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Spiral versus modulated collinear phases in the quantum axial next-nearest-neighbor
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Motivated by the discovery of spiral and modulated collinear phases in several magnetic materials, we
investigate the magnetic properties of Heisenberg spin S = 1/2 antiferromagnets in two and three dimensions,
with frustration arising from second-neighbor couplings in one axial direction [the axial next-nearest-neighbor
Heisenberg (ANNNH) model]. Our results clearly demonstrate the presence of an incommensurate spiral phase
at T = 0 in two dimensions, extending to finite temperatures in three dimensions. The crossover between Néel
and spiral order occurs at a value of the frustration parameter considerably above the classical value 0.25, a sign
of substantial quantum fluctuations. We also investigate a possible modulated collinear phase with a wavelength
of four lattice spacings and find that it has substantially higher energy and hence is not realized in the model.
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I. INTRODUCTION

Frustrated magnetic materials continue to provide a fruitful
interaction between experiment and theory [1]. In particular,
large quantum fluctuations in systems with low spin and low
dimensionality, coupled with frustration, can lead to novel
states [2], quite different from the usual Néel state of classical
antiferromagnetism.

Magnetic frustration can arise from the lattice structure
itself, as in triangular and kagome systems, or from the
presence of additional further neighbor interactions which
favor a different type of order from that which would arise
from nearest-neighbor interactions alone. One such scenario
is the inclusion of second-neighbor interactions along one axial
direction, in square or cubic lattices, referred to as the ANNNH
(axial next-nearest-neighbor Heisenberg) model [3–6].

The ANNNH model is the obvious quantum extension
of the Ising version, the axial next-nearest-neighbor Ising
(ANNNI) model, which was much studied primarily in
connection with modulated phases in both magnetic and alloy
systems [7,8]. The ANNNI model was found to have an
extremely rich finite-temperature phase diagram, in both two
and three dimensions, with modulated phases having both
constant and continuously varying wave vectors.

Our motivation for studying the quantum ANNNH model
is twofold. First, there are now a number of materials where
commensurate-incommensurate transitions and modulated
spiral and collinear phases have been recently observed to
arise [9–12]. For example, in the materials Lu1−xSrxMnSi, cy-
cloidal antiferromagnetic order is argued to arise from an axial
next-neighbor interaction [10]. In the material BiMn2PO6, also
a number of commensurate and incommensurate phases are
observed, driven by the spatial anisotropy of the interactions
in a three-dimensional spin system [11]. On the other hand, the
material FeSe shows a “pair-checkerboard” collinear magnetic
order [12]. It would be interesting to establish if such phases
also arise in ANNNH models, like in their Ising counterpart.

Second, on general grounds one expects that the presence
of further neighbor interactions will favor spiral phases, in
which the average moment varies sinusoidally with a wave
vector along the frustration axis. It is well known that quantum

fluctuations can stabilize collinear phases [13]. Thus, it is
interesting to ask if additional modulated collinear phases are
stabilized in these systems due to quantum fluctuations.

We find that such spiral phases do indeed arise in the
quantum models [6]. In two dimensions, long-range order
only arises at zero temperature, but in three-dimensional (3D)
systems, such phases extend to finite temperatures, and there
is a Lifshitz point where Néel, spiral, and paramagnetic phases
meet [14]. We find that, despite strong quantum fluctuations,
the ANNNH model does not support modulated collinear
phases. Instead, the parameter region for the stability of the
collinear Néel phase is substantially enhanced by quantum
fluctuations.

We consider a Heisenberg model with Hamiltonian

H = J0

(0)∑
〈ij〉

Si · Sj + J1

(1)∑
<ik>

Si · Sk + J2

(2)∑
<il>

Si · Sl, (1)

where the sums are over nearest-neighbor bonds perpendicular
to the modulation axis, nearest-neighbor bonds along the
modulation axis, and next-nearest pairs along the modulation
axis, with coupling constants J0,J1,J2, respectively. This is
shown in Fig. 1 for the two-dimensional (2D) case. The Si
are quantum spin S = 1/2 operators. In the present work
we consider all interactions to be antiferromagnetic (Ji > 0),
although other cases could be treated in a similar way.

The phase diagram for classical spins is well known, but
we repeat the argument here for completeness. The energy of
a classical spiral ground state is

E

NS2
= −nJ0 + J1 cos q + J2 cos 2q, (2)

where q is the angle between neighboring spins in the
modulation direction and n = 1(2) for the square (simple-
cubic) lattice. Minimization gives

q = π J2/J1 < 1/4

= π − cos−1

(
J1

4J2

)
J2/J1 > 1/4. (3)
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FIG. 1. Coupling constants of the ANNNH model in two
dimensions.

Thus the small J2 Néel phase becomes an incommensurate
spiral with wave vector q at the transition point J2 = J1/4. It
can also be seen that in the large J2 limit, where q → π/2,
a collinear phase in which each column has two spins “up”
followed by two spins “down,” with neighboring columns or-
dered antiferromagnetically, will become degenerate with the
spiral. Such a phase has been termed [10] “pair-checkerboard,”
but we will refer to it as a “2+2 phase” (see Fig. 2). Such a
phase occurs in the ANNNI model for large frustration and,
while in the classical vector case [Eq. (3)] it only occurs as
a limiting case, its stability in the quantum case has not been
investigated previously, to our knowledge.

A number of studies of the quantum ANNNH model
were reported in the 1980s [3–5] using bosonic Hamiltonians
obtained via standard Holstein-Primakoff or Dyson-Maleev
transformations. These studies, which focused only on the case
of ferromagnetic J0,J1, encountered difficulties in treating
quantum corrections about the classical states in a consistent
way. In any case, these analytic approaches are essentially
large S theories, and their reliability for S = 1/2 is uncertain.
The quantum antiferromagnetic model was studied in two

FIG. 2. The Néel, spiral, and 2+2 states.

dimensions by Zinke et al. [6] using a coupled-cluster method
focusing on the spiral order and its pitch angle. We present
various comparisons with their study for the two-dimensional
case.

Our aim in the present work is to explore the physics of this
model for spin 1/2, using series expansion methods [15,16].
This approach has been amply demonstrated to give reliable
results for quantum spin models and is a method of choice for
models with strong frustration, where quantum Monte Carlo
methods are defeated by the infamous “minus sign” problem.
In the following sections we derive and analyze series for
the ground-state energy and magnetization for both the 2D
and 3D models. In Sec. IV we compute series at high T

for spin-spin correlations and for the structure factor S(q).
This analysis clearly shows that the large J2 phase is an
incommensurate spiral, in agreement with the coupled-cluster
work [6]. Following the 2D work, in Sec. IV we treat the
3D model and present results at both T = 0 and high T .
Clear differences from the 2D case are demonstrated. Finally,
in Sec. V we summarize our results and suggest possible
extensions of this work.

II. GROUND STATE OF THE 2D ANNNH MODEL

We use the linked-cluster method [15,16] to obtain series for
the ground-state energy and magnetization. In this approach,
series are computed for a sequence of finite connected clusters,
and these are combined to obtain series in the thermodynamic
limit of a bulk lattice. For each finite cluster, the Hamiltonian
is decomposed in the usual perturbative form H = H0 + λV ,
where H0 describes a simple system with known ground state
and V is treated perturbatively to high order. In the present
work we use “Ising expansions” in which H0 consists of the
diagonal Sz

i S
z
j terms, and V consists of the transverse quantum

fluctuations. Thus the SU(2) symmetry is broken by the choice
of H0, which reflects the order in the chosen phase but is
restored in the limit λ = 1. Provided there is no singularity for
0 < λ < 1 the true ground state will be reached in this limit.
We refer the readers to more detailed expositions [15,16] for
further details of the method.

A. Néel phase

To derive series to eighth order we need to consider clusters
of up to eight sites, having three bond types. There are a total of
10 644 distinct such clusters for the 2D case. The ground-state
energy and magnetization are expressed in the form

E0/N =
∞∑

n=0

anλ
n, (4)

M =
∞∑

n=0

bnλ
n, (5)

with the coefficients (an,bn) computed to 12-figure accuracy.
The series are analyzed by standard Padé approximant methods
to yield estimates of E0 and M for any values of the exchange
constants (J0,J1,J2). In the present work we choose J0 = J1 =
1 and plot quantities versus the frustration parameter J2/J1.
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B. 2+2 phase

The 2+2 phase has a four-sublattice structure, and it is
necessary to distinguish two types of J1 bond, between like
and unlike spins. This results in a total of 22 613 clusters with
four bond types, to eighth order. The derivation and analysis
of the series then proceeds in the same way as above.

C. Spiral phase

To carry out an Ising expansion for a noncollinear ordered
phase, we transform to a local basis in which each spin is
directed along its local z axis. This results in a Hamiltonian of
the form

H = − 1
4 (J0 + J1 cos θ + J2 cos 2θ )N + H0 + λV, (6)

with

H0 = J0

(0)∑
〈ij〉

(
−Sz

i S
z
j + 1

4

)
+ J1 cos θ

(1)∑
〈ij〉

(
−Sz

i S
z
j + 1

4

)

+J2 cos 2θ

(2)∑
〈ij〉

(
Sz

i S
z
j − 1

4

)
, (7)

and

V = −1

2
J0

(0)∑
〈ij〉

(S+
i S+

j + S−
i S−

j )

− 1

4
J1

(1)∑
〈ij〉

[
(1 + cos θ )(S+

i S+
j + S−

i S−
j )

− (1 − cos θ )(S+
i S−

j + S−
i S+

J )

+ 2 sin θ
(
S+

i Sz
J + S−

i Sz
j − Sz

i S
+
j − Sz

i S
−
j

)]

− 1

4
J2

(2)∑
〈ij〉

[
(1 − cos 2θ )(S+

i S+
J + S−

i S−
J )

− (1 + cos 2θ )(S+
i S−

j + S−
i S+

j )

− 2 sin 2θ
(
S+

i Sz
j + S−

i Sz
j − Sz

i S
+
j − Sz

i S
−
j

)]
, (8)

where the superscripts 0, 1, 2 refer to the three bond types, and
θ is the angle between successive spins in columns. (Actually
the angle is π − θ in the original picture, before a rotation of
axes.) This Hamiltonian contains the angle θ as a parameter,
and this is not known a priori. Thus we choose a range of
values, plot the energy as a function of θ , and choose the
correct θ from the minimum.

In practice, the minimum is quite shallow and it is difficult to
choose θ with high precision. However, this does not seriously
affect the energy estimates. We calculated series for various θ

values at intervals of 5 deg and estimated the θ values where
the energy are minimum. The values of θ at the minima were
in rough agreement with the coupled-cluster calculation of
Ref. [6]. We got estimates for θ values for J2 = 1.0, 0.8, 0.7,
0.6, and 0.5 of 80, 75, 70, 60, and 45 deg, respectively. Thus
the pitch angle q = π − θ was somewhat below the classical
value for J2 > 0.7 but became sharply larger for smaller J2

values.

FIG. 3. Ground-state energy (upper panel) and magnetization
(lower panel) as a function of J2 for the 2D ANNNH model.

D. Results

Figure 3 shows the ground-state energy and magnetization
versus J2/J1 for the 2D ANNNH model, for the Néel, spiral,
and 2+2 phases obtained from our series. The series have
been analyzed by standard Padé approximant techniques, using
both the direct series and the logarithmic derivative. The latter
are found to give slightly more stable results, but the two
approaches are broadly consistent. Where error bars are shown
in the figures, they represent “confidence limits” based on the
spread of different approximants.

We first comment on the ground-state energy. These series
are very regular, and any uncertainty is estimated to be no
larger than the plotted points, except very near the transition
point. The Néel and spiral series appear to meet smoothly at a
point near J2 = 0.47 ± 0.02, well above the classical transition
point 0.25. We note that in the coupled-cluster study the Néel
order was found to continue up to a J2 value of approximately
0.4. The transition is consistent with a continuous transition,
although the match of the energy of spiral and Néel phases
is not perfect. This is probably caused by the uncertainty in
determining the pitch angle and the spiral-state ground-state
energy near the transition. In Fig. 3(a) we also plot the energy
of the 2+2 phase. This clearly lies at higher energy and is thus
not a stable phase. It seems that as J2 → ∞, the energies of
the spiral and 2+2 phases become asymptotically equal, as for
the classical case.

The magnetization series are less regular, and the error
bars become quite large near the transition point. The most
interesting feature is that both the Néel and spiral phase
magnetizations appear to be dropping to zero at the transition,
between 0.45 and 0.5. Thus quantum fluctuations in this 2D
model are large enough to destroy the long-range order at this
point. Indeed, we cannot exclude the possibility of a (very)
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narrow nonmagnetic phase. We also show the magnetization
for the 2+2 phase, but, since this phase has higher energy, it
is of little significance.

III. HIGH-T SERIES FOR S(q)

High-temperature series [15] provide a complementary
approach for studying the nature of magnetic orders. Although
the Mermin-Wagner theorem precludes any finite-temperature
ordered phase in the 2D model, it is expected that, as the
temperature is lowered, the correlations that build up will
reflect the nature of the order which occurs at T = 0. High-T
expansions for a correlator 〈Sz

i S
z
j 〉 can be developed as

C(r) = 1

Z

∞∑
n=0

(−1)n

n
T r

{
Sz

0S
z
rH

n
}
βn, (9)

where β = 1/kBT , and Z is the partition function, which is
itself expanded as a series in β. We note that since we are
in a paramagnetic phase, the correlations have full rotational
symmetry and it suffices to compute the (zz) correlators. From
these we compute a high-T series, in powers of β, for the static
structure factor

S(q) =
∑

r

eiq·rC(r), (10)

which should develop a peak at whatever q value reflects the
T = 0 order.

To compute the structure factor series to eighth order, for
general q, would require a correlator series for all cluster space
types with eight or fewer bonds, a total of over 600 000 distinct
clusters. However, for q in the modulation direction, this
number can be reduced considerably by effectively calculating
correlator series between horizontal rows of spins. This
requires only 76 712 clusters.

The S(q) series converges rapidly at high T (small β) and
can be evaluated using Padé approximants down to about
t = kBT /J1 ≈ 0.5. We have carried out such an analysis for
q = (π,qz) for various J2 and results are shown in Fig. 4
for the temperature t = 0.5. Below this t the series becomes
too erratic. We see that for J2 = 1.0 there is a clear peak

FIG. 4. Structure factor S(q) for the 2D ANNNH model,with q

in units of π/a, for different values of J2 as calculated from high-T
series expansions. The values of J2 for the different plots are indicated
within brackets.

at qz = 0.58π , corresponding to an angle of 76 deg. As
J2 is decreased, the peak broadens and moves to larger qz

(smaller angles). Note that qz = π/2 would correspond to a
modulation wavelength of a lattice spacing, as for the 2+2
structure, whereas q = π corresponds to the Néel phase. The
peak positions do not change significantly with temperature.

IV. THE 3D ANNNH MODEL

We have used the same approach to study the ANNNH
model on the simple-cubic lattice. The ground-state energy
and magnetization are shown in Fig. 5.

The following points can be noted: (1) The energy series
are very regular, and the curves meet smoothly at J2 = 0.34 ±
0.01. The Néel series can be accurately continued well beyond
this point, as shown. We also note the maximum in the spiral
phase energy near 0.4, which then drops again to meet the Néel
curve smoothly. This feature occurs in the classical case and
is also apparent, though less clearly, in the 2D case (Fig. 3).
The Néel-to-spiral crossover point, at J2 ≈ 0.34, is again well
above the classical value 0.25, but the difference is less than
in the 2D case, reflecting the smaller quantum fluctuations in
higher dimension. (2) The magnetization series are less regular,
and this is reflected in the error bars, although the size of the
uncertainty is exaggerated by the scale chosen for the figure.
We note that the magnetization decreases on approaching the
crossover point from either side, but only by ∼10%. Unlike
the 2D case, the magnetization does not drop to zero, again
showing that quantum fluctuations are less dominant.

As in the 2D case, we have also derived high-T series for
the structure factor S(q). There is, however, one important

FIG. 5. Ground-state energy (upper panel) and magnetization
(lower panel) for the 3D ANNNH model from series expansions.
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FIG. 6. (a) Structure factor S(q) versus qz at a temperature t = 1.2
for several values of J2 for the 3D ANNNH model. (b) Structure factor
at the critical wave vector versus temperature for several values of J2.
The values of J2 for the different plots are indicated within brackets.

difference. In 3D the system will retain long-range magnetic
order at finite temperature, up to some critical temperature
Tc(J2). On approaching Tc(J2) from above, the structure factor
S(q) at the appropriate wave vector is expected to diverge in
the thermodynamic limit, reflecting the development of long-
range correlations at the critical temperature. Thus we may
expect to be able to estimate the locus of this critical line from
our series. Some results are shown in Fig. 6.

Figure 6(a) shows S(q) versus qz for various J2. For J2 =
0.0,0.2 the maximum is at qz = 1.0, corresponding to Néel
order. For larger J2 the peak moves continuously to smaller
qz: qz ≈ 0.73 for J2 = 0.4, qz ≈ 0.64 for J2 = 0.6, qz ≈ 0.6
for J2 = 0.8. This is indicative of an incommensurate spiral
phase. The qz values are consistent with those found to give
the lowest ground-state energy in the T = 0 spiral phase. The
point where the peak begins to move away from qz = 1 is close
to J2 = 0.325.

We have also analyzed the S(q) series to estimate the values
of the critical temperature as a function of J2. While the eighth-
order series are too short to provide estimates of high precision,
Padé approximants to the logarithmic derivative series do show
a fairly consistent pole on the positive real axis, corresponding
to a line of critical points.

In Fig. 6(b) we plot the value of S(qc), at the critical wave
vector qc, versus reduced temperature t = kBT /J0. A strong

divergence is clearly seen. Our best estimates for the critical
temperatures are 1.09 (J2 = 0.0), 0.82 (J2 = 0.325), 0.89
(J2 = 0.6). For J2 = 0, the isotropic simple-cubic nearest-
neighbor model, a more precise estimate is available from
longer series [17]. There are, as far as we know, no previous
estimates of the critical line for the 3D ANNNH model. The
critical temperature is lowest near J2 = 0.325, which is also
where the peak in S(q) moves away from qz = 1. This is a
Lifshitz point [14], where paramagnetic, Néel ordered, and
spiral phases meet and coexist.

V. SUMMARY AND DISCUSSION

We have used a combination of perturbation series at T = 0
and high-T expansions to investigate the nature of magnetic
order, and the magnetic phase diagram in the quantum spin
S = 1/2 ANNNH model, in both two and three dimensions.
While it is easy to show, for classical vector spins, that an
incommensurate spiral phase exists for large frustration J2,
previous analytic studies for quantum spins have encountered
difficulties. Our study confirms that the classical picture
remains qualitatively correct. However, quantum fluctuations
shift the crossover point between Néel and spiral phases
substantially. In the two-dimensional case, we also looked for
possible modulated collinear phases. However, we found that
even the most robust of those, the 2+2 phase, has a rather high
energy and hence is not stabilized. Hence, we conclude that
such modulated collinear phases are unlikely to arise in the
model.

For the 2D model we find that the magnetizations in both
Néel and spiral ground states appear to tend continuously to
zero at the crossover point. This was not expected and is
reminiscent of the behavior in the J1 − J2 model, where there
is an intermediate nonmagnetic phase. We see no evidence for
such a phase here, although we cannot exclude the possibility
of a very narrow phase of this kind. In the 3D model, the
magnetizations clearly cross over at a finite value.

In the 3D model, the magnetic phases extend to finite
temperature, and we have estimated the position of the critical
line, and of the Lifshitz point, where paramagnetic, Néel, and
spiral phases coexist.

In the large J2 limit a collinear phase, the “2+2 phase,”
becomes asymptotically degenerate with the qz = π/2 spiral,
both having a modulation wavelength of four lattice spacings.
Such a phase, termed “pair-checkerboard,” was found to exist
in the FeSe monolayer system [12]. We find that in the ANNNH
model, such a phase always has higher energy than the spiral.
Thus, if it exists as a stable phase, a more complex Hamiltonian
would be indicated.
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