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Superconductivity in repulsively interacting fermions on a diamond chain:
Flat-band-induced pairing
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To explore whether a flat-band system can accommodate superconductivity, we consider repulsively interacting
fermions on the diamond chain, a simplest possible quasi-one-dimensional system that contains a flat band. Exact
diagonalization and the density-matrix renormalization group are used to show that we have a significant binding
energy of a Cooper pair with a long-tailed pair-pair correlation in real space when the total band filling is
slightly below 1/3, where a filled dispersive band interacts with the flat band that is empty but close to EF .
Pairs selectively formed across the outer sites of the diamond chain are responsible for the pairing correlation.
At exactly 1/3-filling an insulating phase emerges, where the entanglement spectrum indicates the particles on
the outer sites are highly entangled and topological. These come from a peculiarity of the flat band in which
“Wannier orbits” are not orthogonalizable.
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I. INTRODUCTION

While the fascination with unconventional superconduc-
tivity arising from electron correlation continues to increase,
as exemplified by the high-TC cuprates and iron-based su-
perconductors, a next question to ask is whether there exists
an avenue where we have superconductivity with another
pairing mechanism. Namely, in the superconductivity in
correlated electron systems, the standard viewpoint is that the
interaction mediated by spin fluctuations glues the electrons
into anisotropic pairs such as d wave or s+−, where the nesting
of the Fermi surface dominates the fluctuation, hence the
superconductivity. To look for a different class of models,
one intriguing direction is to consider correlated systems on
flat-band lattices that contain dispersionless band(s) in their
band structure. This is because, regardless of the Fermi energy
residing on or off the flat band, we cannot define the Fermi
surface for the flat band. In other words, we cannot apply,
in one-dimensional cases, the Tomonaga-Luttinger picture
for the states around EF even with multichannel g-ology
unlike the case of ladders. Thus, if superconductivity does
arise, this might harbor a mechanism in which the flat band
plays a role distinct from the conventional, nesting-dominated
boson-exchange mechanisms.

In the field of ferromagnetism, on the other hand, there
is a long history of the study of flat-band ferromagnetism
[1–3], which is distinct from the conventional (Stoner) fer-
romagnetism. The ferromagnetic ground state is rigorously
shown for arbitrary repulsive interaction 0 < U � ∞ when
the flat band is half-filled. The flat-band lattice models are
conceived as a Lieb model [1] with different numbers of A

and B sublattice sites, or as Mielke and Tasaki models [2,3]
such as kagome lattice. A speciality of these flat-band lattices
appears as an anomalous situation that Wannier orbitals cannot
be orthogonalized, which is called the connectivity condition
for the density matrix [4]. This immediately dictates that the
flat band arises from interferences, hence totally different
from the atomic (zero-hopping) limit, and indeed the flat-band

models are necessarily multiband systems, where the flat
band(s) coexist with dispersive ones. Flat-band systems are
not merely a theoretical curiosity, but candidate systems have
been considered [5]. Also, recent developments in cold-atom
Fermi gases on optical lattices are a promising arena, where
Lieb [6] and kagome [7] lattices are already realized.

Thus the flat-band system provides a unique playground,
because the correlation effects should be strong for the flat
bands (as briefly described in Appendix C), but also because
of the above-mentioned unusual structure of the density
matrix (or strongly interfering wave functions). We can thus
envisage dramatic, possibly nonperturbative phenomena from
the electron-electron interaction on these macroscopically
degenerate manifolds of single-particle states. Besides the
ferromagnetism, the flat-band systems have attracted recent
attention for possible realization of topological insulators with
nontrivial Chern numbers [8–12]. The next goal, in our view,
is to realize superconductivity in flat-band systems. We shall
show here that there are indeed signatures for pairing for
repulsive interaction electrons in a one-dimensional flat-band
lattice.

Theoretically, exploration of superconducting phases in
flat-band systems is quite challenging, since correlation effects
become even more difficult to fathom for the flat bands than in
ordinary ones [13]. Thus far, the possibility of pair formation
on flat bands has been examined by several authors. The pairing
of two fermions on a diamond chain with π flux inserted was
discussed by Vidal et al. [14]. Kuroki et al. have considered
a cross-linked ladder that contains wide and narrow (or flat)
bands in the context of the high-TC cuprate ladder compound
[15], and have shown that superconducting TC estimated
from the fluctuation exchange approximation (FLEX) is much
higher than in usual lattices when EF is just above the flat band
that pierces the dispersive one. There, virtual pair scatterings
between the dispersive and fully filled flat bands are suggested
to cause the high TC . Pair formation has also been discussed
for the Bose-Hubbard model on cross-linked ladders [16,17],
where a large pair hopping gives rise to the emergence of a
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FIG. 1. (a) Hubbard model on a diamond chain with t (t ′) the
nearest-neighbor (interapex) hoppings, m labeling the leg, while i is
the unit cell. Also shown are two types of cuts (vertical and diagonal),
which are used in DMRG calculation of the entanglement entropy.
(b) Band structures in the noninteracting case (U = 0) for various
values of t ′, with shaded areas indicating the 1/3-filling. (c) Orbits
considered here for the flat band at t ′/t = 0 or 1.

superfluid phase (pair Tomonaga-Luttinger liquid) overlapping
with a Wigner-solid region in the phase diagram. Namely, in
flat-band systems, not only pair hopping amplitudes can be
large, but also diagonal orders tend to coexist (rather than
compete) with superfluids. These results suggest that the flat
bands may indeed be a good place to look for pair condensates.

This has motivated us here to explore superconductivity for
a repulsive fermionic Hubbard model on flat-band systems. As
a model we take a simplest possible, quasi-one-dimensional
(quasi-1D) lattice comprising a chain of diamonds as depicted
in Fig. 1(a). We shall show that for EF close to but slightly
below the flat band (with the filling of the whole bands slightly
below 1/3), attractive binding energies appear. Concomitantly,
the pair-pair correlation becomes long tailed in real space at
these band fillings.

II. MODEL AND METHODS

As methods for calculation we opt for exact diagonalization
and the density-matrix renormalization group (DMRG) that
can deal with strong correlation, since the correlation phe-
nomena on flat bands may well call for such nonperturbative
methods. For the position of the Fermi energy, EF , we focus
on the regime where the flat band is empty. This choice comes
from the following observation. When the flat band is half
filled, the ground state is ferromagnetic. When EF is shifted
but still on the flat band, the diverging density of one-electron
states is expected to give rise to large self-energy corrections,
which should be detrimental to superconductivity. When the
flat band is empty with EF residing in a dispersive band, this
problem can be resolved, with virtual processes between the
dispersive and flat bands still at work. For bipartite lattices
such as the diamond chain, the empty flat band is equivalent
to a fully filled flat band due to an electron-hole symmetry.

It is desirable to have, on top of EF , another control
parameter about the flat band. So here we introduce a hopping
t ′ between the adjacent apex sites of diamonds [Fig. 1(a)]. For
t ′ = 0 the lattice (a Lieb model) is bipartite with the flat band
as a middle one in this three-band system. As we increase t ′ the
bands are deformed, until in the limit t ′/t = 1 the bottom band
becomes flat (a Mielke model). Thus we can examine how the
pairing behaves as we change t ′ = 0 → 1. We then calculate
the binding energy of pairs with the exact diagonalization
(ED), and pair-pair (and other) correlation functions with the
DMRG [18–21].

We take the conventional Hubbard Hamiltonian on the
diamond chain [Fig. 1(a)],

H = Hkin + Hint, (1)

Hkin = t
∑

i,σ=↑↓
c
†
2,i,σ

∑

m=1,3

(cm,i,σ + cm,i+1,σ )

+ t ′
∑

i,σ=↑↓

∑

m=1,3

c
†
m,i,σ cm,i+1,σ + H.c., (2)

Hint = U
∑

m,i

nm,i,↑nm,i,↓, (3)

where t (unit of energy) and t ′ are the nearest-neighbor
and interapex hoppings, respectively, c

†
m,i,σ creates a fermion

with spin σ on the mth leg at the ith unit cell, nm,i,σ =
c
†
m,i,σ cm,i,σ , and U > 0 is the on-site repulsive interaction. Fig-

ure 1(b) shows the band structure, ε(k) = ±{4[1 + cos(k)] +
(t ′)2 cos2(k)}1/2 + t ′ cos(k), 2t ′ cos(k), in the noninteracting
case (U = 0). As we can see, one of the three bands becomes
flat in the limit of t ′ = 0 or 1. We focus on the region where
the filling of the whole bands is around 1/3 (one fermion per
unit cell on average) to investigate the effects of repulsive
interaction. We have, for t ′ = 0 → 1, a fully occupied bottom
band which touches the middle band at k = ±π , where the
middle (bottom) band becomes flat at t ′ = 0 (1).

Intriguingly, we have noticed in performing the DMRG
that we have to keep an unusually large number of states
up to mDMRG = 1500 for the present ladderlike lattice. For
DMRG we take an open boundary condition with inversion-
symmetric configurations as shown in Fig. 1(a). Here we focus
on the properties below 1/3-filling to explore the possibility of
fermion superfluidity in terms of the pair binding energy and
correlation functions.

III. RESULTS

Let us first examine the fermion pair formation in
terms of the binding energy, �Eb ≡ Eg(N↑ + 1,N↓ + 1) +
Eg(N↑,N↓) − 2Eg(N↑ + 1,N↓), where Eg(N↑,N↓) is the
ground-state energy for Ntot = N↑ + N↓ fermions with Nσ

being the total number of σ -spin electrons. A negative
�Eb implies that an attractive interaction works between
two particles. Eg(N↑,N↓) is computed with ED in periodic
boundary conditions. In the numerical calculation, we set the
total number of sites to be N = 18 with the length of the chain
being L = N/3 = 6.

Figure 2(a) shows �Eb as a function of the filling
n = Ntot/2N for t ′ = 0 for various values of U/t . We can
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FIG. 2. (a), (b) ED result for the binding energy �Eb vs band
filling n for t ′ = 0 (a) or t ′/t = 1 (b) for various values of U/t with
N = 18 sites here. (c), (d) Binding energy �Eb vs t ′/t for band filling
n = 5/18 (c) or n = 1/3 (d) for various values of U/t . Top panel is a
color-code plot of �Eb against n and t ′/t for U/t = 4, where arrows
indicate the cross sections displayed in panels (a)–(d).

immediately notice that two electrons become bound (i.e.,
�Eb becomes negative) sharply around n = 1/3 (N↑ =
N↓ = 6, N = 18) for all the values of U > 0 considered.
Interestingly, the binding energy is not monotonic against U

but peaked around U/t = 4. As we shall see, the binding
occurs for two electrons sitting on the m = 1 and 3 legs. The
binding energy continues to be negative just below n = 1/3. In
the other flat-band limit at t ′/t = 1, we can see in Fig. 2(b) that
we have again a binding at a filling slightly smaller than 1/3
(5/18-filling), where �Eb becomes negative, but this causes
a phase separation between insulator and CDW-like phase in
the case of t ′/t = 1 as shown in Appendix B.

We now proceed to DMRG calculations for various corre-
lation functions, including pair correlation for t ′ = 0 [22]. The
density (Dm) and spin (Sm) correlation functions on the mth
leg are defined, respectively, as

Dm(i,j ) = 〈nm,inm,j 〉 − 〈nm,i〉〈nm,i〉, (4)

Sm(i,j ) = 〈
S

(z)
m,iS

(z)
m,j

〉
, (5)

FIG. 3. (a) Correlation of various possible pair configurations on
the diamond chain with t ′ = 0. (b) Absolute values of various pair
correlation functions are shown against real-space distance r along
with density and spin correlation functions for U/t = 4, n = 0.329.
(c) Pair correlation C

pair
{31}(r) against r for various values of n for

U/t = 4. (d) Pair correlation C
pair
{31}(r) for various values of U/t for

n = 0.329. Here the length of the chain is L = 55 (with 164 sites in
total).

with nm,i = nm,i,↑ + nm,i,↓ and S
(z)
m,i = (nm,i,↑ − nm,i,↓)/2. We

compute the correlation functions on leg m = 1 and on 2
(while the correlation function on m = 3 is equivalent to those
on m = 1). The singlet-pair correlation functions are defined
as

C
pair
{m′m}(i,j ) = 〈�m′m,j�

†
m′m,i〉, (6)

�m′m,i ≡ cm′,i+l,↑cm,i,↓ − cm′,i+l,↓cm,i,↑, (7)

where l characterizes the pair [see Fig. 3(a)].
The result for various correlations in Fig. 3(b) reveals that

the dominant (most long tailed with distance r) correlation
for U/t 
= 0 in the vicinity of 1/3-filling (n � 0.329 with
N↑ = N↑ = 54 and N = 164) is the pair correlation |Cpair

{31}(r)|
for the pair,

�31,i = c3,i,↑c1,i,↓ − c3,i,↓c1,i,↑,

across m = 1 and 3 [see Fig. 3(a)] [24]. The next dominant
correlations are the pair C

pair
{11}(r) (for �11,i = c1,i+1,↑c1,i,↓ −

c1,i+1,↓c1,i,↑) and density D1(r) correlations on m = 1. Then
comes the spin S1(r) correlation on m = 1. On the other
hand, the correlations on m = 2 [see C

pair
{21}(r) and Appendix B]

rapidly decay for all the values of n studied here [22]. As in
the density and spin correlations, the pair correlation involving
m = 2 (�21,i = c2,i,↑c1,i,↓ − c2,i,↓c1,i,↑) shows a fast decay.
The dominant �31,i is consistent with an analysis of the
entanglement entropy and edge states at t ′ = 0 in Appendix A.

The reason why all of the pair, density, and spin correlations
develop on legs m = 1,3 in the vicinity of 1/3-filling can be
considered as coming from the basis functions on the flat band.
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When the hopping t ′ is absent, we can introduce a basis,

αi,σ = c2,i,σ , βi,σ = (c1,i,σ + c3,i,σ )/
√

2,

γi,σ = (c1,i,σ − c3,i,σ )/
√

2, (8)

with which the kinetic part of Eq. (1) can be expressed
as Hkin,t ′=0 = √

2t
∑

i,σ α
†
i,σ (βi,σ + βi−1,σ ) + H.c. The basis

{γi,σ } represents the particles on the flat band [see left panel
of Fig. 1(c)], in which the probability amplitude selectively
resides on legs m = 1 and 3 (i.e., on the A sublattice
if we divide the bipartite lattice). The interaction U then
brings about interband matrix elements between the flat
and dispersive bands around 1/3-filling. The development
of superconductivity when the flat band is empty (which is
equivalent to full filling in the present electron-hole symmetric
lattice) is consistent with the result in Ref. [15]. While the
latter uses FLEX, a weak-coupling method, the present result
reveals the flat-band superconductivity is in fact prominent
in a strong-coupling (U/t � 4) regime. The behavior of the
correlation functions enhanced on m = 1,3 should come from
the virtual states that have probability amplitudes residing on
legs m = 1 and 3 with the long-range nature of the correlations
involving connected orbits for the flat band.

What happens when the filling is exactly 1/3 is also
interesting, so that we have studied the quantum phases at that
filling in Appendix A. Topological states are shown to emerge,
which is indicated from the entanglement spectrum for spins
on the outer sites as well as from emerging edge states. This is
considered to be another effect of the unusual Wannier states
in the flat band, and the pairing states for the EF close to but
away from the flat band seem to sit adjacent to a topological
phase at the point where the flat band just becomes empty.

IV. SUMMARY

We have investigated repulsively interacting fermions on
the diamond chain, a simplest possible quasi-1D flat-band
system, with ED and DMRG calculations. The numerical
results have revealed that when the band filling is slightly
below 1/3 with the flat band close to but away from EF , the pair
binding energy calculated with ED has two sharp peaks at two
flat-band limits (t ′ = 0 or 1). Then the DMRG shows that, for
t ′ = 0, the most dominant correlation is the singlet pair across
the outer sites (m = 1,3) of the diamond. For t ′/t = 1, by
constrast, a phase separated behavior is observed as indicated
in Appendix B. The flat band promoting superconductivity
through virtual pair hoppings involving the band as conceived
in FLEX [15] is shown to be prominent in a strong-coupling
regime. It is an interesting future problem to see whether a
mechanism beyond the boson exchange is at work here, which
will require methods that take account of vertex corrections.

While we have concentrated on the quasi-1D diamond
chain, enhanced pairing correlations with the major component
residing on the flat-band wave functions are expected to be
a general property of the flat-band systems satisfying the
connectivity condition, such as the Lieb lattice. Extension of
the present study to flat-band systems with fluxes inserted
[14,16,25] is also an interesting future work. While the
diamond-chain structure has been discussed for condensed-
matter systems such as an insulating magnet azurite [26,27],

cold atoms on optical lattices should be an ideal test bench for
experimental realizations of flat-band lattices.
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APPENDIX A: INSULATING PHASES AND EDGE STATES
AT 1/3-FILLING

We present the results for the diamond chain exactly at
1/3-filling by evoking entanglement entropy and spectrum
analysis. Entanglement entropy is a useful tool for distin-
guishing critical from gapped phases [28,29]. If a finite block
of length 	 is considered on a chain of L sites, the reduced
density matrix is defined as ρL(	) = TrL−	|�〉〈�|, and the
corresponding entanglement entropy (von Neumann entropy)
is given by

SL(	) = −TrρL(	) ln ρL(	). (A1)

As is well known [28,29], if the system has a gapless
excitation spectrum, the entanglement entropy should grow
logarithmically with the block size 	. On the other hand,
when all the excitations are gapped, SL(	) should tend to
a constant for large 	. Furthermore, the eigenvalues (en-
tanglement spectrum, ES) of the equation for the reduced
density matrix, ρLuk = λkuk , contain rich information on
bulk properties. For instance, degeneracies of ES determine
the parity of the many-body wave functions and distinguish
nontrivial topological states from trivial product states [30,31].
In addition, doubly degenerate ES in the bulk indicates doubly
degenerate edge spectrum in finite systems.

First, we focus on the original diamond chain with t ′ = 0
for filling n = Ntot

2N
� 0.337, where Ntot (=70 here) is the total

number of particles and N (=104) is the total number of sites.
The filling 0.337 corresponds to 1/3-filling in the periodic
boundary condition, where the bottom dispersive band is fully
occupied and touches the flat band at k = ±π [see Fig. 1(b)
in the main text]. In calculating the entanglement entropy,
we can introduce two types of cuts of the diamond chain,
namely vertical and diagonal cuts as shown in Fig. 1(a) in the
main text. Insets of Figs. 4(a) and 4(b) show the entanglement
entropy S(	) against the block length 	 for the vertical and
diagonal cuts. We can see in both cases that the initial slope
of SL(	) vs 	 for U/t = 0 shows a logarithmic growth as
a consequence of gapless excitations. As U/t is increased,
SL(	) rapidly saturates to a constant, which implies a phase
transition from gapless to gapped phases induced by repulsive
U . Note that this phase transition is distinct from the Mott
transition at half-filling: All the excitation spectra are gapped
and transition occurs at 1/3-filling.

If we turn to eigenvalues of the reduced density matrix
(entanglement spectrum), it is known that ES can depend
on how the system is divided into subsystems [33,34].
Figures 4(a) and 4(b) respectively show the ES for the vertical
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FIG. 4. Eigenvalues of the reduced density matrix λk versus the
eigenvalue number k for vertical (a) or diagonal (b) cuts for various
values of U/t with t ′ = 0. Degenerate values are connected by
horizontal lines. Respective insets show the entanglement entropy
S(	) against the block length 	 on double logarithmic scales for
t ′ = 0. (c) Deo = ∑N=100

k=1 (λ2k − λ2k−1)/λ2k−1 (see text) against the
interaction U/t for the diagonal cut for various values of t ′. Inset
shows the corresponding entanglement entropy S(	) against 	 for
U/t = 6. (d) Spin density profiles on leg m = 1 (red), m = 2
(black), and m = 3 (blue) for, from top to bottom, U/t = 1, t ′ = 0;
U/t = 6, t ′ = 0; U/t = 6, t ′/t = 1, and U/t = 9, t ′/t = −0.2 for
diagonal cuts.

and diagonal cuts, where we incise the system at the center of
the chain. We find that the ES for the vertical cut has no even
degeneracies for all the values of the interaction studied here,
whereas even degeneracies appear for the diagonal cut when
the interaction U/t becomes large. ES behavior goes hand
in hand with edge states, which is known as the bulk-edge
correspondence. The spin density profile in Fig. 4(d) reveals
that, while ES degeneracies are not developed for U/t = 1
[see the values at k = 9,10 in Fig. 4(a)], edge states (accom-
modating free 1/2 spins) do emerge around the diagonally-cut
boundaries for a larger U/t = 6, where the even degeneracies
are clearly seen. In this sense the diagonal cut here may be
similar to cutting a spin singlet in the Haldane model [32].

Next, we turn to the case with t ′ 
= 0. Let us define a quantity
Deo = ∑N

k=1(λ2k − λ2k−1)/λ2k−1 as a measure of the even-odd
degeneracy of ES: Deo should vanish for even degeneracies. In
Fig. 4(c), the even degeneracy for diagonal cut can be observed
for all the values of t ′ for strong enough interaction U/t . As
in the t ′ = 0 case, the degeneracy is seen to arise when the
gapped phase is formed, where the entanglement entropy S(	)
becomes constant for large 	 [see inset of Fig. 4(c)]. We note
that even degeneracies for vertical cut do not emerge as in
t ′ = 0. In lower panels in Fig. 4(d) the edge states derived from
the even degeneracies are seen to exhibit various structures
depending on the value of t ′: Edge states for t ′ = 1 broaden
over several lattice sites and across different legs (m), in con-
trast to the t ′ = 0 case where edge states are highly localized
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FIG. 5. Density profiles on legs m = 1,3 (solid lines) or on m = 2
(dashed) for various values of n � 1/3 with U/t = 4 for t ′ = 0 (a) or
t ′/t = 1 (b). The system has open boundaries with length L = 35
(with N = 104 sites in total). The lower band is fully occupied
at filling 0.337, which corresponds to 1/3-filling in the periodic
boundary. Insets in (b) schematically represent phase separation
between plateau region (left inset) and CDW-like (right) region. The
plateau is formed by doubly occupied states in the flat-band basis,
which corresponds to those in the insulating phase at 1/3-filling, while
the CDW-like to a configuration of the localized states with 2π/3-
periodicity. Inset of (b) systematically show the CDW-like configura-
tion, where high (red) and low (blue) density regions are aligned with
2π/3-periodicity.

at m = 1 or m = 3 around the boundary. By contrast, when
t ′ = −0.2 < 0, for which we have Fermi points [see Fig. 1(b)
in the main text], edge states on m = 1 or 3 have a staggered
magnetization with an exponential decay off the edge.

Thus we find that the edge states take various structures
depending on the value of t ′. In all cases, even degeneracies
appear only for diagonal cut. This means that the entanglement
pair is mainly formed across the legs 1 and 3. Specifically, the
edge states for t ′/t = 0 are sharply localized at the diagonal
edge boundary, which suggests that the entanglement pair for
t ′ = 0 form dimerlike states across legs 1 and 3.

APPENDIX B: DENSITY PROFILES AND CORRELATIONS
BELOW 1/3-FILLING

In order to identify a phase separation (as another pair-
binding effect distinct from superfluidity), let us show in Fig. 5
the density profiles calculated with DMRG for open boundary
conditions. For t ′ = 0 density profiles below 1/3-filling only
show Friedel-like oscillations induced by boundaries. For
t ′/t = 1, by contrast, phase separation between plateau and
CDW-like regions is observed. We can analyze this by first
noting that particles on the flat band for t ′/t = 1 can be
represented by a basis comprising localized states (see right
panel of Fig. 1(c) in the main text),

bσ,i = c2,σ,i + c2,σ,i+1 − c1,σ,i+1 − c3,σ,i+1 , (B1)

with which we have

|�〉 =
∏

σ,i

(b†σ,i)
nσ,i |0〉 , (B2)

Hkin,t ′=1|�〉 = −2t
∑

σ,i

nσ,i |�〉 , (B3)
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FIG. 6. The absolute value of the density (a) and spin (b) correlation functions on legs m = 1,3 (solid lines) or on m = 2 (dashed) for
various values of n < 1/3 with t ′/t = 0 and U/t = 4. (c) is the absolute value of the pair correlation functions C31(r) for various values of U/t

with t ′/t = 0 and n = 0.329. All figures are shown on log-log scales. Length of the chain is L = 55 with N = 165 sites in total and i0 = L/4.

where nσ,i is the particle number in the localized state i.
The CDW-like region corresponds to a configuration of the
localized states bσ,i with 2π/3 periodicity, while the plateau
region represents doubly occupied states, b

†
↓,ib

†
↑,i |0〉, which is

the gapped phase formed at 1/3-filling. Although the result
for the binding energy (Fig. 2 in the main text) shows a two-
particle attraction for t ′/t = 1, the phase separation observed
here implies formation of domains. This contrasts with the
case of t ′ = 0, where we have an attractive binding energy
but with no phase-separated behavior, which is consistent with
formation of itinerant pairs as seen in the pair correlation.

We also display in Fig. 6 the density and spin correlation
functions as well as pair correlation, on double-logarithmic
scales for various values of n here. As before, correlation
functions are calculated for the interior of the finite system.
While we have some dip structures due to spatial modulations,
the overall decay of the density D1(r) and spin S1(r) corre-
lations become slow in the vicinity of 1/3-filling, but not so
slowly decaying as the pair correlation. We can again confirm
that the behavior is quite sensitive to the values of n and U/t

APPENDIX C: HAMILTONIAN IN THE “WANNIER” BASIS

It is curious how the Hamiltonian, Eq. (1) in the main text,
should look like when expressed in “Wannier” basis. For the
original diamond chain with t ′ = 0, we can introduce the basis
αi,σ = c2,i,σ , βi,σ = (c1,i,σ + c3,i,σ )/

√
2 for the dispersive

bands, and γi,σ = (c1,i,σ − c3,i,σ )/
√

2 for the flat band. The

interaction term Hint can then be expressed as

Hint =
∑

i

hint,i , (C1)

hint,i = U

2

∑

λ,λ′=β,γ

nλ,↑,inλ′,↓,i + Unα,↑,inα,↓,i

+ U

2
(ρ(+)

β,i ρ
(−)
γ,i − S

(+)
β,i S

(−)
γ,i + H.c.), (C2)

where, for λ = β,γ , nλ,σ,i = λ
†
σ,iλσ,i , while S

(−)
λ,i = λ

†
↓,iλ↑,i

and S
(+)
λ,i = [S(−)

λ,i ]† are spin-flip operators, and ρ
(−)
λ,i = λ↑,iλ↓,i

and ρ
(+)
λ,i = [ρ(−)

λ,i ]† pair-hopping operators. The pair-hopping

interaction, ρ
(+)
β,i ρ

(−)
γ,i , allows a doubly occupied state, |�〉i =

(β↑,iβ↓,i − γ↑,iγ↓,i)†|0〉i , to be the lowest eigenstate of an
isolated unit cell Hamiltonian, hint,i |�〉i = 0, at 1/3-filling.
This is expected to favor pair formation. Indeed, β↑,iβ↓,i −
γ↑,iγ↓,i is nothing but the singlet pair in the original bases,
�31,i = c3,i,↑c1,i,↓ − c3,i,↓c1,i,↑ considered in the main text.

APPENDIX D: BINDING ENERGY FOR VARIOUS
VALUES OF U/ t

Figure 7 plots the binding energy against the density n and
t ′/t for various values of U/t . Attractive binding energies are
found also above 1/3-filling at U/t = 6, but development of
pair correlation is not found in ED and DMRG calculations
for the sample sizes treated here.

FIG. 7. Color-code plot of �Eb against n and t ′/t for various values of U/t .
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arXiv:1608.00976, study the attractive Hubbard model to dis-
cuss the superfluid weight of a flat band.

[13] R. R. Montenegro-Filho and M. D. Coutinho-Filho, Phys. Rev.
B 74, 125117 (2006).
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