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We investigate the ground-state nature of the transverse field Ising model on the J1-J2 square lattice at the
highly frustrated point J2/J1 = 0.5. At zero field, the model has an exponentially large degenerate classical
ground state, which can be affected by quantum fluctuations for nonzero field toward a unique quantum
ground state. We consider two types of quantum fluctuations, harmonic ones by using linear spin-wave theory
(LSWT) with single-spin-flip excitations above a long-range magnetically ordered background and anharmonic
fluctuations, by employing a cluster-operator approach (COA) with multispin cluster-type fluctuations above a
nonmagnetic cluster-ordered background. Our findings reveal that the harmonic fluctuations of LSWT fail to
lift the extensive degeneracy as well as signaling a violation of the Hellmann-Feynman theorem. However, the
string-type anharmonic fluctuations of COA are able to lift the degeneracy toward a string valence-bond-solid
(VBS) state, which is obtained from an effective theory consistent with the Hellmann-Feynman theorem as well.
Our results are further confirmed by implementing numerical tree tensor network simulation. The emergent
nonmagnetic string VBS phase is gapped and breaks lattice rotational symmetry with only twofold degeneracy,
which bears a continuous quantum phase transition at �/J1

∼= 0.50 to the quantum paramagnet phase of high
fields. The critical behavior is characterized by ν ∼= 1.0 and γ ∼= 0.33 exponents.
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I. INTRODUCTION

Geometric frustration in quantum magnets results in emer-
gence of many intriguing exotic phases of matter, ranging
from resonating valence-bond-solid (VBS) phases with broken
spatial symmetry to spin liquids with fractional quasiparticle
excitations [1]. It has further been shown that the geometric
frustration plays an important role in the physics of non-
Fermi liquid of doped Mott insulators and high-TC supercon-
ductors [2–6]. Typically, frustrated magnetic systems show
extensive degeneracy of their ground states in the classical
limit, which can be lifted by addition of thermal or quantum
fluctuations, or perturbations such as spin-orbit interactions,
spin-lattice couplings, further neglected exchange terms, and
impurities. It would lead to the emergence of exotic collective
quantum behaviors.

One of the simplest and hence most tractable models
featuring such an interplay between the geometric frustration
and quantum fluctuations is the spin- 1

2 J1-J2 antiferromagnetic
Heisenberg model on the square lattice, which is a suitable
candidate for a quantum spin liquid state and is highly relevant
to cuprates and Fe-based superconductors [7]. It has already
been shown that the ground state of the system in the highly
frustrated point, J2/J1 = 0.5, is given by a nonmagnetic state
emerging as an intermediate phase between Néel and striped
antiferromagnetic (AFM) states in the small and large limit of
J2/J1 coupling, respectively. However, the true nature of the
intermediate nonmagnetic phase is still under debate. Early
and recent studies have proposed different candidate ground
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states for the intermediate region around J2/J1 = 0.5, such as
a dimer VBS with both translational and rotational broken
symmetries [8,9], plaquette VBS with broken translational
symmetry but with rotational symmetry preserved [10–12],
gapless spin liquid [13–16], and gapped Z2 spin liquid
phases [17–20].

Our aim in this paper is to shed light on the true nature of
this intermediate magnetically disordered state by introducing
both quantum fluctuations and anisotropies in the spin space to
lift the extensive degeneracy of the classical system towards a
quantum ordered ground state. We can introduce anisotropies
to the bonds of the spin- 1

2 J1-J2 Heisenberg model on the
square lattice by breaking the SU (2) symmetry and reducing
the Heisenberg interactions of J1-J2 bonds to XXZ couplings.
Such spin anisotropy is relevant theoretically [21,22] as
well as experimentally [23–25]. For the large limit of Ising
anisotropies, the XXZ model behaves equivalently to a
transverse field Ising (TFI) model on the J1-J2 square lattice.
Such TFI model with an interplay between frustration and
quantum fluctuations can reveal what happens, by reduction
of symmetry from SU (2) to Z2, for the true nature of the
under-debate nonmagnetic ground state of the Heisenberg
model at highly frustrated point J2/J1 = 0.5.

Moreover, the two-dimensional (2D) TFI model is a
prototype frustrated magnetic model, which received much
attention, to explore novel emergent phases [26–28]. The
ground state of 2D TFI model at the highly frustrated point, to
the best of our knowledge, is not known. It is challenging to
find a ground state, which is a result of quantum fluctuations
on an extensive degenerate ground space.

In this paper, we therefore examine the spin- 1
2 transverse

field Ising model on the J1-J2 square lattice, Hamiltonian (1),
by resorting to different analytical and numerical techniques
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such as linear spin-wave theory (LSWT) [29], cluster-operator
approach (COA) [30,31], and tree tensor network (TTN)
simulation [32]. We found that harmonic quantum fluctuations
in LSWT based on single-spin-flip excitations are incapable of
lifting the extensive degeneracy of the classical system. How-
ever, considering anharmonic fluctuations with multispin flip
excitations via COA certifies the existence of global-loop-type
of quantum fluctuations, which are able to lift the extensive
degeneracy of the system at J2/J1 = 0.5 toward a string-VBS
phase with broken lattice rotational symmetry, leading to
an order by disorder transition. The string-VBS state is a
manifestation of macroscopic quantum superposition [33,34].
These findings are further confirmed by numerical (TTN)
simulations.

The paper is organized as follows. In Sec. II, we introduce
the model and some of its classical features. Next, in Sec. III
we present LSWT and COA used for determining the true
nature of quantum ground state by introducing different type
of quantum fluctuations. We compare the results obtained
from two approaches with each other and also with the
TTN results. Details of our approaches are presented in
Appendixes. We argue that string-type quantum fluctuations
can cast the ground state of highly frustrated point J2/J1 = 0.5
to a string-VBS phase at low fields with broken rotational
symmetry. Section IV discusses the existence of a quantum
phase transition from string-VBS phase of low fields to a
quantum paramagnet phase of high fields at �/J1

∼= 0.5,
where the critical exponents are extracted. Finally, the paper
is summarized and concluded in Sec. V.

II. MODEL

In this section, we introduce the spin-1/2 transverse field
Ising model on the square lattice with J1-J2 interactions. We
consider a square lattice, where spin-1/2 particles are placed at
the vertices of the lattice and the antiferromagnetic exchange
coupling J1 (J2) are tuned between the nearest-neighbor (next-
nearest-neighbor) spins (see Fig. 1). Hamiltonian of the model
in the presence of a transverse magnetic field � is given by

H = J1

∑
〈i,j〉

Sz
i S

z
j + J2

∑
〈〈i,j〉〉

Sz
i S

z
j − �

∑
i

Sx
i , (1)

where Si ≡ (Sx
i ,S

y

i ,Sz
i ) are the usual quantum spin-1/2 oper-

ators with Si
2 = S(S + 1).

In the extreme case, where J2 = 0 and � = 0, the clas-
sical ground state of the system is given by a Néel state
[Fig. 1(a)], which persists as the frustration is increased
up to a critical point at J2/J1 = 0.5, where it breaks to a
collinear antiferromagnetic phase with striped AFM order
[Fig. 1(b)] for J2/J1 > 0.5, through a first-order quantum
phase transition [27,35,36]. The classical ground state of the
system further displays an exponential degeneracy at the highly
frustrated point J2/J1 = 0.5 in which the ground state is
described by two-up–two-down configurations for spins on
every crossed square of the lattice. Our aim in this paper is to
study the effects of quantum fluctuations to lift this extensive
degeneracy toward a unique quantum ground state. Hence, we
consider J2/J1 = 0.5 with � �= 0, which induces zero-point

1J

2J

(a) (b)

(d)

(e) (f )

(c)

l

FIG. 1. (a), (b) Néel and striped AFM phases used as magnetically
ordered backgrounds in LSWT. Pink and blue bullets correspond to
up and down arrangement of spins. (c), (d), (e), (f) Candidates of
nonmagnetic cluster-orderings as a ground-state background, used in
COA. The case of (f) corresponds to string-VBS of � = 6. Solid and
dashed lines are J1 and J2 bonds, respectively.

quantum fluctuations to the system due to Sx that does not
commute with other terms in the Hamiltonian (1).

III. NATURE OF QUANTUM FLUCTUATIONS

A. Linear spin-wave theory

To incorporate harmonic quantum fluctuations within
LSWT, we start with the degenerate classical magnetically
ordered backgrounds at J2/J1 = 0.5, i.e., Néel and striped
AFM phases shown in Figs. 1(a), 1(b). The transverse magnetic
field, �, creates the same canting angle θ on each classical spin
vector of the Néel and striped configurations. Accordingly,
the classical spin components become Sx

i = S sin θ and Sz
i =

±S cos θ , where ± sign denotes up and down spins in the
z direction. The angle θ increases with the strength of the
transverse field � up to the maximum value of θmax = π/2,
which corresponds to a full polarization of the classical spins in
the +x direction for � � �c, where �c is the critical magnetic
field. For a system with N spins, there are 2N bonds with J1

coupling and 2N bonds with J2 coupling on the square lattice.
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The classical ground-state energy per spin for both the Néel
and striped phases are therefore given as

εNéel
cl = ε

striped
cl = −S2cos2θ − �Ssinθ. (2)

After minimizing the classical energy per spin with respect to
angle θ , we set θ = π/2 to obtain the critical transverse field
�LSWT

c , given by �LSWT
c = 2S. Then, a LSWT is constructed

on each of the two classical canted Néel and canted striped
AFM magnetically ordered backgrounds. Harmonic quantum
fluctuations of LSWT around these classical reference states
will reduce the magnitude of the classical order parameters and
result in zero-point energy corrections. In a general formalism
(see Appendix A), we define Sl,p as the pth spin (p = 1, . . . ,n)
of the lth cell, where n is the number of spins in a magnetic unit
cell. We consider small quantum fluctuations on the classical
reference states by linearized Holstein-Primakoff transforma-
tions and finally obtain an effective diagonal quadratic form
of Hamiltonian Eq. (1) as,

HLSWT = Ecl − N

n

∑
p

(
h̃p

2

)
+

∑
k,p

ωk,p

(
c
†
k,pck,p + 1

2

)
,

(3)

where k sums over the first Brillouin zone of the lattice
constructed from the centers of magnetic unit cells of the
classical reference state. Furthermore, p runs over the n

spins of a magnetic unit cell, h̃p is a quantum correction
and ωk,p define the spectrum of quasiparticles, which are
created by the bosonic creation operators c

†
k,p. The effective

Hamiltonian, Eq. (3), obtained within LSWT framework,
shows that both Néel and striped magnetically ordered back-
grounds have the same zero-point energy corrections, which is
a result of the harmonic single-spin-flip excitations. Hence,
quantum corrections at harmonic level do not distinguish
between different ordered manifold of states, failing to lift
the extensive degeneracy at J2/J1 = 0.5. Moreover, as shown
in Fig. 5, we observe a violation of the Hellmann-Feynman
theorem at enough high fields before reaching the critical
point �LSWT

c /J1 = 1.0. Indeed, by increasing the transverse
field �, before reaching the critical value, the transverse
magnetization obtained from Hellmann-Feynman theorem,
mx = − 1

S

∂〈H 〉
∂�

, deviates from the expectation value of mag-
netic order parameter mx = 1

S
〈Sx〉, signaling a violation of

the Hellmann-Feynman theorem. This inconsistency implies
again that quantum fluctuations go beyond the harmonic level
of approximation considered in LSWT.

B. Cluster-operator approach

In order to consider anharmonic quantum fluctuations, we
implement the cluster-operator approach. Analogous to the
spin-wave theory, a candidate cluster-ordered background is
proposed, above which the anharmonic multispin excitations
are defined. This is in contrast to the LSWT, where only
single-spin excitations have been taken into account. Let us
further note that COA besides the introduction of anharmonic
quantum fluctuations, can reveal the existence of possible
valence-bond-solid phases. Generally, VBS phases are ap-
peared as a regular pattern of dimers, trimers, quadrumers
or loops shown in Figs. 1(c)–1(f).

It is shown that at zero field and J2/J1 = 0.5, two-spin-flip
excitation on a dimer, three-spin-flip excitation on a trimer, or
four-spin-flip excitation on a quadrumer cost the same finite
energy as a single-spin-flip one, i.e., 4J1. This is true for any
finite cluster, which is shown in Appendix B. However, flipping
the spins on a vertical or horizontal global closed loop costs
zero excitation energy, keeping the system in the degenerate
ground-state manifold (see Appendix B). Therefore, it can be
anticipated that in the presence of quantum fluctuations by a
transverse field �, such global loops are proper building blocks
to construct the ground-state structure of the model. To confirm
such assertion, we consider four candidate cluster orderings
shown in Fig. 1(c)–1(f) as ground-state backgrounds used in
COA. We obtain an effective theory by a bosonization for-
malism for each cluster configuration, and then compare their
results with each other to confirm that the true excitations of
the model are of the global-loop type, constructing a columnar
string-VBS phase for low fields at the highly frustrated point.

The following steps are carried out to construct an effective
theory for the candidate cluster-ordered backgrounds of Fig. 1.
First, we rewrite the Hamiltonian, Eq. (1), as a sum over two
terms, H = H0 + Hint, where H0 = ∑

I HI denotes the set
of shaded isolated clusters and Hint defines the interaction
Hamiltonian between them. Next, we associate a boson to
each eigenstate of the TFI Hamiltonian on a single cluster.
In this respect, each eigenstate |u〉 of cluster I is created
by a boson creation operator b

†
I,u acting on the vacuum |0〉,

i.e., |u〉I = b
†
I,u|0〉, where b

†
I,u and bI,u are usual bosonic

operators, satisfying [bI,u,b
†
I,u] = 1 and [b(†)

I,u,b
(†)
I,u] = 0.

Hence, a cluster-ordered background is a Bose condensate of
ground state |u = 1〉 bosons, i.e.,

〈b†I,1bI,1〉 ≡ p̄2, ∀I, (4)

where p̄ is the condensation amplitude and p̄2 gives
the probability of such condensation. In the absence of
intercluster interactions, p̄2 is equal to unity. Therefore, the
Bose-condesate background acts like an ordered-reference
state, above which quantum fluctuations will reduce the
magnitude of condensation probability p̄2 and result in
zero-point energy corrections. In other words, intercluster
interactions give rise to low-lying excitations above the perfect
cluster-ordered background. As a result of hybridization of the
ground state of each cluster to other excited states, the value of
p̄2 reduces from unity by bringing about a nonzero occupation
of other excited bosons. Nevertheless, for preserving the
Hilbert space of the effective model, the total occupation of
bosons per cluster should be equal to one. According to these
arguments, the effective Hamiltonian for a cluster-ordered
background can now be written in a quadratic bosonic form
within a mean-field approximation of condensated bosons, as

H = Ncp̄
2ε1 +

∑
I

∑
u

εub
†
I,ubI,u

−μ

⎡⎣Ncp̄
2 +

∑
I,u �=1

b
†
I,ubI,u − Nc

⎤⎦ (5)

+ p̄2
∑
〈I,J 〉

∑
u,v

[(
dIJ

uv

)
b
†
I,ub

†
J,v + (

hIJ
uv

)
b
†
I,ubJ,v + H.c.

]
.
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FIG. 2. The condensation probability p̄2 for different cluster
orderings of Figs. 1(c)–1(f). � denotes the cylinder perimeter length
considered in COA for a string-ordered background shown in
Fig. 1(f).

The first line includes intracluster terms, where the index I

sums over all isolated clusters, u sums over the dominant
excited states of each cluster with corresponding eigenenergies
εu, and Nc denotes the total number of isolated clusters. The
second line enforces single boson occupancy constraint, via a
chemical potential μ. The third line involves intercluster terms,
where u,v are the two excited bosons of neighboring clusters
I and J , respectively. Coefficients dIJ

uv = 〈uv|HIJ |11〉 and
hIJ

uv = 〈u1|HIJ |1v〉 are, respectively, creation and hopping
amplitudes between excited bosons of neighboring clusters.
The minimization of ground-state energy of the bosonic
effective theory in addition to the conservation of Hilbert
space dimension are satisfied by the solution of ∂〈H〉

∂μ
= 0 and

∂〈H〉
∂p̄

= 0 equations. Details of the bosonic effective theory
for COA are given in Appendix C.

The condensation probability p̄2 of different cluster-
orderings shown in Figs. 1(c)–1(f) is demonstrated in Fig. 2.
We found that for low transverse fields (� < 0.5), there is
a strong condensation probability (near unity) of the global
loops (� = 4,6,8,10) on the lattice, while the condensation
probability of dimers, trimers, and plaquettes (quadrumers) is
weak (∼0.55). We have also considered the staggered dimer
configuration in our calculations not shown here, which gives
a result similar to the dimer case. Let us note that a global loop
is a closed string, which covers all sites along a horizontal or
vertical direction of the periodic square lattice, as shown in
Fig. 1(f). This implies that at low fields the proper conjecture
for the ground-state structure is based on the global loops,
while finite-size clusters fail to condensate properly in the
ground state.

The results of Fig. 2 suggest a string-VBS phase for
the ground state of our model at low fields. It turns out
that anharmonic quantum fluctuations, mediated in terms of
COA, lift the classical degeneracy at the highly frustrated
point, towards a string-VBS phase, which breaks lattice

Γ/J
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E
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y 

pe
r 

sp
in
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COA
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-0.2602

-0.2601
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FIG. 3. Ground-state energy per site versus transverse magnetic
field. A comparison between classical, linear spin-wave, cluster
operator (with string-ordered background on � = 10 cylinder) and
tree-tensor network (on a 8 × 6 lattice) approaches is presented. The
inset shows the magnified data for �/J1 = 0.2.

rotational symmetry and leaves the system with a twofold
degenerate ground state. The ground-state energy per site
versus transverse magnetic field is illustrated in Fig. 3. We
observe that the energy of the string-VBS state obtained from
COA is less than the classical and LSWT ones, justifying
the existence of string formation in the ground state. The
inset of Fig. 3 clearly shows the lower energy value of COA
for a low field value �/J1 = 0.2. We have also shown the
ground-state energy obtained from TTN numerical algorithm,
as a reference close to the exact diagonalization data. The
numerical TTN is a renormalization ansatz to simulate large
lattice sizes that is explained in Appendix D. Accuracy of our
data on {4 × 6, 6 × 6, 6 × 8} lattices is of order, respectively,
{10−8, 10−5, 10−4}, which is not presented here.

The nature of the ground state can be represented by the
nearest-neighbor (NN) correlation function,

CNN = 〈
Sz

i S
z
j

〉
, i,j : NN on the lattice. (6)

In this respect, we compute CNN on a 6 × 6 lattice using
TTN, which is shown in Fig. 4, for two different values of
transverse field �. The left panel of Fig. 4 corresponds to low-
field regime (�/J1 = 0.25), while the right panel corresponds
to the high-field values (�/J1 = 0.60). The left panel shows
that the correlations along the vertical direction are close to
their maximum value of Néel-type ordering (|Cmax

NN | = 0.25),
while the correlations on the horizontal direction is very small.
This is a clear signature of the string formation as a VBS
phase. The emergence of strings could be either in vertical or
horizontal direction, breaking the rotational symmetry of the
lattice, which manifests the twofold degeneracy. Increasing
the magnetic field to the high-field regime drives the model
to a quantum paramagnet, which has rotational symmetry and
leads to almost equal correlations along the two perpendicular
directions as shown in the right panel of Fig. 4. Such symmetry
breaking of the ground state at low fields is a signature for
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FIG. 4. Nearest-neighbor correlations, CNN , obtained by TTN
numerical simulation, which measures the breaking of lattice rota-
tional symmetry in the string-VBS phase. Left: Low-field regime
representing the string-VBS state. Right: High-field regime of the
quantum paramagnetic phase, which preserves rotational symmetry.

presence of a quantum phase transition from the string-VBS
phase of low fields to the quantum paramagnetic phase of
high fields, which is investigated with more details in the next
section.

IV. QUANTUM PHASE TRANSITION

In this section, we study the behavior of field-induced
magnetization, mx = 1

S
〈Sx〉, by increasing the transverse field

from the low-field to high-field regimes. The magnetization
as a function of transverse field calculated by different
approaches is depicted in Fig. 5. Moreover, the transverse
magnetization mx , obtained directly from the expectation
value of Sx operator, is compared with the derivative of
effective Hamiltonian expectation value versus �, i.e., mHF

x =
− 1

S
∂〈H 〉/∂� corresponding to the Hellmann-Feynmann the-

orem. As we mentioned in Sec. III A, LSWT exhibits a

Γ/J
1

0 0.5 1 1.5 2

m
x

0

0.5

1

1.5

2

LSWT
LSWT-HF
COA
COA-HF
TTN

FIG. 5. Transverse magnetization calculated by different meth-
ods, LSWT, COA, and TTN. The value obtained directly from the
expectation value of Sx operator, mx = 1

S
〈Sx〉 is compared with the

one obtained from Hellmann-Feynmann theorem, mHF
x = − 1

S

∂〈H 〉
∂�

.

violation of the Hellmann-Feynmann theorem as the magnetic
field increases toward the high-field regime. This implies that
when increasing the transverse field, quantum fluctuations are
beyond the harmonic level of approximation considered in
LSWT. However, COA results are in a good agreement with the
Hellmann-Feynmann theorem and numerical results obtained
from TTN simulation. The COA results further show that
the anharmonic quantum fluctuations will render the violated
region of the Hellmann-Feynmann theorem to the quantum
paramagnet phase, proposing a lower critical value than the
LSWT counterpart, between the string-VBS and quantum
paramagnet phases.

Quantum phase transition can be traced out by the divergent
behavior of magnetic susceptibility, which is the derivative of
transverse magnetization with respect to the magnetic field,

χ = ∂mx

∂�
= − 1

S

∂2E

∂�2
. (7)

The magnetic susceptibility of COA data is plotted in Fig. 6(a),
which shows sharper and stronger divergence as the length (�)
of lattice is increased. Let us note that the COA results with
string-ordered background are obtained for lattices defined
on an infinite cylinder that has a finite perimeter length �.
Finite-size scaling theory tells us how to estimate the critical
exponents for the model [37]. The divergent behavior of χ

obeys the following scaling relations

|�c − �max| ∼ �−1/ν, (8)

χ (�max) ∼ �γ/ν, (9)

where �c is the critical field in the thermodynamic limit, �max

is the position of maximum of finite-lattice susceptibility χ ,
ν is the correlation length exponent, i.e., ξ ∼ |� − �c|−ν and
γ is an exponent, which governs singularity in the magnetic
susceptibility. As shown in the inset of Fig. 6(a), we find a good
scaling for COA data, which gives ν = 1.0 ± 0.01 and �c =
0.51 ± 0.01. A similar behavior is also observed for χ versus
� of the TTN numerical computation presented in Fig. 6(b).
Accordingly, the same critical field and exponent ν are also
reported in the inset of Fig. 6(b). Once we have obtained ν

and �c from Eq. (8), we can use them to find γ from Eq. (9),
as well as getting the scale invariant behavior of magnetic
susceptibility, which is observed from a good data collapse
of different sizes in Fig. 6(c). It shows the scale invariance
of susceptibility with exponent γ = 0.33 ± 0.01. Both COA
and TTN imply a continuous phase transition from string-
VBS phase (at low fields) to the quantum paramagnet phase
(at high fields) at �c = 0.5 ± 0.01. The continuous nature of
such transition is confirmed by the broken lattice rotational
symmetry in the string-VBS phase compared with symmetric
quantum paramagnet phase.

We would like to comment on the nature of string-VBS
ground state. The formation of loops yields the ground state
to inherit partially the one-dimensional (1D) character of TFI
model. At zero field, the ground state of 1D TFI model is dou-
bly degenerate, which is given by classical antiferromagnetic
state |φ〉 = | + − + − · · · + −〉 and its spin flipped one |φ̄〉 =
| − + − + · · · − +〉, where |+〉,|−〉 represent the eigenstates
of Sz Pauli operator. In the presence of small transverse
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FIG. 6. (a), (b) Magnetic susceptibility obtained from COA and
TTN, respectively for different system sizes. They show a sharp
peak indicating a phase transition from string-VBS phase of low
fields to the quantum paramagnet of high fields, at (�/J1)c = 0.5 ±
0.01 with exponent ν = 1.0 ± 0.01. (c) Data collapse of magnetic
susceptibility obtained from COA, which shows the scale invariance
of susceptibility governed by exponent γ = 0.33 ± 0.01.

field, the ground state is a linear superposition of different
configurations mostly occupied by |φ〉 and |φ̄〉. This is actually
a macroscopic superposition of quantum states, which has been
discussed by Leggett [33] to distinguish between macroscopic
quantum superposition and quantum entanglement. A recent
study in Ref. [34] verifies that the ground state of 1D TFI
model in AFM region is essentially a superposition of the two
macroscopic distinct states |φ〉 and |φ̄〉, i.e., a macroscopic
quantum superposition. We therefore conjuncture that the
string-VBS state is a witness for the two-dimensional version
of macroscopic quantum superposition. In other words, we
conclude that the string-VBS phase consists of a columnar
ordering of string-valence bonds each of which in an equal
superposition of two possible Néel configurations with no
magnetic order in the z direction.

V. SUMMARY AND CONCLUSIONS

We have studied the zero-temperature phase diagram of
the transverse field Ising model on the J1-J2 square lattice at
the highly frustrated point J2/J1 = 0.5, which is known to
have an extensive degenerate classical ground state at � = 0.
The LSWT analysis of the model failed to lift this classical
degeneracy implying that harmonic fluctuations, coming from
the single-spin-flip excitations, are not able to represent the
true quantum fluctuations of the system at the highly frustrated
region. We therefore, applied the cluster-operator approach,
which is based on the multispin-flip type of anharmonic
quantum fluctuations above a nonmagnetic cluster-ordered
background. We found that the exponential degeneracy of
the classical ground state at J2/J1 = 0.5 is lifted toward a
string-VBS phase, which breaks rotational symmetry of the
lattice with only twofold degeneracy. This is a manifestation
of order-by-disorder transition that is induced by anharmonic
quantum fluctuations.

The quantum phase transition between string-VBS phase
at low fields and quantum paramagnet phase at high fields
occurs at the critical point (�/J1)c = 0.50 ± 0.01 and is
of a continuous type as the rotational symmetry is only
broken at the string-VBS phase. The critical exponents have
been obtained to be ν = 1.0 ± 0.01 and γ = 0.33 ± 0.01.
Moreover, we conjuncture that the string-VBS state is an
example of macroscopic superposition of distinct quantum
states in two dimensions, where the whole lattice is a direct
product of 1D ground states, i.e.,

⊗
j (|φj 〉 + |φ̄j 〉).

Let us discuss the connection of our results to the phase
diagram of spin-1/2 J1-J2 AFM Heisenberg model on two-
dimensional square lattice. The ground-state structure of
Heisenberg model at J2/J1 = 0.5 is controversial to be either
a valence bond solid state or a spin liquid phase [8–20]. Early
studies proposed that anharmonic fluctuations could make a
dimer VBS [38] or a plaquette VBS [39] as stable phases
around J2/J1 = 0.5, granting that short-range corrections to
the ground-state energy are small. Our COA results on TFI
model with dimer VBS is similar to the case of Ref. [38],
where dimer-VBS corrections are not small to construct a
stabilized dimer VBS at J2/J1 = 0.5. According to the recent
investigations, a quantum spin liquid is more plausible phase
for the intermediate region of the Heisenberg model [13–20].
On the other hand, our results on TFI model govern the high
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anisotropy limit of the Heisenberg model, where the easy-axis
coupling is much stronger than the coupling in the fluctuating
plane. It suggests that we get the string-VBS ground state by
increasing the easy-axis anisotropy of the Heisenberg model.
In other words, we conclude that by reduction of symmetry
from SU (2) to Z2, the plausible spin liquid phase of the J1-J2

Heisenberg model on the square lattice is converted to a string-
VBS phase at the highly frustrated point J2/J1 = 0.5. Such a
novel string-VBS phase can also emerge in the case of reducing
quantum fluctuations by increasing the dimensionality or
the spin quantum number, as it was predicted in previous
literature for a S = 1 J1-J2 Heisenberg model on the square
lattice [40,41].
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APPENDIX A: LINEAR SPIN-WAVE THEORY

We use the three classical reference states shown in Fig. 7 as
a background on which harmonic spin waves are considered.
Magnetic unit cell of each background state is shown with a
red rectangle in Fig. 7. As a general formalism [29], we define
Sl,p as the pth spin (p = 1, . . . ,n) of the lth cell, where n is the
number of spins in a magnetic unit cell. In the classical limit,
an applied transverse field � rotates all spins around the y axis
by an angle θ . We now introduce a local rotation of spins, as
Sl,p → S̃l,p, in such a way that all three classical states shown
in Fig. 7 map to a simple ferromagnetic state in z direction,
i.e., S̃z

l,p = S everywhere. Accordingly, we define

S̃l,p = σpRy(σpθ )Sl,p, (A1)

where σp = ±1 denotes the direction of pth spin along the
z axis, and R is the rotation matrix around y axis by an
angle σpθ . Therefore, the following relations between spin
components in the rotated and nonrotated representations are
obtained

Sz
l,p = σpcosθS̃z

l,p − sinθS̃x
l,p,

Sx
l,p = σpcosθS̃x

l,p + sinθS̃z
l,p. (A2)

After rewriting the Hamiltonian in terms of new spin
operators S̃z

l,p and S̃x
l,p, we consider small quantum fluctuations

Néel Striped Polarized

FIG. 7. Schematic representations of the classical magnetically
ordered states around which we consider harmonic quantum fluctua-
tions of LSWT. Magnetic unit cells of each classical phase are shown
with red rectangles.

around this general ferromagnetic classical reference state by
the following linearized Holstein-Primakoff transformations,

S̃z
l,p = S − a

†
l,pal,p, S̃x

l,p ≈
√

S

2
(a†

l,p + al,p), (A3)

where al,p and a
†
l,p are bosonic operators with well-known

commutation relations [al,p,a
†
l,p] = 1 and [a(†)

l,p,a
(†)
l,p] = 0.

Hamiltonian is expanded up to the quadratic order of bosonic
operators,

HLSWT = Ecl +
∑
l,p

h̃pa
†
lpalp + 1

8
sin2 θ

∑
l,δ,p,p′

J̃ (δ)pp′

× (a†
l,p + al,p)(a†

l′,p′ + al′,p′ ), (A4)

where linear terms vanish by construction and J̃ (δ) is an n × n

matrix, containing the couplings between spins p,p′ of the two
unit cells l,l′ at position δ and

h̃p = −1

2
σp cos2(θ )

∑
δ,p′

[J̃ (δ)]pp′σp′ + � sin θ. (A5)

The momentum space representation is used with the following
transformations,

ak,p =
√

n

N

∑
l

eik.r l al,p,

J̃ (k) =
∑

δ

e−ik.δJ̃ (δ). (A6)

Hence, the quadratic Hamiltonian can be written in the
following compact form

HLSWT = Ecl − N

n

∑
p

(
h̃p

2

)
+ 1

2

∑
k

A
†
kMkAk,

(A7)

where

A
†
k = (a†

k,1, . . . ,a
†
k,n,a−k,1, . . . ,a−k,n),

Mk =
(

h̃ + �k �k

�k h̃ + �k

)
,

[h̃]pp′ = h̃pδpp′ ,

�k = 1

2
(J̃ (k) + J̃ (−k)). (A8)

Finally, performing an n-mode paraunitary Bogoliubov trans-
formation [42], we obtain the effective diagonal quadratic
Hamiltonian given by

HLSWT = Ecl − N

n

∑
p

(
h̃p

2

)
+

∑
k,p

ωk,p

(
c
†
k,pck,p + 1

2

)
,

(A9)

where k sums over the first Brillouin zone of a lattice
constructed from the centers of magnetic unit cells of the
classical reference states and p runs over the spins of a
magnetic unit cell, h̃p is a correction term gained from bosonic
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commutation relations and ωk,p defines the spectrum of
quasiparticles with corresponding bosonic creation operators
c
†
k,p. In fact, the eigenmodes ωk,p are the eigenvalues of �Mk,

where � matrix is given by

� =
(

In 0n

0n −In

)
. (A10)

Finally, the eigenmodes ωk,p can be expressed in terms of the
eigenvalues λk,p of matrix �k in the form

ωk,p = h̃p

√
1 + 2

λk,p

h̃p

. (A11)

APPENDIX B: EXCITED STATES IN ZERO FIELD

At the highly frustrated point J2/J1 = 0.5 and zero trans-
verse field, the ground state of Hamiltonian Eq. (1) is highly
degenerate. A typical state of this ground space is the Néel
state shown in Fig. 8. The lowest-energy excitations might be
either a single spin flip or a joint flip of all spins of a specific
cluster, which are shown in Fig. 8. In a Néel configuration all
nearest-neighbor bonds J1 are satisfied, while the next-nearest-
neighbor bonds J2 are not. Accordingly, flipping one spin
will satisfy four J2 bonds, while dissatisfying four J1 bonds.
Hence, the energy cost of a single-spin-flip excitation is given
by 8(J1-J2), which is equal to 4J1 at J2/J1 = 0.5. Similarly,
the energy cost of a dimer-flip, trimer-flip, plaquette flip, or
every finite cluster flip will be 4J1. However, a joint flip of all
spins on a global loop of the lattice (green loop in Fig. 8) costs
4n(J1-2J2), where n is the number of spins on the global loop.
Therefore, it implies a zero energy cost at J2/J1 = 0.5, which
corresponds to the transformation of Néel state to another state

1 1

11

2

2

3

3

4

4

5 56 7 8

9 910 11 12

13 1314 15 16

FIG. 8. A classical Néel configuration of Hamiltonian (1) at zero
field, with periodic boundary conditions on both sides. All J1 bonds
are satisfied with this phase while it is not the case for J2 bonds.
Different kinds of spin excitations corresponding to single-spin-flip,
dimer-flip, trimer-flip, plaquette-flip, and global-loop flip are shown.

of the highly degenerate manifold. Therefore, the energy cost
of a global loop flip is lower than any other finite cluster flip,
at the highly frustrated point J2/J1 = 0.5.

APPENDIX C: CLUSTER-OPERATOR APPROACH

In cluster-operator approach (COA), we first consider a per-
fect multispin cluster ordering as a ground-state background,
in which all isolated clusters are in their unique ground states.
Quantum fluctuations by intercluster interactions around such
ordered reference state give rise to low-lying excitations
above the perfect cluster-ordered background, as a result of
hybridization of ground state of each cluster to its other excited
states, which eventuate the zero-point energy correction. In the
following, we first propose two-spin clusters with columnar
orderings shown in Fig. 9(a). The method for other cluster-
ordered backgrounds will be similar to this.

In order to construct an effective theory for the dimer
ordered background, we rewrite the Hamiltonian (1) as H =
H0 + Hint, where H0 = ∑

C HC denotes the set of shaded
isolated dimers shown in Fig. 9 and Hint defines the interaction
between them.

The Hamiltonian of a single dimer is given by

Hsingle−dimer = J1
(
Sz

1S
z
2

) − �
(
Sx

1 + Sx
2

)
. (C1)

The dimer Hamiltonian is diagonalized exactly. The energy
spectrum as a function of �/J1 is shown in Fig. 10(a). It
shows a unique ground state |1〉 at nonzero transverse field �.
In order to develop an effective theory including interdimer
interactions Hint, we first examine the interaction between two
neighboring dimers. Accordingly, we deduce which excited
states of each dimer participate in the dynamics of the
system when imposing quantum fluctuations above the perfect
columnar dimer ordered background. Figure 9(a) shows that
each dimer I interacts with eight neighboring dimers J . Let us
consider interaction between two dimers I and J , via a bond
J1 between spin 1 of dimer I and spin 2 of dimer J , shown in
the Fig. 9(b). The interaction, HIJ , is given by

HIJ = J1S
z
1(I )S

z
2(J ). (C2)

In the absence of this interaction, both dimers I and J are in
their unique ground states |1〉. Thus, the state of two-dimer

1

1

2

2

I

J

I

J JJ

J

J J

J J

(a) (b)

FIG. 9. (a) A columnar ordering of dimers as a ground state
background, used in COA. (b) The interaction between two nearest-
neighbor dimers I and J , given by J1S

z
1(I )S

z
2(J ).
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FIG. 10. (a) Energy spectrum (in units of J1) of a single dimer
versus �/J1. The bottom line (|1〉) is the unique ground state of
the dimer. (b) Transition amplitude 〈u|Sz

α|1〉 (α = 1,2), between the
ground state |1〉 and four eigenstates |u〉 of a dimer, versus transverse
field �/J1.

system is |11〉, i.e., a direct product of single-dimer ground
states. Now we proceed to turn on the interaction term
HIJ between two dimers, as a perturbation. HIJ does not
commute with the isolated dimer Hamiltonian, Eq. (C1), which
hybridizes the ground state of each dimer with its excited
states. Accordingly, the matrix elements of HIJ between two
direct product states, |uv〉 and |11〉, are given by

〈uv|HIJ |11〉 = J1〈u|Sz
1(I )|1〉 × 〈v|Sz

2(J )|1〉, (C3)

where |u〉 and |v〉 are four possible eigenstates of dimers I

and J , respectively. Figure 10(b) represents the behavior of
transition amplitude 〈u|Sz

α|1〉 (α = 1,2), between the ground
state |1〉 and four eigenstates |u〉 of a single dimer. It shows
clearly that for all values of �/J1, there are two excited states
u = 2,3, which dominantly contribute to the dynamics of the
system as quantum fluctuations. Accordingly, in the following
section we construct an effective theory for the columnar dimer
ordered background via a bosonization formalism including
only three eigenstates |u〉 (u = 1,2,3) of each dimer.

We introduce a bosonization formalism [43], similar to what
has been done in Refs. [30,31] to obtain the effective theory.
We associate a boson to each of the three eigenstates |u〉 of
each dimer (u = 1,2,3). In this respect, each eigenstate |u〉 of
dimer I is created by a boson creation operator b

†
I,u acting on

the vacuum |0〉,

|u〉I = b
†
I,u|0〉, u = 1,2,3, (C4)

where b
†
I,u and bI,u are usual bosonic operators, satisfying

[bI,u,b
†
I,u] = 1 and [b(†)

I,u,b
(†)
I,u] = 0. According to the earlier

definition, columnar dimer ordered background is a Bose
condensate of ground state |u = 1〉 bosons, i.e., at a mean-field
level we write

bI,1 ≡ b
†
I,1 ≡ p̄, ∀I, (C5)

where p̄ is the condensation amplitude and p̄2 gives the
probability of a single dimer to be in its ground state. In the
absence of interaction between dimers, p̄2 is equal to unity.
However, the existence of interdimer interactions reduce p̄2

from unity, giving rise to a nonzero occupation of excited
bosons on single dimers. Nevertheless, to preserve the Hilbert
space of the effective model, the total occupancy of bosons per

dimer should be unity, i.e.,

Ndp̄
2 +

∑
I,u=2,3

b
†
I,ubI,u = Nd, (C6)

where Nd is the total number of dimers in Fig. 9(a). Having
in mind the Bose condensation of ground bosons, the excited
bosons are present in very dilute concentrations, which lead
to neglect the interaction between excited bosons. Hence,
we only consider the interactions between excited bosons
and ground bosons. In the bosonic language, there are two
kinds of interdimer interactions participating in the effective
Hamiltonian. First, a creation (annihilation) term of excited
bosons on neighboring dimers,

|uv〉〈uv|HIJ |11〉〈11| ≡ dIJ
uv p̄2 b

†
I,ub

†
J,v ,

|11〉〈11|HIJ |uv〉〈uv| ≡ dIJ
uv

†
p̄2 bI,ubJ,v , (C7)

and second, a hopping term of excited bosons between
neighboring dimers,

|u1〉〈u1|HIJ |1v〉〈1v| ≡ hIJ
uv p̄2 b

†
I,ubJ,v ,

|1v〉〈1v|HIJ |u1〉〈u1| ≡ hIJ
uv

†
p̄2 bI,ub

†
J,v , (C8)

where coefficients dIJ
uv = 〈uv|HIJ |11〉 and hIJ

uv =
〈u1|HIJ |1v〉 are creation and hopping amplitudes,
respectively. On the other hand, according to Fig. 10(b), the
values of terms such as 〈1|Sz

α|1〉 are zero, which rules out
O(p̄3) and O(p̄4) terms in the effective Hamiltonian. Those
terms independent of p̄ and O(p̄) can be ignored due to
neglecting interaction between excited bosons.

Based on the above arguments, the effective Hamiltonian
for the columnar dimer ordered background can now be written
in a quadratic bosonic form,

H = Ndp̄
2ε1 +

∑
I

∑
u

εub
†
I,ubI,u

−μ

[
Ndp̄

2 +
∑
I,u

b
†
I,ubI,u − Nd

]

+p̄2
∑
〈I,J 〉

∑
u,v

[(
dIJ

uv

)
b
†
I,ub

†
J,v + (

hIJ
uv

)
b
†
I,ubJ,v + H.c.

]
.

(C9)

The first line includes intradimer terms, where the index I

sums over all isolated dimers in Fig. 9(a) and u sums over
the two dominant excited states (u = 2,3) of each dimer with
corresponding eigenenergies εu. The second line enforces the
Hilbert space constraint, Eq. (C6), via a chemical potential
μ. The third line involves interdimer terms, where u,v = 2,3
are the two excited bosons of neighboring dimers I and J ,
respectively. It is remarkable that the eigenstates of a single-
dimer Hamiltonian, according to Eq. (C1), have Z2 symmetry.
It implies that all of the bosonic states participating in the
effective Hamiltonian keep this symmetry. Therefore, the Z2

symmetry of the original Hamiltonian Eq. (1) is respected in
our effective theory of Eq. (C9).

In order to diagonalize the effective Hamiltonian, we first go
to the momentum space by introducing the Fourier transform
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of the bosonic operators and interactions,

bk,u = 1√
ND

∑
I

bI,ue
−ik.rI , HK =

∑
〈I,J 〉

HIJ eik.(rJ −rI ),

(C10)

where k sums over the first Brillouin zone of a rectangular
lattice formed by the centers of columnar dimers of Fig. 9(a).
Finally, having done a paraunitary Bogoliubov transforma-
tion [42], the effective Hamiltonian takes the diagonal form

H = NDμ + NDp̄2(ε1 − μ) − 1

2
ND

∑
u=2,3

(εu − μ)

+
∑

k

2∑
ν=1

(
1

2
+ γ

†
ν,kγν,k

)
�ν,k(μ,p̄), (C11)

where �ν,k gives the eigenmodes of the effective model,
corresponding to the bosonic excitations γ

†
ν,k around the

columnar dimer ordered background. These excitation modes
cause the zero-point energy corrections for the ground state.
Two parameters p̄ and μ are specified self consistently, by
solving the following equations

∂〈H〉
∂μ

= 0,
∂〈H〉
∂p̄

= 0. (C12)

It should be mentioned that the above procedure is essen-
tially a numerical task for clusters larger than four sites. For
instance, we have to take 256 states into account for � = 10
cluster to consider nonvanishing transition amplitudes.

APPENDIX D: TREE TENSOR NETWORK

In tensor network formalism, we could represent each
quantum many-body state in terms of local tensors connected
through geometric structures [32]. The geometric structures
are determined by global properties appeared in the system,
such as entanglement and or correlations. In principle, faithful
tensor network states should have the ability to reproduce
all global features appeared in the system. For instance,
low-lying excited states of local Hamiltonians respect area
law, stating bipartite entanglement entropy (of subsystem)
scales by common boundary of two partitions instead of
volume [44]. Furthermore, two-point correlation function for
gapped and gapless phases respectively decay exponentially
and algebraically, as distance between two partitions increases.
So, the reliable tensor network states are ones that are
cleverly designed to fulfill such behavior, specially pattern
of entanglement and correlation are of important ones.

TTN is a class of tensor network states inspired by renor-
malization group methodology, i.e., Wilsona’s and Kadanoff’s
earlier works [45]. TTN states are represented in terms of
local isometric tensors [see Fig. 11(a), 11(b)] forming a
treelike geometric graph. Such treelike structures have some
numerical/conceptual advantages, making TTN as a powerful
numerical toolbox: (i) different types of optimization method
could be simply applied [46,47], (ii) reduces time/memory
cost of the algorithm, and (iii) reproduces algebraic behavior
of correlation function and so on. However, 2D TTNs are

(a) (b)

(c) (d)

(e)

FIG. 11. Graphical representation of TTN. (a) 1D TTN, (b)
isometric constraint, 2D TTN for (c) 4 × 4, (d) 6 × 6, and (e) 6 × 8
latices.

suitable only for small clusters, since it violets area law—as it
occurs for matrix product states. In Fig. 11(a), we have shown a
three-layer 1D TTN composing of isometric triangular tensors.
The triangular tensors play the role of RG steps, mapping three
spins into a superspin with effective bond dimension χ . At
each layer, they are the same, exploiting translational invariant
symmetry. One could easily generalize 1D TTN to 2D cases,
as we have shown them for 4 × 4, 6 × 6 and 6 × 8 clusters,
respectively, in Figs. 11(c)–11(e). We exactly utilize these 2D
TTNs in our simulations.

We follow Ref. [48] to perform the optimization algorithm:
the main idea is to take a specific local isomeric tensor—fixing
the other tensors—as variational parameters and then obtain
variational ground-state energy, so that it becomes minimum.
By repeating this process over all other tensors, the TTN
state would hopefully converge to real ground state. Bond
dimension χ is our control parameter determining accuracy
of algorithm—it is obvious for χ → ∞, the result would
be exact. Time and memory cost of optimization processing,
respectively, scale by O(χ4) and O(χ3). Calculating the expec-
tation value of local operators, (nearest-neighbor) correlation
function and variational energy have also the same cost. In our
calculation, we consider clusters up to 8 × 6 spins, and also
do finite-χ scaling to obtain more accurate result [49]. We use
the following equation to obtain our final data

〈Ô〉χ = 〈Ô〉∞ + A0

χθ
, (D1)

where 〈Ô〉 stand for expectation value of operators, A0 and
θ are two constants—determined by the best fitting methods.
Note 〈Ô〉∞ is the quantity that is reported throughout the
paper. We take χ ∼ 400 so that error in variational ground-
state energy, in the worst cases (critical point), is of order 10−4.
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