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By means of first-principles calculations, we have systematically investigated how the magnetodynamic
properties Gilbert damping, magnetization, and exchange stiffness are affected when permalloy (Py) (Fe0.19Ni0.81)
is doped with 4d or 5d transition metal impurities. We find that the trends in the Gilbert damping can be
understood from relatively few basic parameters such as the density of states at the Fermi level, the spin-orbit
coupling, and the impurity concentration. The temperature dependence of the Gilbert damping is found to be
very weak which we relate to the lack of intraband transitions in alloys. Doping with 4d elements has no major
impact on the studied Gilbert damping, apart from diluting the host. However, the 5d elements have a profound
effect on the damping and allow it to be tuned over a large interval while maintaining the magnetization and
exchange stiffness. As regards the spin stiffness, doping with early transition metals results in considerable
softening, whereas late transition metals have a minor impact. Our result agree well with earlier calculations
where available. In comparison to experiments, the computed Gilbert damping appears slightly underestimated,
whereas the spin stiffness shows a general good agreement.
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I. INTRODUCTION

Spintronics and magnonic applications have attracted a
great extent of attention due to the potential of creating devices
with reduced energy consumption and improved performance
compared to traditional semiconductor devices [1–3]. An
important ingredient for understanding and improving the
performance of these devices is a good knowledge of the
magnetic properties. In this study, we focus on the saturation
magnetization Ms , the exchange stiffness A, and the Gilbert
damping α [4]. The latter is determining the energy dissipation
rate of which a magnetic system returns to its equilibrium
state from an excited state, e.g., after the system has been
subjected to external stimuli such as an electrical current
which alters its magnetic state. The three parameters, Ms ,
A, and α, describe the magnetodynamical properties of the
system of interest. Ultimately one would like to have complete
independent control and tunability of these properties. In
this study, the magnetodynamical properties of permalloy
(Py) doped with transition-metal impurities are systematically
investigated within a coherent computational framework.

The capability of tuning the damping with additional doping
elements for a material with such a technological importance
as Py is important for the development of possible new
devices in spintronics and magnonics. The understanding of
how transition metals or rare-earth dopants can affect the
properties of Py has been the focus of a number of recent
experimental studies [5–9]. In principle, a large variety of
elements in the Periodic Table can be used as dopant but
in order to narrow down the present study, we here solely
concentrated on transition metals belonging to the 4d and 5d

series. Typically in the experimental studies, the ferromagnetic
resonance [10] (FMR) technique is employed and α and Ms are
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extracted from the linewidth of the uniform precession mode,
while A is extracted from the first perpendicular standing
spin-wave mode [11,12]. On the theory side, calculations
of Gilbert damping from first-principles density-functional
theory methods have only recently become possible due to
the complexity of such calculations. Two main approaches
have emerged: the breathing Fermi surface model [13,14]
and the torque correlation models [15,16]. Common to both
approaches is that spin-orbit coupling along with the density of
states at the Fermi level are the main driving forces behind the
damping. The breathing Fermi surface model only takes into
account intraband transitions while torque correlation model
also includes interband transitions. The torque correlation
model in its original form contains a free parameter, namely
the scattering relaxation time. Brataas et al. [17] later lifted this
restriction by employing scattering theory and linear response
theory. The resulting formalism provides a firm foundation
of calculating α quantitatively from first-principles methods
and allows further investigations of the source of damping.
Gilbert damping in pure Py as well as doping with selected
elements have been calculated in the past [9,18–20]; however,
no systematic study of the magnetodynamic properties within
the same computational framework has been conducted which
the present paper aims to address.

The paper is outlined as follows: in Sec. II we present
the formalism and details of the calculations, in Sec. III we
present the results of our study, and in Sec. IV we summarize
our findings and provide an outlook.

II. THEORY

A. Crystal structure of permalloy and treatment of disorder
in the first-principles calculations

Pure permalloy (Py), an alloy consisting of iron (Fe) and
nickel (Ni) with composition Fe0.19Ni0.81, crystallizes in the
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face-centered-cubic (fcc) crystal structure, where Fe and Ni
atoms are randomly distributed. Additional doping with 4d

and 5d impurities (M) substitutes Fe (or Ni) so that it becomes
a three-component alloy with composition Py1−xMx , where x

is the concentration of the dopant.
All first-principles calculations in this study were per-

formed using the spin-polarized relativistic (SPR) Korringa-
Kohn-Rostoker (KKR) [21] Green’s function (GF) approach
as implemented in the SPR-KKR software [22]. The gener-
alized gradient approximation (GGA) [23] was used in the
parametrization of the exchange correlation potential and both
the core and valence electrons were solved using the fully
relativistic Dirac equation. The broken symmetry associated
with the chemical substitution in the system was treated using
the coherent potential approximation (CPA) [24,25].

B. Calculation of magnetodynamical properties of alloys:
Gilbert damping within linear response theory and spin stiffness

The formalism for calculating Gilbert damping from first
principles, used in the present work, has been derived in
Refs. [17,19,20]. Within the adiabatic approximation the
damping can be related as the dissipation rate of the magnetic
energy which in turn can be associated to the Landau-Lifshitz-
Gilbert (LLG) equation [4]. The dimensionless Gilbert damp-
ing parameter α has the generalized form of a tensor and
was originally derived from a Kubo-Greenwood-like transport
equation [26,27]. The final expression for the Gilbert damping
parameter in the present framework becomes

αμν = − �γ

πMs

Trace

〈
∂Ĥ

∂uμ

ImG+(EF )
∂Ĥ

∂uν

ImG+(EF )

〉
c

, (1)

where 〈. . . 〉c denotes a configurational average and γ the
gyromagnetic ratio, ∂Ĥ/∂u the torque operator, and G+(EF ) a
Green’s function at the Fermi energy EF . For the cubic systems
treated in this study, the tensorial form of the damping with
no loss of generality can be replaced by a scalar damping
parameter.

Thermal effects from the atomic displacements and spin
fluctuations were included using the alloy-analogy model [28]
within CPA.

The spin-wave stiffness D is defined as the curvature of the
spin-wave dispersion spectrum at small wave vectors [ω(q) ≈
Dq2]. D in turn is directly related to the exchange interactions
in the Heisenberg model which are obtained using the LKAG
formalism [29,30] such that

D = 2

3

∑
ij

JijR
2
ij√

mimj

, (2)

where Jij is the interatomic exchange parameter between the
ith and j th magnetic moment, Rij the distance connecting
the atomic sites with index i and j , and mi (mj ) the
magnetic moment at site i (j ). It is worth noting that Eq. (2)
only holds for cubic systems as treated here; for lower
symmetries this relation needs modifications. The exchange
couplings in metallic systems are typically long ranged and
could have oscillations of ferromagnetic and antiferromagnetic
character, such as present in RKKY type interactions. Due to

the oscillations in exchange interactions, care is needed to
guarantee a numerical convergence of the series in Eq. (2).
This was achieved following the methodology as outlined in
Refs. [31,32].

C. Calculation of finite temperature magnetic properties

Once the exchange interactions of the Heisenberg model
have been calculated, the properties at finite temperature
were obtained from Metropolis [33] Monte Carlo simulations
as implemented in the UppASD software package [34,35].
After having the temperature-dependent magnetization, the
micromagnetic exchange stiffness A is expressed in terms of
[36–39]

A(T ) = DM(T )

2gμB

, (3)

where μB is the Bohr magneton, g is the Landé g factor, and
M(T ) is the magnetization at temperature T .

D. Details of the calculations

For each concentration of the different impurities in Py, the
lattice parameter was optimized by varying the volume and
finding the energy minimum. The k-point mesh for the self-
consistent calculations and exchange interactions was set to
223 giving around 800 k points in the irreducible wedge of the
Brillouin zone (IBZ). The Gilbert damping calculation requires
a very fine mesh to resolve all the Fermi surface features
and therefore a significantly denser k-point mesh of 2283

(∼1.0 × 106 k points in IBZ) was employed in these calcu-
lations to ensure numerical convergence. Moreover, vertex
corrections [40] were included in the damping calculations
since it has been revealed to be important in previous studies
[20] for obtaining quantitative results.

III. RESULTS

A. Equilibrium volumes and induced magnetic moments

Figure 1 shows the calculated equilibrium volume of
doped Py for two different concentrations (10% and 15%)
of impurities from the 4d and 5d series of the Periodic Table.
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FIG. 1. Calculated equilibrium volumes of Py-M, where M stands
for a 4d (left) or 5d (right) transition metal. Values for 10% and
15% doping concentrations are shown. Reference value of pure Py is
displayed with a dashed line.
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FIG. 2. (Upper) Total magnetic moment (spin and orbital) for
different impurities and concentrations. Reference value for pure Py
marked with a dashed line. (Lower) Local impurity magnetic moment
for Py0.95M0.05.

First of all, it is noted that the volume increases with the
concentration, and the volume within a series (4d or 5d) has
a parabolic shape with minimum in the middle of the series.
This is expected since the bonding states are consecutively
filled and maximized in the middle of the series and thus the
bonding strength reaches a maximum. Moving further through
the series, antibonding states start to fill, giving rise to weaker
bonding and larger equilibrium volumes. This is also consistent
with the atomic volumes within the two series [41].

The local moments of the host atoms are only weakly
dependent on the type of impurity atom present. Moreover,
the magnetic moments are dominated by the spin moment
μS , while the orbital moments μL are much smaller. As
an example, in pure Py without additional doping, the spin
(orbital) moments of Fe is calculated to ≈2.64(0.05)μB and
for Ni ≈ 0.64(0.05)μB , respectively. This adds up to an
average spin (orbital) moment of ≈1.04(0.05)μB by taking
into account the concentration of Fe and Ni in Py. The total
moment is analyzed in more detail in Fig. 2 (upper panel).
As mentioned above, one would like to achieve tunable and
independent control of the saturation magnetization. Reducing
the magnetization reduces the radiative extrinsic damping
but could at the same time affect the other properties in an
unwanted manner. In many situations, one strives for keeping
the value of the total moment (saturation magnetization) at
least similar to pure Py, even for the doped systems. It is
immediately clear from Fig. 2 that doping elements late in the
series are the most preferable in that respect, for instance, Rh
and Pd in the 4d series and Ir, Pt, and Au in the 5d series,
which is expected since the electronic configuration of these
impurities are closely matched with the host.

In Fig. 2 (lower panel) we show the local impurity magnetic
moments for 5% impurities in Py. In the beginning of the
4d (5d) series, the impurity atoms have an antiferromagnetic
coupling, reflected in the negative moments relatively to the
host (Fe and Ni) atoms, whereas they are ferromagnetically

FIG. 3. Bloch spectral function A(E,k) of Py (upper panel) and
Py doped with 20% Pt impurities (lower panel). The Fermi level is
indicated with a horizontal black line at zero energy.

coupled (i.e., positive moments) among the latter elements
in the series. The antiferromagnetic coupling may not be
preferred from an engineering point of view since it will tend
to soften the magnetic properties and maybe even cause more
complicated noncollinear magnetic configurations to occur.

B. Band structure

The lack of translational symmetry in Py and doped-Py
random alloys complicates the calculations using normal band-
structure methods due to the need for large supercells. How-
ever, employing CPA restores the translational symmetry and,
more importantly, the band structure of disordered systems
can be analyzed through the Bloch spectral function (BSF)
A(E,k), which can be seen as a wave vector k-dependent
density of states (DOS) function. For ordered systems the BSF
is a δ-like function at energy E(k), while for disordered systems
each peak has an associated broadening with a linewidth
proportional to the amount of disorder scattering. In the upper
panel of Fig. 3 the calculated BSF for pure Py is displayed.
Despite being a disordered system, the electron bands are
rather sharp below the Fermi level, while in the vicinity of the
Fermi level the bands become much more diffuse indicating
that most of the disorder scattering takes place around these
energies.

When Py is doped with 20% Pt impurities, the positions
of the electron bands do not change much as shown by the
BSF in the lower panel of Fig. 3. The most striking change
is the large increase of the disorder scattering compared to
Py causing diffuse electron bands throughout a wide energy
window in the Brillouin zone. However, exactly at the Fermi
level the difference between the doped and undoped system is
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FIG. 4. (Upper) Calculated Gilbert damping parameter for Py+M
in different concentrations of 4d and 5d transition metal M at
low temperatures (T = 10 K). Experimental results from Ref. [5]
measured at room temperature are displayed by solid squares and
dashed lines indicate the reference value for pure Py. (Lower) Total
(blue) and impurity (black) density of states at the Fermi level EF for
10% impurities in Py.

not very pronounced and these states are the most important
for the determination of the Gilbert damping, as seen from
Eq. (1).

C. Gilbert damping: Effect of doping

The calculated Gilbert damping of the doped Py systems
for different concentrations of impurities is shown in Fig. 4
(upper panel). The 4d impurities only marginally influence
the damping, while the 5d impurities dramatically change the
damping. The first observation is that we obtain a very good
agreement with the previous study [19] for the 5d series with
10% impurities; this is however expected, since we have used
the same methodology. Secondly, the most dramatic effect on
damping upon doping is for the case of Py doped with 20% Os
impurities in which the damping increases with approximately
800% compared to pure Py, as previously reported in Ref. [20].
In the present study we have systematically varied the impurity
elements and concentrations over a large interval for identify-
ing the trends of Gilbert damping. Compared to experiments
[5], the calculations consistently find smaller Gilbert damping
than what are reported in experiments, and for the 4d series the
calculations do not capture some of the experimental trends, in
particular the peak for Ru. However, it is worth remembering
that calculations only show the intrinsic part of the damping,
while experiments may still have some additional portion of
extrinsic damping left such as eddy current damping and
radiation damping, since it is difficult to fully separate the

different contributions. Moreover, in calculations a completely
random distribution of atoms without short-range order effects
is assumed, while there may be sample inhomogeneities such
as clustering in the real samples.

In order to give a rough estimate of the error bar of the
calculated damping, we repeated the calculations for a few dif-
ferent volumes and different choices of exchange correlation
potentials. The values did not change significantly (±10%). In
particular, the use of local spin density approximation (LDA)
instead of GGA result in slightly larger damping, but the
overall trend is very similar.

According to most theoretical models, the two main
physical properties that determine the damping are the density
of states (DOS) at the Fermi level and the strength of the
spin-orbit coupling. In the following, we first investigate
separately how these properties affect the damping and later the
combination of the two. In the lower panel of Fig. 4, the total
DOS and the impurity-DOS are displayed for 10% impurity
concentration of 4d and 5d series transition metals. In both
the 4d and 5d series the impurity-DOS exhibits a maximum
in the middle of the series. However, the value of the DOS are
similar for the 4d and 5d series and therefore cannot solely
explain the large difference in damping found between the
two series. For the 4d series, the calculated damping is not
directly proportional to the DOS, while there is a significant
correlation between the DOS and damping in the 5d series. The
qualitative discrepancy between theory and experiment for the
4d series is a bit surprising, most significantly the experimental
peak for Ru that is missing in calculations. Unfortunately, we
have not been able to pinpoint the origin of the disagreement,
which is surprising, in particular, since the results for 5d series
show good agreement. We have not found any other calculated
values of 4d impurities in Py in the literature to compare with.

In order to analyze the separate influence of spin-orbit
coupling on the damping, we show in the upper panel of
Fig. 5 the spin-orbit parameter ξ ∝ (1/r)dV (r)/dr , where
V (r) is the radial potential, of the impurity d states. The
calculations include all relativistic effects by solving the Dirac
equation but here we have specifically extracted the main
contribution from the spin-orbit coupling. As expected, the
spin-orbit parameter increases with atomic number Z, and is
therefore considerably larger in the 5d series compared to the
4d series. This is the most likely explanation why the damping
is found to be larger in the 5d series than in the 4d series.
Within a single element in either the 4d or 5d series, the
damping is quadratically dependent on the relative strength
of the spin-orbit strength [20]. The calculated values of the
spin-orbit parameter are in good agreement with previous
calculations [42,43] and reaches large values of 0.6–0.9 eV
for the late 5d elements Ir, Pt, and Au, while all values are
below 0.3 eV for the 4d series. If the damping across elements
would only be proportional to the spin-orbit coupling, then the
damping would monotonously increase with atomic number
and since this is not what happens, we conclude that there
is a delicate balance between spin-orbit coupling and DOS
that determines the damping which is further highlighted
through a qualitative analysis of the involved scattering
processes.

In the torque correlation model, the dominant contribution
to damping is through the scattering [44,45] and takes the
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FIG. 5. Upper: the spin-orbit parameter of d electrons of the im-
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and the torque correlation (TC) model for the damping with 10%
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following form:

α = 1

γMs

(
γ

2

)2

n(EF )ξ 2(g − 2)2/τ, (4)

where τ is the relaxation time between scattering events, and
g the Landé g factor, for small orbital contributions, can be
related as [46] g = 2(1 + μL/μS). We assume that τ is the
same for all impurities, which is clearly an approximation
but calculating τ is beyond the scope of the present study.
By normalizing the damping from Eq. (4) such that the value
for Os (10% concentration) coincides with the first-principles
calculations, we obtain a qualitative comparison between the
model and calculations, as illustrated in the lower panel of
Fig. 5. It confirms the trend in which the 5d series leads to a
larger damping than the 4d series and captures qualitatively the
main features. However, the peak value of the damping within
the 5d series in the TC model occurs for Ir, while calculations
give Os as in experiment. Another model developed for low-
dimensional magnetic systems such as adatoms and clusters
suggests that the damping is proportional to the product of
majority and minority density of states at the Fermi level [47].
It produces a parabolic trend but with maximum at incorrect
position and fails to capture the increased damping of the 5d

elements.
To further analyze the role of impurity atoms on the

damping we also performed calculations where instead of
impurities we added vacancies in the system, i.e., void atoms.
The results are shown in Fig. 6 where damping as a function of
concentration of Ag (4d), Os (5d), and vacancies are compared
to each other along with Os results from experimental [5]
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FIG. 6. Calculated Gilbert damping as a function of Os, Ag and
vacancy (Vac) concentration in Py. Open red circle: calculation from
Ref. [19]; solid red circle: calculation from Ref. [20]; red solid square:
experimental data from Ref. [5].

and previous calculations. Surprisingly, vacancies have more
or less the same effect as Ag, with the damping practically
constant as the vacancy concentration is increased. Since
Ag has a zero moment, small spin-orbit coupling, and small
density of states at the Fermi level, the net effect of Ag from
a damping (or scattering point of view) is mainly diluting the
host, i.e., an effect similar to what one would expect from
void atoms. In contrast to Ag, Os being a 5d metal has a
strong dependence on the concentration which is previously
analyzed in terms of density of states, and meanwhile has a
strong spin-orbit coupling effect to the damping parameter. Our
results from Os are slightly lower than the previous reported
values [19,20], despite using same software. However, the
most likely reason for the small discrepancy is the use of
different exchange-correlation potentials in the two cases.

D. Gilbert damping: Effect of temperature

In the previous section we studied how the damping
depends on the electronic structure and spin-orbit coupling
at low temperatures. However, with increasing temperature
additional scattering mechanisms contribute to the damping,
most importantly phonon and magnon scattering. The phonon
scattering is indirectly taken into account by including a
number of independent atomic displacements bringing the
atoms out from their equilibrium positions. The magnon
scattering is indirectly included by reducing the magnetic
moment for a few configurations and then averaging over all
atomic and magnetic configurations within CPA. It should be
noted that the present methodology using the alloy-analogy
model [28] has limitations for pure systems at very low
temperatures where the damping diverges, but we are far
from that situation in this study since all systems have
intrinsic chemical disorder. Nevertheless, the limitations for
pure systems can be lifted by a more advanced treatment using
the explicit calculation of the dynamical susceptibility [48].
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The temperature dependence of the damping for a few
selected systems is displayed in Fig. 7, where both atomic
displacements and spin fluctuations are taken into account.
From the 4d (5d) series, we choose to show results for Mo and
Rh (W and Pt), where Mo (W) has a small antiferromagnetic
moment and Rh (Pt) a sizable ferromagnetic moment; see
Fig. 2. All systems display an overall weak temperature
dependence of the damping which increases only marginally
with temperature, as shown in upper panel of Fig. 7. In order to
separate the temperature contributions from atomic displace-
ments and spin fluctuations, we show the ratio between the total
damping and damping where only atomic displacements are
taken into account in the lower panel of Fig. 7. The two systems
with sizable moments (Rh and Pt), clearly have a dominant
contribution from spin fluctuations when the moments are
reduced upon increased scattering due to temperature. On the
contrary, in the two systems with (small) antiferromagnetic
moments (Mo and W), the effect of the spin fluctuations on
the damping is negligible and atomic displacements are solely
responsible. The weak temperature dependence found in these
doped Py systems is somewhat surprising since, in pure metals
like Fe and Ni, a strong temperature dependence has been both
measured and calculated [20]; however, data for other random
alloy systems is scarce.

The temperature dependence of the damping from the
band structure is often attributed to interband and intraband
transitions which is demonstrated from the torque-correlation
model. Intraband transitions have a conductivitylike depen-
dence on temperature, while interband shows a resistivitylike
dependence. The weak overall dependence found in the
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FIG. 8. Spin-wave stiffness D of Py-M in the ground state (top)
and exchange stiffness constant A at room temperature T = 300 K
(bottom) as a function of doping concentration. The horizontal
dashed and solid lines show the reference values of pure Py from
calculation and experiments, respectively. The scattered dots indicate
the experimental data for Py+15%M (Ag/Pt/Au) from Ref. [9].

systems in Fig. 7 suggests a lack of intraband transitions but
a more detailed analysis of the band structure and thermal
disorder is left for a future study.

E. Spin-wave stiffness and exchange stiffness

In the previous sections, we investigated saturation mag-
netization and damping and we now turn to the exchange
stiffness. The calculated spin-wave stiffness D at T = 0 K,
from Eq. (2), is displayed in the upper panel of Fig. 8. D

can be directly measured from neutron scattering experiments
but, as far as we are aware, no such data exist. For the late
elements in the 4d and 5d series, the spin-wave stiffness is
maximized and has values rather similar to pure Py, however
with a reduction of approximately 20%. In micromagnetic
modeling, it is common to use the exchange stiffness A instead
of D. A is proportional to D, as follows from Eq. (3), and
the sole temperature dependence of A therefore comes from
the magnetization. In the lower panel of Fig. 8, we show
the calculated room temperature (T = 300 K) values of A,
together with values for pure Py and available experimental
data. In the beginning of the 4d (5d) series, the exchange
stiffness becomes small upon increasing concentration of
impurities and the systems are magnetically very soft. This
follows from the fact that magnetization is small because the
systems are close to their ordering temperature. Contrary, for
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the late elements in the 4d (5d) series, the magnetization has
a large finite value even at room temperature and therefore the
exchange stiffness also has a large value, however reduced by
approximately 15% compared to pure Py.

IV. SUMMARY AND CONCLUSIONS

A systematic study of the intrinsic magnetic properties of
transition-metal doped Py has been presented. It is found
that the Gilbert damping depends strongly on the spin-orbit
coupling of the impurity atoms and does also show a weak
dependence on the density of states that determines disorder
scattering. The strong spin-orbit coupling effect makes the 5d

elements much more effective ingredients for changing the
Gilbert damping and more sensitive to the concentration than
the 4d elements. As a result, the damping is increased by
an order of magnitude compared to undoped Py. Overall, the
damping features are qualitatively rather well explained by
the torque correlation model, yet it misses some quantitative
predictive power that only first-principles results provide.
Moreover, it is found that the damping overall has a weak
temperature dependence even though it is slightly enhanced
with temperature due to increased scattering caused by
atomic displacements and spin fluctuations. Elements in the

beginning of the 4d or 5d series are found to strongly
influence the magnetization and exchange stiffness due to the
antiferromagnetic coupling between impurity and host atoms.
In contrast, elements in the end of the 4d or 5d series keep the
magnetization and exchange stiffness rather similar to undoped
Py. More specifically, doping with the 5d elements Os, Ir, and
Pt are found to be excellent candidates for influencing the
magnetodynamical properties of Py.

Recently, there has been an increasing attention to finding
metallic materials with small intrinsic damping, for instance
half metallic Heusler materials and FeCo alloys [32,49].
Controlling and varying the magnetodynamical properties in
these systems through doping or by other means, like defects,
are very relevant and left for a future study.
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