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S = 1
2 triangular-lattice antiferromagnets Ba3CoSb2O9 and CsCuCl3: Role of spin-orbit coupling,

crystalline electric field effect, and Dzyaloshinskii-Moriya interaction
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We have performed the detailed investigations of the magnetization of the S = 1
2 triangular-lattice

antiferromagnets Ba3CoSb2O9 and CsCuCl3 with a 120◦ spin structure in the ab plane. In Ba3CoSb2O9, the
magnetic susceptibility (χ ) exhibits a broad maximum above the Néel temperature (TN) as is expected in
the low-dimensional antiferromagnet (AFM). In CsCuCl3, χ exhibits a continuous increase down to TN as if
it is the three-dimensional AFM. This is induced by the strong ferromagnetic (FM) interaction along the c

axis. The magnetic phase diagrams are also very different. Although the transition field from the umbrella
to the 2-1-coplanar phase (Hu-c) for H ‖ c is almost independent of temperature in Ba3CoSb2O9, it shows a
considerable decrease with increasing temperature in CsCuCl3. The temperature independent Hu-c in Ba3CoSb2O9

originates from the magnetic anisotropy from the van Vleck contribution, which does not depend so much on
the temperature. The temperature dependent Hu-c in CsCuCl3 originates from the magnetic anisotropy from
the Dzyaloshinskii-Moriya (DM) interaction, which decreases with increasing temperature. For H ‖ ab, the
clear transition from the Y-coplanar to the up-up-down (uud) phase was observed in Ba3CoSb2O9 but not in
CsCuCl3. While the reentrant behavior of TN originating from the thermal and quantum spin fluctuations is
observed in both compounds, it is pronounced in Ba3CoSb2O9 but small in CsCuCl3. These differences originate
from the existence or nonexistence of the DM interaction. The DM interaction in CsCuCl3 suppresses those
fluctuations in the ab plane, leading to the less pronounced reentrant behavior of TN and the broad crossover in
place of the phase transition. We analyzed the anisotropic magnetization of Ba3CoSb2O9 in the paramagnetic
region by the mean field calculation. The spin-orbit (SO) coupling, the uniaxial crystalline electric field, and the
isotropic exchange interaction were taken into account. We could estimate the anisotropy ratio of the exchange
interaction J/Jz = 1.19 and g⊥/g‖ = 1.13 with g⊥ = 4.45 and g‖ = 3.95 in the ground state. We emphasized
that although the isotropic exchange interaction was used, the above anisotropies at low temperatures are induced
simultaneously through the SO coupling and the uniaxial crystalline electric field and they are closely associated
with each other.

DOI: 10.1103/PhysRevB.94.214408

I. INTRODUCTION

Elucidation of the ground state of frustrated quantum
magnets is a key issue in condensed matter physics [1,2].
When the spin is S = 1

2 , the various types of exotic ground
state could be realized due to the strong quantum frustration.
One is the quantum spin-liquid ground state. Another is
the magnetic order in the triangular-lattice antiferromagnet
(TLA) with a 120◦ spin structure [3–8]. The classical ground
state of the TLA is infinitely degenerate in magnetic field,
where even very small perturbations can play a crucial role
in exotic magnetic ordering. The theoretical studies have been
performed to elucidate how the degeneracy is lifted by the
thermal and quantum spin fluctuations. The up-up-down (uud)
ground state providing a Ms/3 plateau (Ms is the saturation
magnetization) is well known as a typical exotic ground state
dominated by such fluctuation effects. However, only few
compounds showing the uud ground state are known because
of the difficulty in designing such compounds from a synthetic
point of view.

CsCuCl3, Cs2CuBr4, and Ba3CoSb2O9 are known as the
S = 1

2 triangular-lattice compounds accompanied with the
quantum phase transition.

Cs2CuBr4 has an orthothorhombic crystal structure with a
space group Pnma. Although the triangular lattice is formed
in the bc plane, it is irregular. Furthermore, there exist
the Dzyaloshinskii-Moriya (DM) interactions [9,10]. Thus,
although the uud phase was discovered, the analysis is very
difficult and the microscopic mechanism has not yet been
clarified [11].

CsCuCl3 is the first compound in which the appearance
of the quantum phase transition was confirmed [12–14]. The
crystal structure of CsCuCl3 at high temperatures is hexagonal
with a space group P 63/mmc and the CuCl6 octahedra form
the chains along the c axis by sharing faces. Below 423 K, the
crystal structure is changed to that with a space group P 6122
or P 6522 [15–17]. This structural phase transition is induced
by the Jahn-Teller effect. In the low-temperature phase, Cu
chains along the c axis form the helices along the c axis with a
six periodicity. However, the regular triangular lattice in the ab

plane is maintained and a 120◦ spin structure is realized below
TN = 10.7 K [17,18]. The magnetic properties have been stud-
ied extensively [12,13,17–22]. The exchange interaction along
the c axis (J c

ex) is strongly ferromagnetic (FM). It is estimated
as large as ∼28 K. These one-dimensional chains form the
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regular triangular lattice in the ab plane and are coupled with
the AFM interaction with J ab

ex ∼ −5 K. The chirality of the Cu
chains allows the DM interaction with D vector pointing the
chain. Its strength is estimated to be D ∼ 5 K. Below TN, this
compound exhibits a helical magnetic order along the c axis
with a long period. This magnetic structure originates from
the competition between the FM and the DM interactions.
The resultant spin configuration is helical with a periodicity
of 11.8c along the c axis and the spins between the nearest
planes are rotated by 5.1◦ [18]. In the magnetization curve for
H ‖ c, a discontinuous jump was discovered at 12.5 T [12,13].
Nikuni and Shiba demonstrated that this unexpected small
magnetization jump for H ‖ c originated from the quantum
phase transition from the umbrella to the 2-1-coplanar phase.
There, the thermal and quantum spin fluctuations play an
essential role [14]. The magnetic properties for H ‖ ab were
also investigated in details. The magnetization exhibits a broad
plateau between 10 and 14 T [13]. The detailed investigations
by the neutron diffraction also have been performed [23,24].
However, the microscopic origin of the broad plateau has not
yet been clarified [25,26]. Recently, this compound attracted
attention from the standpoint of the chirality of the crystal
structure [27,28].

Recently discovered Ba3CoSb2O9 has a hexagonal crystal
structure with a space group P 63/mmc [29]. This is the same
as that in the high-temperature phase in CsCuCl3. Since the
discovery of the Ms/3 plateau in the magnetization curve [30],
this compound has been studied extensively because this
compound was considered as the ideal S = 1

2 Heisenberg
TLA and the comparison with the theoretical analysis was
possible [30–37]. In the ab plane, the regular triangular lattice
is formed and a 120◦ spin structure is realized below TN =
3.8 K [29]. For H ‖ ab, the transition from the Y-coplanar
to the uud phase appears at 9.5 T and the transition from
the uud to the 2-1-coplanar phase at 15 T. For H ‖ c, the
transition from the umbrella to the 2-1-coplanar magnetic
phase takes place at 12.5 T [32]. The ground state of Co2+

ion in the octahedral environment could be reduced to the
effective spin Seff = 1

2 system due to the spin-orbit coupling
with a uniaxial crystalline electric field. This compound has
a regular triangular lattice and the distance between the
nearest ab plane is as large as 7.2 Å and the planes are
separated by the nonmagnetic Sb2O9 double octahedral and
Ba2+ ions. Thereby, the antiferromagnetic (AFM) interplane
coupling, i.e., the AFM interaction along the c axis is as
weak as −0.5 K. On the other hand, the intraplane AFM
interaction is strong and is estimated to be −18 K. Thus,
the quasi-two-dimensional magnetic system is realized. A
broad maximum of the magnetic susceptibility little above
TN is a sign of a low-dimensional magnetic system. The
magnetic phase diagrams were studied in details by specific
heat, magnetization, and ultrasonic measurements [31,33]. For
H ‖ ab, TN increases up to 5.3 K at 13 T and decreases
above this field. Thus, a pronounced reentrant behavior of
TN is observed in the uud phase. At H = 22 T for H ‖ ab,
another type of the phase transition was discovered [32]. This
transition has attracted much attention and the theoretical
studies have been performed extensively [35,36]. The magnon
dispersion was also studied by the inelastic neutron scattering
and was analyzed theoretically [37]. The thermal conductivity

κ was investigated to clarify the dynamic nature of the
spin fluctuation and it was found that κ shows the largest
suppression at ∼13 T, which is the middle in the uud

phase [34].
In this paper, we performed the detailed studied of the

magnetic properties of CsCuCl3 and Ba3CoSb2O9 to clarify
the effect of the orbital momentum on the anisotropy of the
ground state of TLA. The reason why we compare these two
compounds is that the contributions of the orbital degrees of
freedom are quite different. In the ground state of CsCuCl3,
the orbital momentum is almost quenched and a small relived
orbital momentum through the excited states contributes to the
DM interaction. The DM interaction works as the magnetic
anisotropy to fix the spins in the ab plane. In the ground state
of Ba3CoSb2O9, the contribution of the orbital momentum
through the van Vleck term is not small. At the early stage,
Ba3CoSb2O9 was considered as the ideal S = 1

2 Heisenberg
TLA. However, the recent theoretical analysis suggests the
existence of the considerable magnitude of anisotropy in the
exchange interaction [35–37]. The anisotropy of the exchange
interaction might originate from the orbital degrees of freedom
in Co2+ ion. Then, the orbital degrees of freedom should be
taken into account seriously in the analysis of the magnetic
properties of the Co compounds. In this paper, we performed
the mean field calculation for Ba3CoSb2O9, focused on the
magnetic properties in the paramagnetic region at the high
temperatures and high magnetic fields to clarify the effect of
the orbital degrees of freedom on the ground state. In such a
paramagnetic region, the effect of the thermal and quantum
spin fluctuations is negligible. Since the orbital momentum
couples with the lattice, the anisotropic property of the g factor
and the exchange interaction are expected to be affected by
pressure. Then, the present studies of the two compounds with
different contribution of the orbital momentum could be the
guide to the study of the pressure effect on the thermal and
quantum spin frustrations in the TLA.

II. EXPERIMENT

Single crystals of Ba3CoSb2O9 were grown by the floating-
zone method [34]. Single crystals of CsCuCl3 were grown
from a slightly acidified solution containing CsCl and CuCl2 ·
2H2O by evaporation of solvent [18]. The magnetization was
measured using a Quantum Design MPMS-5S magnetometer
up to 5 T and the extraction method up to 14.8 T. A good
quality of the present sample is verified by a sharp specific-heat
peak at TN. A peak height of the specific heat C/T at H = 0
is 6.3 J/K2/mol and a peak at TN is very sharp. A sharp
discontinuous jump is seen in the M-H curve at H = 12.5 T
for H ‖ c, which will be shown in Fig. 3. These results
indicate a good quality of the single crystal Ba3CoSb2O9

used in this paper. The quality of CsCuCl3 single crystal is
also good judging from a sharp discontinuous jump of M-H
curve for H ‖ c, which will be shown in Fig. 8. We measured
the magnetization of both samples by rotating the magnetic
field in the ac plane and the sample orientation in magnetic
field was found to be good. The magnetic susceptibility up
to 300 K was measured with increasing temperature. In the
other cases, it was measured with decreasing temperature. The
samples were cooled in zero field, in principle. We could not
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observe a hysteresis at the first-order phase transition within
an experimental accuracy.

III. EXPERIMENTAL RESULTS

A. Ba3CoSb2O9

1. Magnetization at low magnetic fields

The temperature (T ) dependencies of χab and χc of
Ba3CoSb2O9 are shown in Figs. 1(a) and 1(b). Here, χab and
χc are the magnetic susceptibilities for H ‖ ab and H ‖ c,
respectively. A large anisotropy is observed in a wide range of
temperature. Both χab and χc exhibit a Curie-Weiss behavior at
high temperatures as seen in Fig. 1(a). The paramagnetic Curie
temperature (θp) is −60 and −90 K for H ‖ ab and H ‖ c,
respectively. χab and χc deviate from the Curie-Weiss behavior
below ∼200 K and exhibit a broad maximum at Tmax ∼ 7 K.
Tmax could be very rough estimation of the AFM interaction
in the ab plane. In the paramagnetic region, a large anisotropy
exists in the magnetic susceptibility. χab > χc; χab/χc = 1.19
and 1.12 at 7 and 300 K, respectively. Such a large magnetic
anisotropy continues to exist also below TN. Both χab and χc

measured at low magnetic field exhibit the small anomalies
at TN = 3.8 K. In a low magnetic field region below TN, the
Y-coplanar and the umbrella phases are realized for H ‖ ab

and H ‖ c, respectively, as was reported previously [31–33].
A decrease of χ below TN is larger for H ‖ ab than for
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FIG. 1. (a) Temperature dependence of the magnetic susceptibil-
ity of Ba3CoSb2O9 for H ‖ ab and H ‖ c measured at H = 0.5 T.
The inset exhibits the temperature dependence of the inverse magnetic
susceptibility. The dotted lines are drawn to estimate the paramagnetic
Curie temperature (θp). (b) Magnetic susceptibilities in an expanded
scale below 15 K.

H ‖ c. In the umbrella phase, the three spins are canted to
H ‖ c, χc follows the similar T dependence to χ⊥ expected
in a usual antiferromagnet. For H ‖ ab, χ below TN includes
both components of χ⊥ and χ‖. Thus, a larger decrease is
expected in χab than in χc below TN. A small continuous
decrease through TN in both χab and χc might originate from
the two-dimensional spin fluctuation.

χab exhibits a broad maximum at Tmax ∼ 7 K. This
maximum becomes less pronounced with increasing magnetic
field. It is because the magnitude of χab increases rapidly with
increasing magnetic field and the maximum disappears at ∼5 T
as is seen in Fig. 2(a). The results are, in principle, the same as
those reported previously [31]. This H dependence of χab-T
curve means the pronounced concave H dependence of the
Mab-H curve in a temperature region up to ∼7 K. Here, Mab

is the magnetization for H ‖ ab. The concave H dependence
of the Mab-T curve above TN originates from the existence of
the uud phase at higher magnetic fields between 4 and 5.3 K as
will be shown in Fig. 5(a). In the uud phase below 13 T, Mab

exhibits an increase below TN, which will be shown in Fig. 4(a).
This suggests that a pronounced concave H dependence of
the Mab-H curve in the paramagnetic region below ∼6 K
originates from the short-range order (SRO) effect. This is sup-
ported by a large tail of specific heat (C) above TN in the uud

phase [31]. Thus, the thermal and quantum fluctuations exist
as the SRO effect in this temperature region above TN. Around
TN, χab exhibits the two anomalies, i.e., a dip and a peak.
Although its separation is very small at low magnetic fields, it
increases with increasing magnetic field, as is seen in Fig. 2(b).

In contrast to the case of H ‖ ab, a maximum of χc at
Tmax ∼ 7 K remains even at 5 T since the H dependence of
the χc-T curve is small below 7 K. As is shown in Fig. 2(c),
this indicates that although the M-H curve shows a slightly
concave H dependence, it is small and Mc shows a roughly
H -linear increase in this temperature region. In contrast to a
large tail of C above TN in the uud phase for H ‖ ab, it is

6

4

2

0

H
 (

T
)

765432
T (K)

(b)

H // ab

Y-coplanar

38x10
-3

37

36

35

34

χ 
(e

m
u 

/ m
ol

)

H // ab
 H = 5 T
        4 T
        3 T
        2 T
        1 T
        0.5 T

(a)

6

4

2

0

H
 (

T
)

765432
T (K)

umbrella

H // c

(d)

32x10
-3

31

30

29

χ 
(e

m
u 

/ m
ol

)

H // c

(c)

 H = 5 T
        4 T
        3 T
        2 T
        1 T
        0.5 T

FIG. 2. Temperature dependence of the magnetic susceptibility
of Ba3CoSb2O9 for (a) H ‖ ab and (c) H ‖ c at various magnetic
fields up to 5 T. The arrows in (a) indicate the transition temperature.
Magnetic phase diagrams for (b) H ‖ ab and (d) H ‖ c obtained from
the magnetic susceptibility data.
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much smaller for H ‖ c [31]. This is due to the small SRO
effect above TN in the umbrella phase. Thus, the effect of the
thermal and spin fluctuations above TN is different between the
uud and the umbrella phases. Around at TN, a dip and peak
are observed in low magnetic field up to 2 T. However, both
are not recognized above 4 T as is seen in Fig. 2(d).

2. Magnetization at high magnetic fields

The M-H curves of Ba3CoSb2O9 at T = 1.5 K for H ‖ ab

and H ‖ c are shown in Fig. 3. The results are similar to the
previous one [32]. The anomaly of Mc at Hu-c is much sharper
in the present result than in the previous one [32]. Mab shows
a pronounced concave H dependence up to HY -uud ∼ 9.5 T
and above HY -uud , a slope of Mab/H is small. Here, Hu-c

and HY -uud are the transition field from the umbrella to
the 2-1-coplanar phase and from the Y-coplanar to the uud

phase, respectively. The Ms/3 plateau in the uud phase has a
small finite slope of Mab/H , originating from the van Vleck
contribution. The characteristic M-H curves were reproduced
by the theoretical investigations [35,36]. On the other hand,
Mc exhibits nearly H -linear increase up to Hu-c = 12 T. This
is consistent with a small increase of χc with increasing
magnetic field at low temperatures as is seen in Fig. 2(c).
The H -linear M-H curve is expected in the umbrella phase
because the spin-canting magnetization process is realized. At
Hu-c, a discontinuous jump of M(�M) is seen, which was not
observed in the previous paper [32]. Above Hu-c, a concave H

dependence is observed. These characteristic H dependencies
of Mc were reproduced theoretically [36]. We note that there
exists a rather large magnetic anisotropy of Mab > Mc in the
AFM ordered phase.

Figure 4(a) represents the T dependence of Mab above
5 T. A broad maximum of Mab at Tmax ∼ 7 K disappears
above 6 T and the T dependence of Mab is changed to a
monotonous increase with decreasing temperature. Between 6
and 8 T, Mab exhibits an increase below TN and after showing a
peak at TY -uud , it decreases with decreasing temperature. Here,
TY -uud is the transition temperature from the Y-coplanar to the
uud phase. TY -uud shifts to lower temperature with increasing
magnetic field. On the other hand, TN increases with increasing
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FIG. 3. Magnetization curves of Ba3CoSb2O9 at T = 1.5 K for
H ‖ ab and H ‖ c.
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FIG. 4. Temperature dependence of the magnetization of
Ba3CoSb2O9 for (a) H ‖ ab and (c) H ‖ c at various magnetic fields
up to 14.8 T. Magnetization curves of Ba3CoSb2O9 for (b) H ‖ ab

and (d) H ‖ c at various temperatures.

magnetic field up to 13 T. After showing a maximum value of
5.3 K at ∼13 T, TN decreases with increasing magnetic field
above this field. Thus, the magnetic phase diagram exhibits the
reentrant behavior of TN in the uud phase. The M-H curve for
H ‖ ab exhibits a plateau with a small finite slope of Mab/H in
the uud phase at 1.5 K. With increasing temperature, the slope
is enhanced rapidly and a kink at HY -uud is rapidly smeared out.
As is shown in Fig. 4(b), the M-H curves below TN coincide
with each other at 13.2 T. This corresponds to the almost
temperature-independent M-T curve at 13 T in Fig. 4(a).
Above 14 T, Mab decreases below TN. This is consistent with
the decrease of TN with increasing magnetic field.

For H ‖ c, although the anomaly at TN is difficult to
recognize below 6 T, a kink is observed at TN above 7 T
as is seen in Fig. 4(c). This kink is changed to a peak above
9 T and is clearly seen up to 12 T. In this field region, TN

decreases slightly with increasing magnetic field. At 12 T,
another anomaly, i.e., a discontinuous increase �Mc appears
below ∼3 K. This originates from the transition from the
umbrella to the 2-1-coplanar phase. At 13 T, Mc exhibits a
small increase below TN. Mc is nearly constant below TN

at 14 T and decreases below TN at 14.8 T. The M-H curve
shows a jump �M at Hu-c = 12 T as is seen in Fig. 4(d) and
it is rapidly smeared out with increasing temperature above
T ∼ 2 K. Above Hu-c, Mc exhibits a concave H dependence.

The magnetic phase diagrams of Ba3CoSb2O9 for H ‖ ab

and H ‖ c are shown in Figs. 5(a) and 5(b), respectively.
The reentrant behavior of TN is observed in the uud phase.
Along a black dashed line in Fig. 5(a), the quantum spin and
thermal fluctuations might work most effectively, judging from
the highest TN. In the S = 1

2 Heisenberg TLA, the magnetic
structure in magnetic field has the infinite degeneracies within
a classical theory, but these degeneracies are lifted by the
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FIG. 5. (a) Magnetic phase diagram of Ba3CoSb2O9 for H ‖ ab.
Green line indicates the transition field from uud to coplanar state,
which is cited from Ref. [36]. Along a black dashed line, the thermal
and quantum spin fluctuation works most effectively, where TN is the
highest. (b) Magnetic phase diagram for H ‖ c. In the hatched area,
TN increases with increasing magnetic field, which might be due to
the larger effect of the thermal and quantum spin fluctuation than the
Zeeman effect.

quantum spin fluctuation and also by the thermal fluctuation.
At finite temperatures, the infinitely degenerate configurations
in magnetic field are lifted mainly by the thermal fluctuation,
i.e., the entropy effect [6,7]. The collinear structure is most
favorably stabilized, next the coplanar one, and finally the
noncoplanar one. TN in the uud phase increases with increasing
magnetic field up to H = 13 T, i.e., dTN/dH > 0. This
indicates that the magnetic entropy in the uud phase is larger
than that in the paramagnetic phase. When TN is the highest,
the energy gain by the entropy effect is expected to be the
largest. Above H = 13 T, the Zeeman energy gain overcomes
the entropy effect and TN is reduced. The slightly reentrant
behavior of the magnetic phase diagram was observed also in
CsCuCl3. There, the importance of the thermal fluctuation
was emphasized [22]. We note that the reentrant behavior
of TN in the uud phase was obtained by the Monte Calro
simulation [6]. Just above TN at 13 T, the magnitude of the
induced moment is ∼Ms/3 in all the Co2+ ion site. This is
shown schematically by the three small arrows in Fig. 5(a).
With decreasing temperature, two of them increase up to Ms

and one of them decreases and is reduced to −Ms. Above
13 T, for example, at 14 T, the moment of each Co2+ ion just
above TN is larger than Ms/3 but at T = 0 K, the average
moment of the three sublattices is ∼Ms/3. Thus, Mab exhibits
a peak at TN. Below 13 T, for example, at 11 T, the moment of
each Co2+ ion just above TN is smaller than Ms/3. However,
at T = 0 K, the average moment of the three sublattices is
∼Ms/3. Thus, Mab exhibits an increase below TN. Above
the green line, a coplanar phase different from the 2-1-one
is known to be realized [35,36]. Here, we briefly comment the
minimum of κ at ∼13 T [34]. The thermal current is carried
by phonon, magnon, or both. In any case, the minimum of κ

means the shortest mean-free path of phonon or magnon at
this magnetic field. There, the collision of phonon or magnon
with the thermal and quantum spin fluctuations should play
the important role.

Finally, we comment the slightly different magnetic phase
diagram for H ‖ ab between the present result and those
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FIG. 6. (a) Temperature dependence of the magnetic susceptibil-
ity of CsCuCl3 for H ‖ b∗ and H ‖ c. The inset shows the temperature
dependence of the inverse magnetic susceptibility. The dotted lines in
the inset are drawn to estimate the paramagnetic Curie temperature.
(b) Magnetic susceptibilities in an expanded scale below TN.

reported previously [31,33]. The difference is seen in the
phase boundary around the tricritical point. It is ∼3 T in the
present result and ∼6 T in those reported previously [31,33].
We should note that the present data are almost the same as the
previous ones [31,33]. A peak temperature of χab is also the
same in both results. In the previous papers, a peak temperature
was used to construct the magnetic phase diagram. On the other
hand, we took the higher-temperature anomaly above the lower
TN as the transition temperature. This is shown by the arrows
in Fig. 2(a). Thus, the magnetic phase diagram for H ‖ ab

around the tricritical point is slightly different between the
present result and previous ones. The position of the tricritical
point is important to understand the nature of the thermal and
quantum spin fluctuations in the TLA and should be clarified
in the future.

For H ‖ c, the H dependence of TN for H ‖ c is much
smaller than that for H ‖ ab. In the hatched area, the thermal
and quantum spin fluctuations are active, which will be
discussed later. The T dependence of Hu-c is very small. This
contrasts to the large T dependence of Hu-c in CsCuCl3, which
will be shown later.

B. CsCuCl3

1. Magnetization at low magnetic fields

Figure 6(a) represents the T dependence of χ of CsCuCl3
for H ‖ b∗ and H ‖ c and Fig. 6(b) those in the expanded
scale below 30 K. Here, b∗ is located in the ab plane and is
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FIG. 7. Temperature dependence of the magnetic susceptibility
of CsCuCl3 for (a) H ‖ b∗ and (c) H ‖ c at various magnetic fields
up to 5 T. The origin of the vertical axis is shifted in each χ -T curve.
Magnetic phase diagrams for (b) H ‖ b∗ and (d) H ‖ c obtained by
the temperature dependence of the magnetic susceptibility.

perpendicular to the ac plane. The inset of Fig. 6(a) represents
the T dependence of χ−1. While χ of the single crystal
was reported before [17,20], the detailed behaviors around
TN were not studied. We note that although χc exhibits a
decrease below TN as in a usual antiferromagnet, χb∗ exhibits
a pronounced increase below TN and a broad maximum at
slightly below TN. The continuous increase of χ of CsCuCl3
with decreasing temperature in the paramagnetic region is
very different from that of the typical two-dimensional AFM
compound accompanied with a broad maximum above TN.
Furthermore, a positive θp is as large as ∼20 K. This is
different from a large negative θp in Ba3CoSb2O9. This unusual
T dependence of χ should originate from the strong FM
interaction along the c axis, which dominates the magnetic
properties in the paramagnetic region. χ−1 exhibits a deviation
from the Curie-Weiss behavior below ∼100 K. This might
originate from the two-dimensional spin fluctuation. The
anisotropy of χ in the paramagnetic region exists also in
CsCuCl3. However, χb∗/χc = 1.07 at T = 20 K is much
smaller than 1.19 of Ba3CoSb2O9 at the same temperature.
On the other hand, χb∗/χc below TN is as large as 1.13. This
is associated with the enhancement of χb∗ below TN, which is
observed only for H ‖ b∗. On the other hand, in Ba3CoSb2O9,
both χab and χc show the similar T dependence below TN and
the magnitude of the anisotropy of χ is independent of the
temperature below and above TN.

χb∗ exhibits a large enhancement below TN and a broad
maximum at Tmax ∼ 9 K as seen in Fig. 7(a). With increasing
magnetic field, the enhancement of χb∗ below TN increases
and Tmax shifts to lower temperature. TN increases slightly
with increasing magnetic field up to 5 T. Tmax decreases from
∼9 K at H = 0 T down to ∼8.5 K at 5 T as is seen in Fig. 7(b).

For H ‖ c, TN decreases slightly with increasing magnetic
field, as is seen in Fig. 7(d). χc shows a sharp peak at TN

at low magnetic fields. However, a sharpness of a peak is
suppressed with increasing magnetic field. At 5 T, χc exhibits
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FIG. 8. Magnetization curves of CsCuCl3 for H ‖ b∗ and H ‖ c

at T = 1.5 K.

only a rounded peak at TN. This might originate from the fact
that 5 T is close to the transition field of Hu-c ∼ 6 T. Namely,
the effect of the thermal and quantum spin fluctuations in the
2-1-coplanar phase might appear in this field region.

2. Magnetization at high magnetic fields

Figure 8 exhibits the M-H curves of CsCuCl3 at 1.5 K for
H ‖ b∗ and H ‖ c. The results are nearly the same as those
reported previously [13]. Mc exhibits nearly H -linear increase
up to Hu-c = 12.5 T and a small discontinuous jump �M

at this field. The H -linear M-H curve up to Hu-c originates
from the spin canting magnetization process in the umbrella
phase. Mb∗ also shows nearly H -linear increase up to ∼10 T
and after showing a shoulder at ∼10 T, Mb∗ increases with
a concave H dependence above ∼11 T. A large magnetic
anisotropy of Mb∗ > Mc exists up to 12.5 T. However, it is
small at high magnetic fields. This is different from the large
magnetic anisotropy in Ba3CoSb2O9 up to 14.8 T as is seen in
Fig. 3.

Figure 9(a) represents the T dependence of Mb∗ . Mb∗

exhibits an increase below TN in magnetic field up to 8 T
and a broad maximum at Tmax little below TN. Tmax shifts
to lower temperature with increasing magnetic field. Above
9 T, Mb∗ exhibits a peak at TN. As is shown in Fig. 9(b), the
M-H curve for H ‖ b∗ exhibits nearly H -linear increase up
to ∼10 T. Around this field, a shoulder is observed. This is
very different from the pronounced concave H dependence of
Mab up to HY -uud in Ba3CoSb2O9. A broad plateau between
10 and 14 T is smeared out with increasing temperature. The
magnetic field of a shoulder shifts to lower magnetic field with
increasing temperature.

In contrast, Mc shows a peak at TN at low magnetic field.
TN is reduced slightly with increasing magnetic field up to
6 T. Between 6 and 9 T, a peak at TN disappears and in place,
Mc slightly increases below TN with decreasing temperature.
Here, TN increases slightly with increasing magnetic field.
This might originate from the enhancement of the thermal
and quantum spin fluctuations, which will be discussed later.
Above 10 T, a peak appears again at TN and TN decreases with
increasing magnetic field. Above 6 T, another phase transition
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FIG. 9. Temperature dependence of the magnetization of
CsCuCl3 for (a) H ‖ b∗ and (c) H ‖ c at various magnetic fields
up to 14.8 T. Magnetization curves of CsCuCl3 for (b) H ‖ b∗ and
(d) H ‖ c at various temperatures. The origin of the vertical axis is
shifted in each M-H curve.

appears at Tu-c below TN. Tu-c is the transition temperature from
the umbrella to the 2-1-coplanar phase. At Tu-c, a sharp jump
�M is observed and Tu-c decreases rapidly with increasing
magnetic field. As is shown in Fig. 9(d), the M-H curve
exhibits a jump �M at Hu-c.

Figures 10(a) and 10(b) represent the magnetic phase
diagrams of CsCuCl3 for H ‖ b∗ and H ‖ c, respectively.
The present results are the same as those reported previ-
ously [13,28] except the existence of IC4 phase for H ‖ b∗.
For H ‖ b∗, the low field and plateau region were called as
IC1 and IC3 phases, respectively. TN slightly increases with

1050
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FIG. 10. (a) Magnetic phase diagram of CsCuCl3 for H ‖ b∗.
Red and blue circles are plotted from the temperature dependence of
magnetization and green squares are from magnetic field dependence
of magnetization. See the text in details. (b) Magnetic phase diagram
for H ‖ c. In the hatched area, TN increases with increasing magnetic
field, which might be due to the larger effect of the thermal and
quantum spin fluctuation than the Zeeman effect.

increasing magnetic field up to ∼8 T and decreases above
∼9 T. Tmax below TN decreases with increasing magnetic
field as is shown by blue open circles and coincides with
the IC1-IC3 boundary at the lowest temperature. On the other
hand, although the magnetic field of a shoulder decreases with
increasing temperature, it is a finite value of ∼6 T at TN. Here,
we call the region between IC1 and IC3 phase below TN as
IC4 phase as is shown in Fig. 10(a).

On the other hand, for H ‖ c, the first-order phase transition
accompanied with a jump �M exists between the umbrella and
the 2-1-coplanar phases as is shown in Fig. 10(b). Although
TN in the umbrella phase decreases with increasing magnetic
field, TN in the 2-1-coplanar phase increases slightly between
6 and 8 T. This might originate from the enhancement of
the thermal and quantum spin fluctuations with increasing
magnetic field. Hu-c exhibits a large-T dependence in contrast
to the T -independent one in Ba3CoSb2O9.

IV. DISCUSSION

A. Analysis of the anisotropy of the magnetization of
Ba3CoSb2O9 by the mean field calculation

The Co2+ ion in Ba3CoSb2O9 is dominated by the
crystalline electric field, mainly cubic but with a small
trigonal component and also the spin-orbit (SO) coupling.
The magnetic properties of Co2+ ion in such circumstance
were previously studied in details [38–40]. The total orbital
and spin angular momenta are L = 3 and S = 3

2 , respectively.
The ground state in a cubic crystalline electric field is a triplet
4
T1. The degeneracy of the 12 states in 4

T1 is lifted by the SO
coupling and trigonal crystalline electric field.

In order to obtain the information on the anisotropy
of the g factor and exchange interaction in Ba3CoSb2O9,
we analyzed the anisotropy of the magnetization at high
temperatures and high magnetic fields by the mean field
calculation for the three-sublattice model. The Hamiltonian
consists of the SO coupling, uniaxial crystalline electric field,
Zeeman and exchange interactions [38–40]. Here, we note
that the exchange interaction used in the present analysis is
isotropic. However, anisotropy of the g factor and the exchange
interaction appears in the ground state through the orbital
moment of Co2+ ion:

H = HSO + Hcrys + HZeeman + Hex, (1)

HSO = −3

2
λ

′
l · S, (2)

Hcrys = −δ

(
l2
z − 2

3

)
, (3)

HZeeman =
(

−3

2
kl + 2S

)
μB · H, (4)

Hex = −Jex

∑
ij

Si · Sj . (5)

Here, λ
′ = kλ. λ and δ are the strength of the SO coupling

and the uniaxial crystalline electric field, respectively. k is the
parameter reflecting the magnitude of the admixture between
3d electron of Co2+ ion and p electron in ligands. k is less than
1 and is typically ∼0.9 [39]. It is known that λ = −180 cm−1 ∼
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−250 K for Co2+ ion [39]. In the case where there exists only
the SO coupling, the energy levels of the 12 states are −890.7 K
(2), −356.3 K (4), and 534.4 K (6). The number inside the
parentheses indicates the degeneracy of the states. Since the
first excited states are located 534 K above the ground states,
the magnetic properties at low temperatures are dominated by
the ground state.

First, we discuss the δ dependencies of the anisotropy of the
g factor and the exchange interaction, etc. Here, we follow the
formulations by Lines [39]. The ground-state wave functions
by the SO coupling are

�
(0)
+ = c1

∣∣ − 1, 3
2

〉 + c2

∣∣0, 1
2

〉 + c3

∣∣1, − 1
2

〉
, (6a)

�
(0)
− = c1

∣∣1, − 3
2

〉 + c2

∣∣0, − 1
2

〉 + c3

∣∣ − 1, 1
2

〉
. (6b)

Here, when δ = 0, c1 = 1√
2
, c2 = − 1√

3
, c3 = 1√

6
.

The effective exchange interaction in the ground state is
expressed by using c1, c2, and c3 in the ground state as follows:

H(g)
ex = −Jex

∑
ij

{
q2

(
Sx

i Sx
j + S

y

i S
y

j

) + p2Sz
i S

z
j

}
, (7)

p = 3c2
1 + c2

2 − c2
3, (8)

q = 2
(√

3c1c3 + c2
2

)
. (9)

The c1c3 and c2
2 terms in Eq. (9) originate from the off-diagonal

matrix elements of S+ or S− between | ∓ 1, ± 3
2 〉 ↔ | ∓ 1, ±

1
2 〉 and |0, 1

2 〉 ↔ |0, − 1
2 〉. The anisotropy of the exchange

interaction in the ground state is defined as

J

Jz

= q2

p2
. (10)

In the above effective Hamiltonian (7), the anisotropy of
the exchange interaction originates from the wave function of
the ground state induced by the SO coupling and the uniaxial
crystalline electric field. Here, we note that the definition of p

is a factor of 2 different from that by Lines [39].
The g factor consists of the two contributions, i.e., the

spin angular momentum (p, q) and the orbital one (pl , ql) as
follows:

g‖ = 2
(
3c2

1 + c2
2 − c2

3

) + 3k
(
c2

1 − c2
3

) ≡ 2p + pl, (11)

g⊥ = 4
(√

3c1c3 + c2
2

) − 3
√

2kc2c3 ≡ 2q + ql. (12)

The −3
√

2kc2c3 term in Eq. (12) originates from the off-
diagonal matrix element of l+ or l− between |0, ± 1

2 〉 ↔ | ∓
1, ± 1

2 〉. The anisotropy of the g factor is expressed by using
p, q, pl , and ql as follows:

g⊥
g‖

= 2q + ql

2p + pl

. (13)

Here, g‖ and g⊥ are the g factors for H ‖ z and H ‖ x,
respectively.

Figures 11(a)–11(d) exhibit the calculated results of the
δ dependencies of |ci |, p, q, pl and ql , g‖ and g⊥, and the
anisotropy ratios of the g factor and the exchange interaction,
respectively, by assuming λ = −250 K and Jex = 0 K. |ci |,
p, q do not depend on the magnitude of k but pl , ql , g‖, and
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FIG. 11. δ/λ
′
dependencies of (a) |ci | (i = 1, 2, 3), (b) p, q, pl , ql ,

(c) g‖ and g⊥ for k = 1, and (d) anisotropy ratios of J/Jz and g⊥/g‖.
Dashed lines in (b), (c), and (d) indicate the results for k = 0.9. See
the text in details.

g⊥ depend on it because k is included in their formulations.
The solid and dashed lines in Figs. 11(b)–11(d) indicate the
results for k = 1 and 0.9, respectively. For δ = 0, c1 = 1/

√
2,

c2 = −1/
√

3, and c3 = 1/
√

6 and in this case, there exists no
magnetic anisotropy. However, when a finite magnitude of δ/λ

′

is introduced, the anisotropy is induced both in the g factor
and the exchange interaction. When δ/λ

′
> 0, the easy-plane

magnetic anisotropy is enhanced with increasing δ/λ
′
. When

δ/λ
′ → ∞, �

(0)
± → |0, ± 1

2 〉, (p,q,pl,ql) → (1,2,0,0), and
(g‖,g⊥) → (2,4) where the contribution of the orbital angular
momentum disappears. When δ/λ

′
< 0, the uniaxial magnetic

anisotropy along the z axis is enhanced with increasing |δ/λ′ |.
When δ/λ

′ → −∞, �
(0)
± → | ∓ 1, ± 3

2 〉, (p,q,pl,ql) →
(3,0,3,0), and (g‖,g⊥) → (9,0) where there exist the maxi-
mum contributions from both lz and Sz. There, the Ising spin
system is realized because there exists no spin-flip transition
between �

(0)
+ and �

(0)
− . A broad maximum of ql exists at

δ/λ
′ ∼ 3. This originates from the orbital contribution of ql =

−3
√

2kc2c3, i.e., the product of |c2| which increases rapidly at
δ/λ

′ ∼ 2 and |c3| which shows a broad maximum at δ/λ
′ ∼ 1.

This broad maximum of ql is the origin of the broad maximum
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FIG. 12. Three-sublattice model with 120◦ spin structure in the
xy plane at H = 0. The antiferromagnetic exchange interaction works
between A-B, B-C, and C-A. The magnetic field is applied along the
z axis (left) and the x axis (right). z and x axes correspond to c and a

axes in Ba3CoSb2O9, respectively.

of g⊥ at δ/λ
′ ∼ 2. The anisotropy of g⊥ and g‖ is reflected in the

anisotropic magnetic susceptibility in the paramagnetic region.
Figure 11(d) shows the δ/λ

′
dependence of the anisotropic ratio

of J/Jz and g⊥/g‖. When δ/λ
′
> 0, J/Jz is larger than g⊥/g‖

and when δ/λ
′
< 0, J/Jz is smaller than g⊥/g‖. This is because

J/Jz is proportional to (q/p)2 but g⊥/g‖ is proportional
to (2q + ql)/(2p + pl). This ratio is slightly different from
(2q/2p) by the angular momentum contributions of pl and
ql . We comment the validity of the δ/λ

′
dependence of the

physical quantities in Figs. 11(a)–11(d). For δ/λ
′
< 0, the

results are correct because the excited states are always well
separated from the ground state. However, in the case of
δ/λ

′
> 0, especially for δ/λ

′
> 10, those are not necessarily

correct because the energy separation between the ground state
and the excited one decreases rapidly with increasing δ/λ

′
.

Now, we analyze the anisotropic magnetization of
Ba3CoSb2O9 by the mean field calculation for the three-
sublattice model. The Hamiltonian consists of the three
sublattices of A, B, and C and it is assumed that their
spins form a 120◦ spin structure in the xy plane initially
as shown in Fig. 12. The x and z axes correspond to the
a and c axes in Ba3CoSb2O9, respectively. The exchange
interaction works between A-B, B-C, and C-A sublattices.
The magnetic field is applied along the z and x axes. The
basis of the Hamiltonian consists of 12 wave functions,
i.e., |lz,Sz〉 = | ∓ 1, ± 3

2 〉,|0, ± 1
2 〉, | ± 1, ∓ 1

2 〉,|0, ± 3
2 〉,| ±

1, ± 1
2 〉,| ± 1, ± 3

2 〉. We took Jex = −18 K and k and δ are
parameters to reproduce the experimental results at high
temperatures and at high magnetic fields.

In the mean field calculation for the three-sublattice model,
the Hamiltonian for the A sublattice is written as follows:

H =
∑
i∈A

hA
i +

∑
i∈B

hB
i +

∑
i∈C

hC
i , (14)

hA
i = −3

2
λ

′
l i · Si−δ

((
lzi

)2 − 2

3

)
+

(
−3

2
kl i + 2Si

)
μB · H

− Jex
{
(〈Sx〉B + 〈Sx〉C)Sx

i + (〈Sy〉B + 〈Sy〉C)Sy

i

+ (〈Sz〉B + 〈Sz〉C)Sz
i

}
. (15)

The Hamiltonians for the B and C sublattices are written in
the same manner. Here, we note that although there exists the
anisotropic exchange interaction in the effective Hamiltonian
by Lines [39], the isotropic exchange interaction is used in the
present calculation. This is because in the Lines’s model [39],

6
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1086420
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FIG. 13. Relationship between g‖ and g⊥. Solid line is that for
k = 1. Red circle and black plus symbol indicate g⊥ and g‖ for
δ = 0.5λ

′
and 0 when k = 0.95.

the anisotropic exchange interaction is introduced by the wave
function of the ground state well separated from the excited
states. On the other hand, in the present numerical calculation,
all the excited states are taken into account. Then, the T and H

dependencies of the anisotropy of both anisotropic exchange
interaction and g factor are induced.

First, the mean field calculation was performed to reproduce
the anisotropic magnetic susceptibility of Ba3CoSb2O9 at
high temperatures and we obtain k = 0.95 and δ/λ

′ = 0.5
by assuming λ = −250 K and Jex = −18 K. The calculated
energy levels of the 12 states at H = 0 without the exchange
interaction are −893.3 K (2), −391.6 K (2), −324.6 K (2),
505.4 K (2), 530.1 K (2), and 574.0 K (2). In this case,
g‖ = 3.952 and g⊥ = 4.447 are obtained and these indicate
a large easy-plane magnetic anisotropy. Figure 13 shows the
relationship between g⊥ and g‖. The solid line is that for k = 1
and the red circle indicates that for δ/λ

′ = 0.5 with k = 0.95
and black plus symbol that for δ = 0. When k = 0.95 and
δ = 0, the g factor is isotropic and g‖ = g⊥ = 4.28 ≡ g. Since
the ratio of g‖(k = 0.95)/g is 0.923 and g⊥(k = 0.95)/g is
1.04, the effect of δ is larger in g‖ than in g⊥.

The calculated χ and χ−1, shown in Figs. 14(a) and 14(b),
respectively, reproduce well the experimental results above
100 K. The magnetic anisotropy in the paramagnetic region is
large and the Curie-Weiss behavior is seen down to 150 K.
These are consistent with the experimental results in the
same temperature region. The large deviations from the
calculated results below ∼100 K are due to the SRO effect
originating from the large two-dimensional spin fluctuation in
Ba3CoSb2O9. The calculated TN is 14 K, which is much higher
than TN = 3.8 K of Ba3CoSb2O9, which originates from the
suppression of the AFM interaction by the two-dimensional
AFM spin fluctuation.

Next, we discuss the M-H curves within a framework of the
mean field calculation. Figure 15(a) shows the calculated M-H
curves for H ‖ x and H ‖ z at T = 0 K by using δ = 0.5λ

′

and k = 0.95 obtained by the fitting of χ at high temperatures.
The black dotted line displays the M-H curve for H ‖ z in
the case of δ = 0. In this case, the M-H curve shows the
H -linear increase in the umbrella phase, which originates from
the spin-canting magnetization process and the saturation field
Hs = 27.7 T. The magnetic anisotropy appears when the finite
magnitude of δ is introduced. A positive δ induces the easy-
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FIG. 14. Temperature dependence of (a) magnetic susceptibility
and (b) inverse magnetic susceptibility of Ba3CoSb2O9 for H ‖ ab

and H ‖ c. Dotted lines are the calculated results for the three-
sublattice model for H ‖ x and H ‖ z by using the parameters of
δ = 0.5λ

′
, k = 0.95, and Jex = −18 K. See the text in details.

plane magnetic anisotropy, i.e., Mx > Mz, and a negative δ the
uniaxial magnetic anisotropy along the z axis, Mz > Mx .

In the present calculation for H ‖ x, there appear the Y-,
uud- and 2-1-coplanar phases. However, we should be careful
to discuss the results because the effect of the quantum spin
fluctuation which is well known to play an essential role
in the ordered phase in the TLA compounds. For example,
there exist the following problems. Although the results are
self-consistent solutions, in the 2-1-coplanar phase, the three
spins are located not in the xy plane but in the zx planes.
In this case, there exists a large energy loss of the magnetic
anisotropy. Furthermore, when the applied H is only slightly
deviated from the x direction in the xy plane, the uud phase
disappears and in the 2-1-coplanar phase, the three spins
are located in the xy plane. The smooth continuous phase
transition from the Y-coplanar to the uud phase and the first
one from the uud to the 2-1-coplanar one appear also for δ = 0.
It is well known that the uud phase appears only taking the
quantum spin fluctuation into account. For H ‖ z, there exists
only the umbrella phase. This is not correct. It is well known
that the first-order phase transition from the umbrella to the
2-1-coplanar phase exists when the quantum spin fluctuation
is taken into account. Thus, the results by the mean field
calculation are not reliable to discuss the AFM ordered phases.
However, at high magnetic field above Hs in the paramagnetic
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FIG. 15. (a) Magnetization curves for H ‖ x and H ‖ z in the
three-sublattice model with δ = 0.5λ

′
and Jex = −18 K at T = 0 K

calculated by the mean field approximation. The black dotted line
indicates the calculated one with δ = 0 for H ‖ z. (b) Temperature
dependence of the inverse magnetic susceptibilities for H ‖ x and
H ‖ z in the three-sublattice model with δ = 0.5λ

′
. For H ‖ z, the

results with Jex = −18 K, −9 K, and 0 and for H ‖ z, that with Jex =
0 K are shown. Black solid line indicates the result with δ = 0 for
H ‖ x. The black dotted lines are drawn to estimate the paramagnetic
Curie temperature θp. See the text for details.

region, the important information on the anisotropy could be
obtained.

Hs for H ‖ x is smaller than that for H ‖ z, reflecting
the magnetic anisotropy. The anisotropy ratio of Mx/Mz at
H = 30 T is 1.12, which is almost the same value as that of
χx/χz at high temperatures. The anisotropy of the high-field
magnetization at low temperature and the anisotropic magnetic
susceptibility at high temperatures are directly related to each
other because both regions are paramagnetic. It is noted that
the calculated Hs is not far from the experimental value of
∼32 T [32]. The slightly small value of the calculated Hs

could be enhanced by introducing the small magnitude of the
AFM interaction within the same sublattice.

A large van Vleck contribution exists above Hs in the
M-H curve. The slope of M-H curve above Hs is ∼1.25 ×
10−2μB/T/Co2+ which is slightly smaller than the previously
reported value of 1.59 × 10−2 for H ‖ ab and 1.90 × 10−2 for
H ‖ c [32].
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Figure 15(b) represents the T dependence of χ−1 for H ‖
x and H ‖ z in the case of δ = 0.5λ

′
. In this figure, those

with different magnitudes of the exchange interaction are also
shown for H ‖ z; only the results with Jex = 0 are shown for
H ‖ x. The black solid line shows that with δ = 0 and Jex =
0. By introducing the finite magnitude of δ, the anisotropy
appears. Then, even in the case of Jex = 0, the finite magnitude
of θp appears and is estimated to be ∼ − 20 K and ∼ − 50 K for
H ‖ x and H ‖ z, respectively. Of course, these never originate
from the exchange interaction. The real θp is estimated from
the negative shift from that of Jex = 0 as is seen for the blue
lines with negative values of Jex in Fig. 15(b).

When δ = 0.5λ
′

and k = 0.95, the following values of p,
q, pl , ql , g‖, and g⊥ are obtained by using the obtained values
of c1, c2, and c3:

p = 1.5705, q = 1.7133, pl = 0.8107, ql = 1.0199,

g‖ = 2p + pl = 3.9517, g⊥ = 2q + ql = 4.4465.

We note that the anisotropy of g factor is larger than the
previously reported ones [32]. From the above values, the
anisotropy ratios of the exchange interaction and g factor are
estimated as follows:

J/Jz = q2/p2 = 1.190, g⊥/g‖ = 1.125.

The anisotropic ratio of J/Jz = 1.19 is comparable to those
used in the theoretical analyses. It is close to 1.25 by Yamamoto
et al. [35] and 1.123 by Ma et al. [37]. We believe that the
present results are reliable because they are obtained from
the magnetization at high temperatures and high fields, which
are not affected by the quantum spin fluctuation. Thus, we
could obtain the important information on the anisotropy of the
exchange interaction and the g factor. In this paper, we used
the simple Hamiltonian (1), where we assume the isotropic
Heisenberg exchange interaction as the simplest case. Then,
the physical meaning of the calculated results is clearly under-
stood. Although it is possible to introduce the anisotropy in the
exchange interaction phenomenologically in the Hamiltonian
(5), it will be difficult to understand the physical meaning of the
calculated results. In the theoretical analysis, it is important to
estimate the anisotropy of the exchange interaction correctly.
In the previous studies, the anisotropy of the g factor and
that of the exchange interaction were estimated independently.
However, in the present calculation, we showed that although
the isotropic exchange interaction is used, the anisotropy
of the g factor and the exchange interaction are introduced
in the ground state obtained by the SO interaction and the
uniaxial crystalline electric field. Furthermore, the anisotropy
of the g factor and that of the exchange interaction are not
independent because both are calculated by the same values
of c1, c2, and c3 in the ground state. The orbital degrees of
freedom is introduced simultaneously both in the g factor and
the exchange interaction in the ground state through the van
Vleck term from the excited states. The van Vleck contribution
is not small as shown in the present calculation. Thus, in
the compound including the Co2+ ion, the orbital degrees of
freedom should be considered seriously.
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FIG. 16. Schematic magnetic phase diagrams of Ba3CoSb2O9

(red line) and CsCuCl3 (green line) for H ‖ c. See the text in details.

B. Effect of the interplane interaction on the AFM order

Both Ba3CoSb2O9 and CsCuCl3 are the TLA with S = 1
2 .

However, there exist several large differences. Figure 16 repre-
sents the schematic magnetic phase diagrams of Ba3CoSb2O9

and CsCuCl3 for H ‖ c. In the former, the magnetic phase
diagram in high-field region is not known at present, while that
up to 16 T was reported [33]. The saturation field Hs is known
to be 32.8 T [32]. Here, we assume that only the 2-1-coplanar
phase exists between 12.5 and 32.8 T. The magnetic phase
diagram of CsCuCl3 was reported by Nojiri et al. [13].
Although Hs is nearly the same, TN is very different between
these two compounds. TN is 3.8 and 10.7 K in Ba3CoSb2O9

and CsCuCl3, respectively. The former is only one third of
the latter. Another difference is the T dependence of χ in
the paramagnetic region as was mentioned in Sec. III. In the
Ba3CoSb2O9, a broad maximum exists above TN, originating
from the two-dimensional spin fluctuation. On the other hand,
in CsCuCl3, such a maximum does not exist and χ in the
paramagnetic region exhibits a Curie-Weiss behavior in a wide
range of temperature.

As was mentioned in the Introduction, there exists a
large difference in the nature of the exchange interaction.
It originates from the difference of the crystal structures. In
Ba3CoSb2O9, the triangular-lattice plane is separated by the
nonmagnetic atoms in the intervening plane and the distance
between the magnetic planes is large. Due to this crystal struc-
ture, the quasi-two-dimensional triangular lattice is realized.
This low dimensionality enhances the spin fluctuation in the
paramagnetic region and suppresses TN down to 3.8 K. In
CsCuCl3, the Cu-Cl-Cu bond angle close to 90◦ along the
c axis and the short distance between the triangular-lattice
magnetic planes make the exchange interaction along the c axis
ferromagnetic and strong. This FM interaction J c

ex is as large as
28 K. On the other hand, the in-plane AFM interaction is small,
J ab

ex ∼ −5 K. Due to the strong FM interaction along the c axis,
although the AFM order takes a 120◦ spin structure in the ab

plane, the three-dimensional nature is contained. Of course,
this is not the usual three-dimensional magnetic order but the
TLA order which is constructed by the strong one-dimensional
FM chains. The DM interaction works between the spins
located in the nearest-neighbor planes along the c axis. This
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also enhances the three-dimensional magnetic order. We note
that in CsCuCl3, TN = 10.7 K is higher than the in-plane AFM
exchange interaction of ∼5 K. This high TN could be assisted
by the strong one-dimensional FM chain along the c axis.
Namely, the strongly coupled one-dimensional FM chain could
construct more easily the three-dimensional AFM order.

C. Thermal and quantum spin fluctuations and DM interaction

Here, we discuss the different nature of the magnetic
anisotropy and thermal and quantum spin fluctuations between
Ba3CoSb2O9 and CsCuCl3.

1. H ‖ c

As is shown in Fig. 16, there exists a large difference in
the T dependence of Hu-c for H ‖ c. In Ba3CoSb2O9, Hu-c

is almost independent of temperature. On the other hand,
it strongly depends on the temperature in CsCuCl3. In the
umbrella phase, TN is suppressed by magnetic field as in a usual
antiferromagnet. This is because in the umbrella phase, the
thermal and quantum spin fluctuations are small. On the other
hand, TN in the coplanar phase is enhanced with increasing
magnetic field, although it is small. In Ba3CoSb2O9, the
suppression of TN is observed in a narrow field region between
12 and 13 T. In CsCuCl3, in a rather wide field region between
6 and 10 T as shown by the hatched area in Figs. 5(b) and 10(b),
respectively. In this magnetic field region, Mc exhibits an
increase with decreasing temperature below TN. dTN/dH > 0
and dMc/dT < 0 below TN are induced by the enhancement
of the thermal and quantum spin fluctuations by magnetic
field. Namely, the thermal and quantum spin fluctuations are
enhanced in the hatched area in these figures. The hatched
area is very different between the two compounds. It is narrow
and almost parallel to Hu-c in Ba3CoSb2O9, but it is wide
and expanded with increasing temperature in CsCuCl3. This
difference might originate from the different magnitude of the
easy-plane magnetic anisotropy.

The temperature independent Hu-c in Ba3CoSb2O9 means
that the difference of the magnetic entropy below and above
Hu-c is very small. This indicates that the thermal and quantum
spin fluctuations in the coplanar phase in Ba3CoSb2O9 are
small as in the umbrella phase. In Ba3CoSb2O9, the easy-
plane magnetic anisotropy is rather strong in the paramagnetic
region and remains also in the AFM ordered state. It is because
a large contribution of the orbital momentum of Co2+ ion
should be associated with the origin of the easy-plane magnetic
anisotropy below and above TN as is discussed in the previous
Sec. III A. In such a situation, the spin canting from the ab

plane for H ‖ c loses a large energy gain by the easy-plane
magnetic anisotropy. This suppresses the thermal and quantum
spin fluctuations for H ‖ c. On the other hand, for H ‖ ab, the
thermal and quantum spin fluctuations are active because the
energy gain by the easy-plane magnetic anisotropy is always
obtained.

In CsCuCl3, Hu-c decreases considerably with increasing
temperature. This large slope of Hu-c/T means that the
magnetic entropy in the coplanar phase is larger than that
in the umbrella one. This indicates that the thermal and
quantum spin fluctuations in the coplanar phase are stronger
than those in the umbrella phase. The large-T dependence

of Hu-c in CsCuCl3 indicates that the easy-plane magnetic
anisotropy energy gain is reduced with increasing temperature.
Namely, in the AFM state, the higher the temperature, the
smaller the easy-plane magnetic anisotropy energy gain. Then,
the energy loss of the magnetic anisotropy induced by the
spin canting from the ab plane is reduced with increasing
temperature. This occurs in the hatched area in Fig. 10(b). As
the origin of the T -dependent easy-plane magnetic anisotropy,
the DM interaction is considered. Its strength depends on
the temperature because it is proportional to |Si × Sj |,
where Si and Sj are the spins located in the ab plane and
|Si × Sj | ∝ |S(x,y)|2 for D ‖ c. S(x,y) is the magnitude of the
spin located in the ab plane. Its magnitude is the largest at
T = 0 K and decreases with increasing temperature. Then, the
magnitude of the easy-plane magnetic anisotropy is reduced
with increasing temperature. This might be the origin of the
large-T dependence of Hu-c in CsCuCl3. This situation is, in
some sense, similar to the calculated results for the model
with the uniaxial magnetic anisotropy D

∑
i(S

z
i )2 by Watari

et al. [6]. Thus, we propose that the different T dependence of
Hu-c for H ‖ c between Ba3CoSb2O9 and CsCuCl3 originates
from the different nature of the easy-plane magnetic anisotropy
and its T dependence. Namely, in Ba3CoSb2O9, the magnetic
anisotropy is dominated by the large orbital momentum of
Co2+ ion both below and above TN. In CsCuC3, it is dominated
by the DM interaction which enhances the easy-plane magnetic
anisotropy with decreasing temperature below TN.

2. H ‖ ab

For H ‖ ab, since the spins are always located in the
ab plane, there is no competition between the easy-plane
magnetic anisotropy and Zeeman interaction. Then, we only
have to consider the competition or coexistence of the thermal
and quantum spin fluctuations and Zeeman interaction. In
Ba3CoSb2O9, a pronounced enhancement of TN is observed
up to 13 T. This clearly indicates that the uud state is
stabilized by getting the thermal and quantum spin fluctuation
energy gain induced by magnetic field. On the other hand, in
CsCuCl3, the enhancement of TN with increasing magnetic
field is very small. This small enhancement of TN is due to
the spiral magnetic order along the c axis. This originates
from the DM interaction and suppresses the thermal and
quantum spin fluctuations. The reason why the clear phase
boundary does not exist in CsCuCl3 below TN is also due to the
existence of the DM interaction. As a function of temperature,
a broad maximum of χab at Tmax might correspond to TY -uud in
Ba3CoSb2O9 and as a function of H , a broad shoulder at H ∼
9.5 T corresponds to HY -uud . Thus, for H ‖ b∗ in CsCuCl3,
the competition between the thermal and quantum spin fluc-
tuations and DM interaction in magnetic field makes the clear
transition difficult and in place, a broad crossover appears.

V. CONCLUSION

We have investigated the magnetization of the S = 1
2 TLA,

Ba3CoSb2O9, and CsCuCl3 in details. These two compounds
exhibit very different magnetic properties, although the ther-
mal and quantum spin fluctuations play the important role in
both compounds.
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Ba3CoSb2O9 was considered as the ideal TLA. On the other
hand, the AFM state in CsCuCl3 is considerably modified by
the strong FM and DM interactions along the c axis. Although
Hs ∼ 30 T is nearly the same in both compounds, TN of the
former is much smaller than that of the latter. Although χ in the
former exhibits a broad maximum above TN, that in the latter
exhibits a continuous increase down to TN. These differences
originate from the difference of the crystal structure giving
rise to very different nature of the exchange interaction. In
the former, the interplane AFM interaction is very weak, but
in the latter there exist the strong FM and DM interactions
along the c axis. The strong FM interaction along the c axis
dominates the magnetic properties in the paramagnetic region
and also makes the three-dimensional AFM order easier.

The magnetic phase diagrams are very different between
Ba3CoSb2O9 and CsCuCl3. For H ‖ c, Hu-c is almost
independent of the temperature up to TN in Ba3CoSb2O9. On
the other hand, in CsCuCl3, it exhibits a considerable decrease
with increasing temperature. In Ba3CoSb2O9, a large easy-
plane magnetic anisotropy exists both below and above ∼TN,
which is dominated by the large orbital momentum of the Co2+

ion. This suppresses the thermal and quantum spin fluctuations
along the c axis. This makes the difference of the magnetic
entropy below and above Hu-c small and makes the roughly
constant Hu-c in this compound. In CsCuCl3, although there
exists an easy-plane magnetic anisotropy as in Ba3CoSb2O9,
it is small and its main origin is the DM interaction whose
magnitude decreases with increasing temperature. This
suppresses Hu-c with increasing temperature. For H ‖ ab, in
both compounds, the spins are located in the ab plane. In such
a case, the thermal and quantum spin fluctuations are active
in the ab plane. In Ba3CoSb2O9, the enhancement of TN by
the thermal and quantum spin fluctuation is clearly seen in the
uud phase. Namely, the pronounced reentrant behavior of TN

is observed in the uud phase. On the other hand, in CsCuCl3,
the reentrant behavior of TN in the IC3 phase is much less
pronounced. This is due to the existence of the DM interaction,
which competes with the Zeeman interaction and suppresses

the thermal and quantum spin fluctuations. Furthermore, due
to the DM interaction, the clear phase transition does not
appear for H ‖ b∗ but in place, only broad crossover is
observed.

We analyzed the magnetization of Ba3CoSb2O9 at high
temperatures and high magnetic fields to obtain the infor-
mation on the anisotropy of the exchange interaction and g

factor by the mean field calculation for the three-sublattice
model. We determined the uniaxial crystalline electric field
so as to fit the anisotropic magnetic susceptibility at high
temperatures. Thereby, the anisotropies of the exchange
interaction and g factor were obtained simultaneously. The
obtained anisotropies are J/Jz = 1.19 and g⊥/g‖ = 1.13 with
g‖ = 3.95 and g⊥ = 4.45. The former is consistent with
the recent theoretical studies [35,37]. By using the obtained
parameters, we calculated the M-H curve. The high magnetic
field M-H curve is consistent with the present experimental
result. It is emphasized that the anisotropies of both g

factor and exchange interaction originate from the orbital
momentum of Co2+ ion through the SO coupling and the
uniaxial crystalline electric field and they should be determined
simultaneously.
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