critical velocity too. However, this event simply corresponds
to the temperature-independent nonlinear drag (c.f. Fig. 7)
becoming comparable to the linear drag that increases with
temperature. Alternatively, flow instabilities occurring in the
emerging normal component may be involved as well. Figure 7
shows the deduced nonlinear drag contribution to the damping
force, calculated as Fnl = |F − λv| as a function of velocity
(the modulus is used to ascertain positive values that can be
easily plotted in log scales), illustrating the observed critical
velocities in more detail.

Combining the drag coefficient and nonlinear force data
with our preliminary analysis, we can now determine the
critical velocities with improved precision. The corrected
critical values for the 6.5 kHz fork and their relative uncer-
tainties are thus: vcf1 = 0.020 m s−1, vcf2 = 0.060 m s−1,
vco1 = 0.034 m s−1, and vco2 = 0.12 m s−1, all ±25%;
vco3 = 1.5 m s−1 ± 35%. The uncertainties are estimated
from all the presented graphs and do not explicitly include
the fact that the obtained critical velocities are influenced
by our minimum detectable nonlinear drag force ≈10−10 N
(Fig. 7) and a minimum detectable frequency shift ≈0.5 ppm
for the fundamental mode and ≈0.2 ppm for the overtone of
the 6.5 kHz fork (Fig. 5).

Using the laws of vortex dynamics, it is possible to derive
that the critical velocity related to vortex motion and self-
reconnections leading to production of additional quantized
vorticity should scale with the square root of frequency [40],
which would correspond to a ratio of ≈2.5 between the critical
velocities for the fundamental mode and the overtone of
the 6.5 kHz fork. The observed ratios vco1/vcf1 ≈ 1.7 ± 0.6
and vco2/vcf2 ≈ 2.0 ± 0.7 (assuming uncorrelated errors of
the individual velocities) are in general agreement with this
prediction, especially considering the fact that the profile of
the overtone flexural mode differs significantly from that of
the fundamental resonance. As a result, the overtone mode
introduces larger velocity gradients at the same peak velocity,
which may affect the process of vortex self-reconnection.
Moreover, as we discuss the meaning of the critical velocities
later, it becomes obvious that it is the second critical velocity
that is related to the onset of significant vorticity production,
and thus the square root frequency dependence ought to be
expected primarily for vcf2 and vco2.

B. Lancaster experiment

Recently, investigations of the frequency dependence of
critical velocities were carried out by the Lancaster group
[19] using, among others, a custom-made tuning fork from
the same batch and with the same dimensions as the 6.5 kHz
fork presented here. It is therefore natural to compare and
combine the results obtained in both independent experiments
and add the data obtained in Lancaster with the 55.5 kHz
fork as well. The drag coefficients in Ref. [19] were obtained
using amplitude sweeps while tracking the resonance rather
than performing full frequency sweeps. A comparison of
this measurement technique with full frequency sweeps is
presented in the top panel of Fig. 8 for the fundamental
mode of the 6.5 kHz fork. The results agree almost perfectly
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FIG. 8. Top: drag coefficient as a function of velocity measured
by amplitude sweeps with resonance tracking in Lancaster and full
frequency sweeps in Prague for the 6.5 kHz tuning fork. While
the frequency sweeps are unable to measure the hysteresis at the
onset of nonlinear dissipation and the amplitude sweeps detect it
clearly, the overall reproducibility of the data is surprisingly good,
including the values of the second critical velocity. Bottom: drag
coefficient as a function of velocity measured by amplitude sweeps
with resonance tracking in Lancaster using a 55.5 kHz custom-made
tuning fork (dimensions T , W , and D the same as the 6.5 kHz
fork, L = 1.2 mm) displaying the third critical velocity in its
fundamental mode, vcf3 = 1.9 m s−1, which again appears almost
independent of temperature below 1 K. For this tuning fork, the first
two critical velocities were determined as vcf1 = 0.021 m s−1 and
vcf2 = 0.16 m s−1. In both panels, the green horizontal dash-dotted
line marks the value of unity expected for classical flows. Note that
at higher temperatures close to the lambda point, the drag coefficient
approaches this value at comparatively lower velocities.

everywhere except near the onset of nonlinear dissipation
(second critical velocity vcf2), where the amplitude sweeps
display clear hysteresis, which cannot be detected reliably
using full frequency sweeps (see Appendix A).

On the other hand, using amplitude sweeps, the information
on frequency shifts of the order of ppm is often lost due to
imperfect tracking of the resonance, and thus the very first
instability at vcf1 or vco1 is harder to find. The near-perfect
agreement between the data obtained in Prague and Lancaster
means that the new generation of tuning forks produced for
the Lancaster group is indeed capable of providing systematic
and reproducible results, which has been one of the main
shortcomings of many prior works using oscillating tuning
forks.

It should be noted that in the previous Lancaster experiment
[19], the third critical velocity has never been observed with
the 6.5 kHz tuning fork, because the data acquired for the first
overtone (c.f. Fig. 8 of Ref. [19]) did not extend to sufficiently
high velocities above 1 m s−1. However, the 55.5 kHz tuning
fork presented here shows the third critical velocity clearly
at a value of approximately vcf3 = 1.9 m s−1, see lower panel
of Fig. 8. The first two critical velocities were determined as
vcf1 = 0.021 m s−1 ± 40%, and vcf2 = 0.16 m s−1 ± 25% for
the 55.5 kHz tuning fork in a fashion similar to the procedure
for the 6.5 kHz fork. The first critical velocity is, however,
less accurate due to the properties of the frequency-tracking
algorithm used in the amplitude sweeps.

The first critical velocity appears to be virtually identical
between the two different tuning forks here, but our current
precision is insufficient to support any claim of frequency-
independence, especially recalling the differences between
the first critical velocities for the fundamental mode and the
overtone of the 6.5 kHz tuning fork (Fig. 5). On the other
hand, the square-root frequency scaling for vcf2 predicts a ratio
of ≈2.9 between the 55.5 kHz tuning fork and the 6.5 kHz
one, and the experimental results yield a ratio of 2.7 ± 0.9, in
agreement with the theory. Note also the hysteretic behavior
found at vcf2 for both forks with amplitude sweeps.

Hysteresis at the onset of nonlinear dissipation was seen
in amplitude sweeps with other types of tuning forks [27],
wires [20,28], grids [30,31], or spheres [26] and is usually
associated with the stochastic onset of (massive) quantized
vorticity production. This can be seen as a confirmation that
our second critical velocity is indeed related to the production
of quantized vortices in such quantities that the resulting drag
force is comparable to the intrinsic damping of the oscillator at
the given temperature and velocity. The mechanism facilitating
this vortex production is likely related to self-reconnections of
remnant vortices pinned on the oscillator surface [13,40,50].
It should be emphasized that what is required to observe the
nonlinear increase in the drag is not just the production of
quantized vorticity per se, but that this vorticity must actually
escape into the bulk, carrying away the momentum provided
by the oscillator.

C. Third critical velocity

Before proceeding with the interpretation of the third
critical velocity, several issues need to be addressed. First,
measurement and processing artifacts ought to be eliminated.
The maximum error in determining the amplitude of a nonlin-
ear resonance with respect to a drive- and frequency-dependent
background can be estimated to ≈5%, less than the error of
the electrical calibration procedure of the tuning fork, and far
below the observed effect. Second, while the velocities are,
in principle, high enough to warrant risk of cavitation even
in superfluid helium [35], no trace of such an event has been
found in the resonance curves of the 6.5 kHz tuning fork, nor
in the amplitude response of the 55.5 kHz one. In comparison
with previous cavitation studies using tuning forks [35], the
effect on the resonance peak ought to have been even more
dramatic here, given the small dimensions of the tuning forks
used in this work.
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Overheating of the vicinity of the tuning fork can be ruled
out as a cause too, as, for example, for the series taken at
20 mK, the temperature in the immediate surroundings of the
fork would have to rise significantly to ≈1400 mK to facilitate
such an increase in the drag (see Fig. 6). Given the superb
thermal conductivity of superfluid 4He, only minimal thermal
gradients ought to be present within the fluid inside the Prague
or Lancaster cells. While some heating was detected at the
mixing chamber stage at the highest tuning fork velocities, it
was always around or below 10 mK—too low to consider the
experimental cell or parts of it being overheated by more than
1 K. Moreover, the third critical velocity seems to be rather
well-defined and almost independent of temperature between
20 mK and 1100 mK, whereas any excessive heating would
have to be a smooth function of prong velocity (in contrast
to a well-defined critical value) and would become apparent
sooner at low temperatures. With all the information available,
we are thus led to conclude that the third critical velocity vco3

is indeed of hydrodynamical origin.
With the 6.5 kHz fork, we have only observed the third

critical velocity using the overtone. One might therefore ask
whether it is related specifically to the shape of this particular
flexural mode. While it is true that unlike the fundamental
mode, the first overtone has two extrema in the velocity profile
along the prong length (one at the tip, the other at roughly
45% of the prong length measured from the base), the velocity
amplitudes at these maxima are of comparable magnitude [19]
as they differ only by a factor of ≈1.5. On the other hand, the
observed critical velocities differ by a factor of vco3/vco2 > 10,
making any direct connection between nucleation of vorticity
at the other velocity profile maximum and the observed third
critical velocity highly improbable.

The experimental fact that the third critical velocity was
also observed with the fundamental mode of the 55.5 kHz fork
is, of course, another and much stronger argument supporting
the notion that the exact resonant mode used is irrelevant to the
observation of the third critical velocity. Moreover, previous
work [19] indicates that the critical velocities are governed
mainly by the tips of the tuning fork prongs and that they seem
to be largely insensitive to the velocity profile along the prongs.
In summary, the third critical velocity seems to be temperature
independent, related to superfluid hydrodynamics, and has
been found independently and reproducibly with two different
carefully designed and prepared tuning forks, in two different
laboratories using two different measurement techniques.

D. Comparison with previous experiments

Past experiments [22,30] that observed two critical veloci-
ties with oscillators in superfluid 4He were usually interpreted
in such a manner that the first critical velocity corresponds
to the formation of a layer of quantized vorticity near the
surface of the oscillator in question, without dissipating much
energy in the process. The second critical velocity was then
usually thought to correspond to the spreading of quantized
vortices into the bulk in the form of emitted vortex loops
and/or to the formation of a partly polarized turbulent vortex
tangle producing large eddies at length scales exceeding the
mean intervortex spacing—the quantum length scale. Note in
passing that a similar scenario has been expected to work [13]

not only in the zero temperature limit, but also in the two-fluid
regime at finite temperature above about 1 K.

1. Tuning forks

Of all the experimental results available today, we first
discuss the work in Ref. [22] with tuning forks in isotopically
pure 4He. These measurements have been taken with several
tuning forks placed in different enclosures inside a large
experimental cell mounted on the mixing chamber of the
dilution refrigerator. All of the forks have clearly displayed
significant acoustic emission, which was lowest for the 32 kHz
tuning fork labeled “F1” placed inside its original capsule
with only a tiny 0.4 mm opening. This tuning fork displayed
two critical velocities with values of vc1 = 0.006 m s−1 and
vc2 = 0.1 m s−1, respectively.

In the cited work, vc2 is interpreted as a full-fledged
transition to quantum turbulence, while vc1 is discussed
speculatively; a relation to the formation of a pseudoviscous
flow in the vicinity of the oscillator is proposed. Comparing
the observed values with our critical velocities, we find that vc2

is close with our second critical velocities (vcf2 = 0.060 m s−1;
vco2 = 0.12 m s−1 for our 6.5 kHz fork; vcf2 = 0.16 m s−1 for
our 55.5 kHz fork), especially after taking into account the
expected scaling with the square root of frequency [40]. We
are therefore led to believe that the flow instabilities occurring
at all of these velocities are of the same nature. We note that
the third critical velocity has not been observed in Ref. [22]
despite having reached velocities close to 2 m s−1 with their
32 kHz fork labeled “f3”.

On the other hand, we have not observed any sign of
such effects as seen in Ref. [22] around their vc1, notably
the increase or suppression of the drag depending on whether
the original value of the drag was high or low (as influenced by
coupling to acoustic modes) with our 6.5 kHz tuning fork. As
this fork was designed and chosen with special considerations
for minimizing its acoustic emission, it seems that the effects
observed in Ref. [22] might be related to acoustics phenomena.
Indeed, the 55.5 kHz fork that is expected to have a measurable
acoustic drag shows such an increase in the drag force (Fig. 8).

It seems very likely that the resonant frequency of the forks
used in Ref. [22] has shifted slightly, as for our forks above the
first critical velocity. This may be caused by formation of a thin
vortical layer near the tuning fork, as the authors discuss in their
work. This shift in frequency would have affected the tuning
to/detuning from the acoustic resonances of the surrounding
volume. We contacted Deepak Garg, the principal author of
Ref. [22], who sent us a sample of resonant frequency data.
These data show a gradual downward frequency shift starting
around their vc1 and going down by 2.5 ppm before reaching
vc2, although it might also be affected by the frequency drifting
due to acoustic coupling. We are therefore left to surmise that
the change in drag at vc1 observed in Ref. [22] and also with
our 55.5 kHz fork is likely due to a change in the acoustic
dissipation.

2. Tuning forks and microwires

Next, we compare our data with those of Bradley and
co-workers obtained in superfluid 4He at mK temperatures
with oscillating wires [20] and forks [21]. With both types of
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devices, they observed a velocity vonset, above which extra
turbulent drag is detected. For each device, this velocity
was irreproducible from one sweep to the next and behaved
stochastically. Therefore, for each device, the authors clearly
defined a critical velocity vc1 by extrapolating to zero turbulent
drag. This velocity was reproducible between sweeps and
corresponded to the minimum velocity needed to produce and
sustain the vortex lines that create drag forces.

Additionally, for each device, the authors identified another
reproducible critical velocity vc2 above which the drag rises
much more steeply. The magnitudes of the two characteristic
velocities obtained for the 32 kHz tuning fork were very close
[21]: vc1 ≈ 0.053 m s−1 and vc2 ≈ 0.056 m s−1. For the wires
resonating at ≈1 kHz, values vc1 ≈ 0.035 m s−1, and vc2 ≈
0.060 m s−1, or vc2 ≈ 0.075 m s−1 were found [20], depending
on the exact wire and frequency used. Again, the higher critical
velocity is tentatively linked to the massive production of
quantized vortices resulting in developed quantum turbulence,
while the lower one is considered a limiting value above which
drag-inducing quantized vortices can only be sustained.

These results differ from ours in the sense that the first
critical velocity already marks some (albeit small) increase
of dissipation, whereas in our case the flow continues to be
dissipationless (within our resolution) in the narrow range
of velocities between our first and second critical velocity
(although a weak increase in dissipation could be argued for
the data taken at 20 mK, see Fig. 7). Frequency shifts have been
observed in Refs. [20,21] above their first critical velocity, too.
It is also important that the values of the drag coefficient near
and above the observed critical velocities were very low in
Refs. [20,21], one to two orders of magnitude below unity. The
observed turbulent drag therefore does not resemble classical
turbulent drag.

3. Grids

Similar experiments with grids oscillating at ≈1 kHz in 4He
have shown comparable results [30], and again, two critical
velocities have been observed, this time with values vg1 ≈
0.003 m s−1 and vg2 ≈ 0.03 m s−1. The first critical velocity
for the grid was accompanied with a pronounced frequency
shift (no increase in drag), interpreted as extra hydrodynamical
added mass due to a boundary layer of quantized vortices,
while the second clearly marked the onset of extra dissipation.
This seems consistent with Refs. [20–22] and our work, and
highlights the frequency shift needed to observe the change
in acoustic damping in Ref. [22] or with our 55.5 kHz tuning
fork.

As far as the actual values of the first critical velocity are
concerned, assuming that it is indeed related to a formation of
a vortical layer on the surface of the oscillator which affects
the hydrodynamic added mass, one might expect the critical
velocity to depend on the surface quality of the oscillator in
question. The grid has relatively large micron-scale (≈20 μm
bar width and ≈127 μm mesh size) features everywhere, so
the formation of the boundary layer might be the easiest—
observed at the lowest velocity. While we have no direct
measure of the surface quality of the tuning fork “F1” in
Ref. [22] or the fork in Ref. [21], these are commercially
produced devices, which typically have surface roughness

of the order of 10 μm or even higher [25]. Our custom-
made tuning forks have a significantly better surface quality
(<2 μm), and the surface roughness of the micron-sized wires
is probably below 1 μm. This might explain why the tuning
forks and wires detect no frequency shift due to vortices pinned
on the surface at such low velocities as vg1 ≈ 0.003 m s−1 but
instead at velocities roughly one order of magnitude higher.

4. Experiments with oscillators—summary

Collecting evidence from all the above-mentioned exper-
iments, we are led to believe that the first (lowest) critical
velocity observed in all the experiments is of hydrodynamic
origin and is indeed related to the formation of a vortical
boundary layer which can be expedited by larger surface
features on the device used. The second critical velocities from
Refs. [22,30] correspond to our second critical velocity too and
can be linked reliably to significant production of quantized
vorticity, which then propagates away from the surface of the
oscillator, as it always features a rapid increase in the drag force
and hysteresis (if measured using amplitude sweeps) [19–22].

After exceeding the second critical velocity, the values
of the drag coefficient are typically of the order of 10−2

or 10−1 across our work and the referred experiments. This
suggests that flow patterns significantly different from classical
turbulence are present. In classical oscillatory flows, drag
coefficients of order unity are expected for cylinders or
tuning forks [17,18,25] at sufficiently high Reynolds number
(or Keulegan-Carpenter number), where the pressure drag
is dominant. Thus, we believe that no large flow structures
resembling the classical wake exist in the superflow above
the second critical velocity yet, and that our newly observed
third critical velocity, above which the drag coefficient starts
rising towards unity, may be related to a distinct change
in the flow pattern, in which the superfluid develops larger
polarized structures and starts to mimic the behavior of
classical turbulent flows. This scenario is also supported by
order-of-magnitude estimates of vortex line density provided
in Appendix B.

It should be noted that at higher temperatures approaching
Tλ = 2.17 K, the drag coefficients obtained with our tuning
forks approach unity at velocities notably below vcf3 (c.f.
Fig. 8). This suggests that larger vortical structures present
in the (transitional or turbulent) flow of the normal component
affect the drag considerably, and perhaps also induce the
superfluid component to mimic classical behavior already at
lower velocities, via the action of the mutual friction force as
suggested in Ref. [25]. Mutual friction is directly related to
the density of quantized vortices and is thus expected to arise
already above the second critical velocity, which is in our case
roughly one order of magnitude lower.

If our scenario is correct, the possibility to observe the third
critical velocity would likely depend on the exact geometry of
the flow, specifically on the range of length scales at which
the flow is driven. Experiments with floppy grids [23] or
large commercial tuning forks [24] (tine length 3.9 mm, cross
section 0.39 mm by 0.28 mm) that show drag coefficients of
order unity in the zero temperature limit without any explicit
crossover from the “ultra-quantum” to the “quasiclassical”
regime are in fact good examples of flows driven at large
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scales (grid or fork dimensions) and small scales (mesh size,
surface roughness) at the same time. On the other hand, drag
coefficients significantly below unity are found in experiments
where the flow is driven predominantly at small scales, e.g.,
with the much smaller tuning forks custom made for the
Lancaster group [19] that are used in this work too, vibrating
wires [20], or the oscillating grid [30,31]. The electrostatically
driven grid is included in this group because it does not move
translationally or act as a solid bluff body; it thus drives the
flow mainly at the scales of the mesh size or bar width.

The last group of experiments [21,22], using relatively large
commercial tuning forks but not observing drag coefficients
of order unity, can very likely be understood as simply having
an insufficient maximum velocity (≈0.8 m s−1 for fork “F1”
in Ref. [22], and ≈0.5 m s−1 for the forks in Ref. [21]) for
the classical-like flow pattern to emerge or to manifest in the
drag coefficient. In the end, whether all three critical velocities
are observed distinctly or whether they coincide seems to be
determined by the surface quality of the given oscillator and
by the length scales at which the flow is driven. We believe
that this is the reason why it has been extremely difficult
to find significant common ground between the numerous
experiments with submerged oscillators performed in the last
two decades.

V. CONCLUSIONS

We have investigated instabilities in oscillatory flow due to
tuning forks in isotopically pure superfluid helium, focusing
on the zero temperature limit. We have analyzed linear
damping at low drives and ascertained that acoustic radiation
into the fluid can be neglected for the 6.5 kHz tuning fork
operated at its fundamental and first overtone modes, while
it is measurable for the 55.5 kHz tuning fork. Apart from
the two critical velocities known from earlier work, we
have observed a previously unknown third hydrodynamic
critical velocity, which we associate with the predominantly
“ultra-quantum” turbulence (characterized by the quantum
length scale—the mean intervortex distance) developing larger
coherent structures and starting to mimic the behavior of
classical fluids. For the tuning forks used, this behavior was
most clearly expressed at the lowest attainable temperature of
20 mK.

Here, we propose a tentative explanation linking all the
observations of oscillatory flow in the zero temperature limit
into a single framework. Specifically, we suggest that the first
critical velocity, connected mostly to frequency shifts rather
than changes in the drag force, is associated with the formation
of a number of quantized vortex loops near the surface of
the oscillator, possibly forming a thin layer, which affects
the coupling to the fluid and thus the hydrodynamic added
mass. We believe that the value of this first critical velocity
is strongly dependent on the surface quality of the given
oscillator; smoother surfaces are likely to result in a higher
value, as one might expect from considerations of ideal flow
enhancement past sharp corners. The second critical velocity is
then related to the quantized vorticity propagating into the bulk
of the superfluid, either in the form of emitted vortex loops or,
eventually, as a turbulent tangle. It is always accompanied by
a marked increase in the drag force and usually hysteresis

(detectable with amplitude sweeps). The third and highest
critical velocity, above which the drag coefficient starts to
grow towards unity, was found to be hydrodynamic in origin.
We propose that it is linked to a qualitative change in the
pattern of quantized vorticity, during which the vortex tangle
becomes partly polarized, developing larger structures, and
on scales exceeding the quantum length scale starts to mimic
classical turbulence generated by oscillating objects in viscous
fluids.

We note that at higher temperatures in the two-fluid
regime, the situation is far more complex due to the
possibility of the superfluid and normal component flows
becoming unstable independently and due to the mutual
friction force coupling their velocity fields. This represents
a significant challenge for future research, and we hope that
our work will provide a useful stepping stone for such an
endeavour.
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EPSRC Grant No. EP/L000016/1, and by the European
Community Framework Programme 7, EuHIT - European
High-performance Infrastructures in Turbulence, Grant No.
312778. D.S. acknowledges institutional support under UNCE
2040.

APPENDIX A: MEASUREMENT TECHNIQUES

Experimentalists working with sensitive high-Q resonators
at mK temperatures often have to deal with the extremely long
times it takes for such oscillators to stabilize at a given drive
level and frequency. For example, for the 6.5 kHz fork, the
vacuum linewidth �f0 was about 8 mHz, meaning that the
relaxation time τ = 1/�f0 amounts to 125 s. For example, if
the waiting between individual points on a frequency sweep is
set to roughly three times the relaxation time (375 s), the
entire f-sweep, comprised of 100 points, would take over
10 hours. For these reasons it is often impractical to use
frequency sweeps for the studies of the transition to quantum
turbulence, as each force-velocity curve for a given setting of
the driving voltage would take a considerable amount of time,
at least until turbulence is produced and the linewidth increases
significantly.

There are, however, some aspects of the resonance that
cannot be found without performing full frequency sweeps
(and optimizing for speed wherever possible). In Fig. 9 we
present a direct comparison of the results obtained near vcf2 on
the 6.5 kHz tuning fork using amplitude sweeps with resonance
tracking and full frequency sweeps. While using the amplitude
sweeps helps uncover the hysteresis at the transition (which is
inaccessible with frequency sweeps, as the tuning fork velocity
varies during each sweep), the nonlinear resonance will only
be revealed when using full frequency sweeps, as the tiny
shifts in resonance frequency are difficult to detect with a
resonance-tracking amplitude sweep algorithm.
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FIG. 9. Comparison of the low temperature drag coefficient
velocity dependence of the fundamental mode of the 6.5 kHz tuning
fork measured by amplitude sweeps and a series of frequency sweeps.
The second critical velocity is indicated by the vertical dashed
line. Note that the data measured using the amplitude sweeps show
hysteresis.

Recently, a new technique has been tested for the measure-
ment of resonant responses that promises to become a powerful
combination of both approaches—the multifrequency lock-in
technique [51]. Significant improvements in acquisition times
have been demonstrated in the linear mode of tuning forks at
room temperature (Q ≈ 3000) and first measurements have
been made in superfluid 4He above 1.4 K with promising
results. The performance of this technique at mK temperatures
is yet to be tested carefully, especially bearing in mind
the extremely good quality factors of order 105 or 106 and
the various types of nonlinearities present in the flow past
oscillating bodies in superfluid helium.

APPENDIX B: ESTIMATES RELATED
TO CRITICAL VELOCITIES

Here we estimate the effects due to quantized vortices
(QVs) near the second and third critical velocities obtained
with the 6.5 kHz and 55.5 kHz tuning forks. We begin
by estimating the superfluid mass effectively coupled to the
resonators near the second critical velocity from the measured
frequency shifts. For the 6.5 kHz tuning fork, we have shifts
of 1.5 ppm at vcf2 and 0.8 ppm at vco2; for the 55.5 kHz
fork we have 1.1 ppm at vcf2. This leads to absolute effective
mass enhancements of the order of 10−14 kg, corresponding
to a layer of superfluid helium near the surface of the fork,
of thickness ≈2 Å. This amount of helium is coupled to the
oscillator through the action of QVs and Kelvin waves (KWs),
in excess of the fluid already coupled due to potential flow past
the fork. This thickness is in fact very close to the vortex core
size [52] (likely a numerical coincidence), and it shows that
any additional coupling of the oscillator to the surrounding
superfluid due to QVs is very weak.

Estimating the radius of a vortex loop r , satisfying the
fundamental resonance condition for KW excitations [53] at
the given frequencies yields values of the order of 10−7 m.
A very crude estimate of a semicircular QV loop effective

hydrodynamic mass can be made based on the momentum of a
free vortex ring [54], p = ρSκπr2, and the induced superfluid
velocity in its center, vS = κ/(2r). Such a simple estimate
leads to numbers of vortex loops pinned on the surface of
the fork between approximately 50 (6.5 kHz fork) and 1000
(55.5 kHz fork), just below the second critical velocity. The
mean distance between pinned loops exceeds r by almost two
orders of magnitude, hence interactions between loops should
be statistically insignificant. These estimates are in general
agreement with our tentative interpretation that relatively few
QVs are attached to the surface and that they likely do not
extend far into the surrounding superfluid.

Next, we proceed to estimate the vortex line density needed
to dissipate the power input into the fluid by the resonator near
the third critical velocity. We will use two different approaches:
one based on the dissipation of unpolarized (unstructured)
vortex line density as given by the Vinen equation and the
other following a classical description of turbulent flow. In a
stationary case, the total power dissipated by the flow must
be equal to the power supplied to the tuning fork, given by
q̇ = IV/2 = Fv, see Sec. II. If our interpretation is correct, at
the third critical velocity the dissipation due to classical-like
(structured) flow PC should become comparable to the one
dissipated through the ultra-quantum (unstructured) vorticity
PQ. For the sake of the argument, we will use PC = PQ = q̇/2.

To convert the supplied power to energy dissipation per
unit volume, we need to know an effective volume wherein
this power is dissipated. Using the size of a container or an
experimental cell would clearly lead to unphysical results,
unless its dimensions were comparable to those of the tuning
fork. Instead, we choose two physically relevant volumes for
comparison. The first choice, V1, is determined by the tuning
fork dimensions, as these are relevant to the velocity field of
ideal flow past the fork. We thus define an elliptical cylinder
encapsulating the tuning fork, with lateral dimensions 2a =
3W , 2b = D + 4T and height h = L, and subtract the volume
of the fork itself. The second option, V2, is chosen as a thin
layer near the surface of the fork with its thickness given by the
radius of vortex loops r . We consider these to be the extreme
cases; in reality the volumes differ by three orders of magnitude
and the actual dissipating volume will likely be in between.

For an unpolarized bundle, the dissipation of vortex line
density is given by the Vinen equation (see Ref. [55], Eq. 30)
as dL/dt = −κL2/(2π ), ignoring the factor χ2 of order unity.
The energy of unpolarized vortices can be estimated as the sum
of individual vortex energies and is given in Ref. [56], Eq. (29).
Using these two relations and equating the energy dissipation
per unit volume to PQ/V1, the unpolarized vortex line density
can be estimated as L× ≈ 2.5 × 1011 m−2 and 3.3 × 1011 m−2,
for the 6.5 kHz and 55.5 kHz forks, respectively. Using PQ/V2,
we get L× ≈ 5.5 × 1012 m−2 and 9.4 × 1012 m−2.

On the other hand, Kolmogorov’s treatment of classical
turbulence estimates the kinetic energy flux per unit volume
as ρu3/(2d), with u being the characteristic velocity of
large, energetic eddies and d their dimension. Based on the
visualization of oscillatory flow of superfluid 4He past a
rectangular cylinder in Ref. [57], Fig. 3, we choose d = W/2.
Equating the energy dissipation to PC/V1 gives eddy velocities
of 47 mm s−1 and 57 mm s−1 for the 6.5 kHz and 55.5 kHz
tuning fork, respectively. Assuming solid body rotation of the
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large eddy and full polarization of QVs, the corresponding
vortex line density is given by L‖ = 4u/(κd). This leads
to values L‖ ≈ 8.5 × 1010 m−2 and 1.0 × 1011 m−2, for the
6.5 kHz and 55.5 kHz forks, respectively. Using PC/V2, we
get L‖ ≈ 6.3 × 1011 m−2 and 8.9 × 1011 m−2. It is remarkable
that if we attempt to estimate the Kolmogorov length scale as
η = (κ3/ε)1/4, with ε = u3/d, and compare it to the mean
intervortex distances obtained using both approaches, δ× =
1/

√
L× and δ‖ = 1/

√
L‖, we always find that δ× < η < δ‖

and for a given choice of the effective volume, all the values
fall within a factor of three.

In all cases, a larger density is found for unpolarized
vortices: L× > L‖, as might be expected, but the values are
within one order of magnitude. We stress that this is not

universal behavior of the model and depends on the total
amount of energy dissipated per unit volume. The actual values
of L are somewhat higher than measured in a steady flow of
superfluid 4He at 1.6 K with a mean flow velocity of ≈1 ms−1

in Ref. [56], which states a value of L = 6 × 1010 m−2. This
can be expected, as our case differs in three important aspects:
(i) lower temperatures and little or no dissipation due to mutual
friction, (ii) oscillatory flow, where the body moves through its
wake and interacts with vortices, and (iii) higher characteristic
velocity (1.5 and 1.9 m s−1). While these rough estimates are of
speculative nature, it seems that the third critical velocity may
indeed be related to a situation where polarized, classical-like
vortex structures start to manifest in a predominantly quantum
flow.
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