
PHYSICAL REVIEW B 94, 214308 (2016)

Nonequilibrium quantum transport coefficients and transient dynamics of full
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Nonequilibrium transport properties of quantum systems have recently become experimentally accessible in a
number of platforms in so-called full-counting experiments that measure transient and steady-state nonequilibrium
transport dynamics. We show that the effect of the measurement back-action can be exploited to establish general
relationships between transport coefficients in the transient regime which take the form of fluctuation-dissipation
theorems in the steady state. This result becomes most conspicuous in the transient dynamics of open quantum
systems under strong-coupling to non-Markovian environments in nonequilibrium settings. In order to explore this
regime, a new simulation method based in a hierarchy of equations of motion has been developed. We instantiate
our proposal with the study of energetic conductance between two baths connected via a few level system.
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I. INTRODUCTION

The experimental ability to probe the statistical properties
of quantum transport in mesoscopic systems, such as electrons
in nanojunctions [1] or cold atoms [2], has provided insights
into the nonequilibrium behavior of quantum systems. Theo-
retical tools for their description have been developed in the
form of so-called full counting statistics (FCS) methods [3,4],
which constitute a generalization of the theory of moment and
cumulant generating functions and is conceptually based on a
two-point measurement scheme [4], so that state projection
of the bath after the first measurement is automatically
incorporated. The effects of this state collapse quickly fade
in Markovian baths, allowing for the derivation of steady-state
fluctuation theorems that relate several transport coefficients
governing the dynamics. In the linear response regime, these
are none other than the celebrated fluctuation-dissipation
theorems, such as the Kubo formula, or other properties such
as the Onsager-Casimir relations. Far from equilibrium, these
theorems can be generalized for nonlinear coefficients [5].

Femtosecond laser pulses and other ultrafast control tech-
niques provide access to the statistical response of quantum
systems in the transient regime. The Jarzynski equality [6],
the Crooks theorem [7,8], and related relationships confirm
that steady-state fluctuation-dissipation theorems need not
automatically carry over to the transient regime. An inter-
pretation of these effects as the consequence of measurement
back-action in the bath supports the intuition that the failure of
steady-state relations must be particularly evident in situations
where the system-environment coupling is very large or the
environmental evolution is so slow that non-Markovian effects
become relevant. In this situation, only an explicit computation
of the full dynamics is so far known to provide the correct
insight into transport properties.

The behavior of non-Markovian, strong-coupling transport
settings is captured in the Levitov-Lesovik formula [9] in
the case of noninteracting particles. FCS for non-Markovian
settings was studied from a general perspective in [10,11],
whereas specific treatments include harmonic chains [12],
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spin-boson or fermionic models in the perturbative regime
[13–20], and general bosonic or fermionic systems for the
first and/or second moments of the dynamics [21–25]. Bath
statistics of open quantum systems has provided access to
universal oscillations in high order cumulants [26] and the
Kondo signature in the spin-boson model [27] and fermionic
models [28]. FCS measurement strategies are attracting
renewed attention [29] together with optimized cumulant
evaluation methods [30]. Additionally, discussion of classical
and quantum initial correlation effects in shot noise has been
addressed in [31] and thermodynamic consistency of FCS
simulation methods has been studied in [32].

Here we provide an alternative approach, which consists
of quantitatively computing the deviation of the Saito-Utsumi
coefficient relations [5] when applied in transient situations.
We show that this deviation is directly associated with a
physical picture where no part of the system-environment
compound is initially subject to measurement, and is expressed
in terms of a natural symmetry that affects the cumulant gen-
erating function. In order to investigate these effects, we have
developed a simulation method that incorporates FCS into the
formalism of hierarchy of equations of motion (HEOM) [33],
an established method for the simulation of general, multilevel
open quantum systems (OQS) that is nonperturbative in
the coupling strength and which faithfully represents non-
Markovian effects of the environment. With this method we
gain access to cumulants of any desired order of environmental
energetic and particle observables and arbitrary time depen-
dence of the Hamiltonian may be treated. As a first example,
we consider an open quantum system that couples to a bosonic
heat bath, although this procedure is equally valid for fermionic
baths. This method generalizes previous attempts that involved
first moments [34,35] and to our knowledge it is the first time
that high order cumulants are simulated with this formalism.

We first introduce the FCS formalism and discuss a
generalization thereof that allows for the isolation of the
transient measurement back-action. A relationship between
the back-action effect and transport coefficients is presented
that holds both close to equilibrium and far from it. We
further introduce the simulation method developed for the
investigation of these transient effects, which is based on
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FIG. 1. (1) Depiction of measurement schemes associated with
Eq. (1) (1.a) and Eq. (4) (1.b), respectively. In both measurement
schemes a separable initial state of the form π (A) is assumed. (2)
Steady-state energetic conductance as a function of the coupling
strength λ and for different spectral density cutoff frequencies ωc.
(2.a) Lines show results computed via numerical derivation for
(TR − TL)/TR = 0.01. Dots are computed following Eq. (10) with no
temperature bias. Other parameters are TL = TR = 10ω0, J = 0. All
values have been numerically converged by varying the hierarchical
depth of the simulation. (2.b) Closeup of the weak coupling limit,
where red solid lines reproduce the analytical prediction of the weak
coupling theory.

the HEOM formalism. We finally present simulation results
on a bosonic transport setting and show that the energetic
conductance can be reliably accessed through investigation of
measurement back-action effects.

II. STEADY-STATE COEFFICIENT RELATIONS

The formalism for the analysis of full counting experi-
ments constitutes a well-established theoretical framework [4]
involving a two point measurement prescription: the value of
a specific observable of interest Ô is measured at an initial
time t = 0, where a result o(0) is obtained, and at a final time
t > 0, with an outcome o(t) [see Fig. 1(1)]. Repetition of the
experiment generates statistics of the measurement difference
�o(t) = o(t) − o(0), which can be treated as a stochastic
variable. Although more general cases can be considered, let us
regard for simplicity a single measured operator and an initial

state of the total system π (A) = ρ ⊗ exp(−AÔ)
Tr {exp(−AÔ)} , where ρ is

an arbitrary state of the subsystem where the measurement has
no effect and A is a thermodynamic constraint fixing the initial
expected value of Ô. An instance of such a setting is a system
in contact with several baths, where Ô is the Hamiltonian of
one of the baths, A is its initial inverse temperature, and ρ is
an arbitrary state of the system and all nonmeasured baths.

Under these conditions, the cumulant generating function
(CGF) takes the form [4]

G(χ,A,t) = ln〈eiχÔ(t)e−iχÔ(0)〉A, (1)

with 〈•〉A ≡ Tr {•π (A)}. Its Taylor-expansion coefficients in
the counting field χ correspond to the cumulants of the
measurement difference �o(t). In the steady-state limit, the
cumulant generating function for the currents F(χ,A) ≡
limτ→∞ 1

τ
G(χ,A,τ ) often fulfills the symmetry

F(χ,A) = F(−χ + iA,A), (2)

also known as fluctuation theorem, so that transport coeffi-
cients Ln

m(A) ≡ ∂m+n

∂(iχ)n∂Am F(χ,A)|
χ=0

obey the Saito-Utsumi

relations [5]

Ln
m(A) =

m∑
j=0

(
m

j

)
(−1)n+jL

n+j

m−j (A). (3)

Relations such as the Kubo formula and the Onsager-Casimir
relations can be recast as specific cases of this equation, in
particular when several counting fields χk are involved and
the associated thermodynamic constraints are close to an
equilibrium state Ak � A. Nevertheless, Eq. (3) is generally
not valid in the transient regime.

III. RELATIONS FOR TRANSIENT TRANSPORT
COEFFICIENTS

With the aim of quantifying the error of the fluctuation
theorem Eq. (2) in the transient dynamics, one may define the
difference between two CGFs:

GS(χ,A,t) ≡ ln〈eiχÔ(t)〉A − ln〈eiχÔ(0)〉A, (4)

each associated with a single (S) measurement of the operator
Ô given an initial state of the form π (A) [see Fig. 1(1)]. Its
χ derivatives provide the difference of the cumulants of the
measurement outcome between two times t and t = 0. Note
the subtle difference in the statistical interpretation of functions
Eqs. (1) and (4). As shown in Appendix A, both functions are
related by the expression

GS(χ,A,t) = G(χ,A − iχ,t). (5)

Although this equation relates two physically distinct sit-
uations (two different measurement schemes), it bears a
resemblance with Eq. (2) that can be exploited to obtain
relations similar to Eq. (3) for the objects J(S)

n
m(A,t) ≡

∂m+n

∂(iχ)n∂Am G(S)(χ,A,t)|
χ=0

,

JS
n
m(A,t) =

n∑
j=0

(
n

j

)
(−1)j J n−j

m+j (A,t). (6)

Note that Ln
m(A) = limτ→∞ 1

τ
J n

m(A,τ ), and this can be used
to recover Eq. (3) in the steady state.

This is a powerful relationship that establishes analogies of
fluctuation-dissipation theorems on the transient dynamics by
quantifying the deviation from the steady-state expressions in
terms of the values JS

n
m(A,t), which correspond to measurable

quantities in a well defined physical setting. The amplitude
of these deviations grows with the strength of the coupling
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between the measured partition and the rest of the system,
and also with the duration of the transient dynamics, which is
associated with non-Markovian effects in the language of open
quantum systems. We explore below these effects at hand of
specific examples.

IV. APPLICATIONS

In order to instantiate the relations in Eq. (6), let us consider
an open quantum system of Hamiltonian ĤS interacting via
operators V̂ν with one or several baths, so that the total
Hamiltonian has the form

Ĥ = ĤS +
∑

ν

V̂ν ⊗ B̂ν + ĤB, (7)

ĤB =
∑

ν

Ĥν =
∑
ν,k

ων,k â†νk âνk, (8)

where B̂ν is an arbitrary operator of bath ν and âν,k and â†ν,k

are the usual bosonic or fermionic annihilation and creation
operators for the mode k of frequency ων,k . This encompasses
a broad range of dissipative and transport settings.

The energy of one of the baths Ĥν provides relevant infor-
mation about the heat flows in the system. The thermodynamic
constraint βν associated with it is the inverse temperature of
the bath, so that Eq. (6) for m = 0 takes the form

JS
n
0(βν,t) =

n∑
j=0

(
n

j

)
(−1)j J j

n−j (βν,t), (9)

which relates the cumulants of the bath energies with high
order instantaneous energetic conductances. It has the same
form as the case n = 0 of Eq. (3) except for the deviation term
JS

n
0 and an extra minus sign for odd n.
For a two-bath setting (ν ∈ {R,L}), we define a first

order energetic transport coefficient as κR(t ; TR,TL) ≡
β2

R
∂
∂t

J 1
1 (βR,t),1 whose steady-state, equilibrium limit ener-

getic conductance κ ≡ limt→∞ limTR→TL
κR(t ; TR,TL) can be

understood in turn as a generalization of the concept of
thermal conductance for the case of strong-coupling and
non-Markovian regimes. Equation (9) for n = 2 establishes
a relationship between the first order energetic transport
coefficient and the second order cumulants of the form

κR(t ; TR,TL) = β2
R

2

∂

∂t

[
J 2

0 (βR,t) − JS
2
0(βR,t)

]
, (10)

which is analogous to the Kubo formula except for the
deviation term JS

2
0. As in the case of the fluctuation-dissipation

theorem, it puts forward the possibility to derive a conductance
value from the difference of the fluctuations as obtained from a
two measurement scheme and a single measurement scheme.
This is a way to circumvent the necessity of a numerical
derivative and avoids the accumulation of numerical error
implicit in the choice of any small but finite temperature bias.

1Please note the special choice of sign, such that subsequent
numerical results remain positive.

V. NUMERICAL METHOD

In order to address the strong-coupling and non-Markovian
regimes, we developed a hierarchy of equations of motion
for the simulation of full counting statistics and high-order
moments of relevant bath observables. The technique enables
statistical analysis of any bath observable that commutes
with its free Hamiltonian term, and we provide examples
for the case of the energy of the bath ĤB. In particular,
any linear combination of the operators â†νk âνk such as the
particle number N̂ can be simulated with this approach.
Furthermore, it is flexible enough to generate both the moments
corresponding to the two-measurement picture Eq. (1) and
the single measurement picture Eq. (4), and we will use it
in both modes and apply the relationship Eq. (6) to obtain
nonequilibrium transport coefficients.

A central element in the derivation of the method is the
counting-field-resolved bath correlation function

Cjk
ν (χ,t) = (−)j+k

〈
˜̂Bj

ν

[
(−)j

χ

2

]
(t) ˜̂Bk

ν

[
(−)k

χ

2

]
(0)

〉
, (11)

where superindices j and k take two values 0 or 1 and indicate

the side an operator acts from: Â
0
ρ ≡ Âρ or Â

1
ρ ≡ ρÂ. The

tilde indicates the interaction picture with respect to Ĥν , the
dressing of an operator by the counting operator Ô is denoted
by Â[χ ](t) = eiχÔÂ(t)e−iχÔ and the average is over the initial
state of the bath. The hierarchy is based on a decomposition
of the correlation function C

jk
ν (χ,t) = ∑

r c
jk
νr (χ )φr (t) by

means of a set of functions {φr (t)} whose derivatives are well
defined within the set by d

dt
φr (t) = ∑

r ηrsφs(t) [36]. The set
size determines the growth of the simulation requirements,
traditionally making this method indicated for not too low
temperature regimes. Nevertheless, a judicious choice of the
basis can circumvent this limitation [36].

We refer the reader to Appendixes B and C for the technical
aspects of the method. It involves the propagation of so-called
auxiliary fieldsσ {n}

{m}(t), labeled by a rank-three tensor {n} and
a vector {m} of nonnegative integer entries whose elements
respectively sum up to the hierarchic level n and represent a
partition of the moment order m. The zeroth hierarchic level
contains the auxiliary field σ

{0}
{0} (t), corresponding to the system

density matrix ρ(t), and σ
{0}
{m}(t), a linear combination of which

[defined in Appendix C, Eq. (C3)] can be traced to obtain the
mth moment. The auxiliary fields satisfy the equation

d

dt
σ

{n}
{m}(t)

= −iĤ
×
S σ

{n}
{m}(t) +

∑
ν,r;k=0,1

(
ˆ̄V k

νrσ
{...,nk

νr+1,... }
{m} (t)

+
∑

s

nk
νrηrsσ

{...,nk
νr−1,...,nk

νs+1,... }
{m} (t)

+ nk
νrφr (0)V̂

k

νσ
{...,nk

νr−1,... }
{m} (t)

+
∑

q

mq
ˆ̄V k

νrqσ
{...,nk

νr+1,... }
{...,mq−1,... } (t)

)
, (12)
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where ˆ̄V k
νr ≡ ∑

j=0,1 c
jk
νr (0)V̂

j

ν , ˆ̄V k
νrq ≡ ∑

j=0,1 c
jk
νrqV̂

j

ν , and

c
jk
νrq ≡ dq

d(iχ)q c
jk
νr (χ )|

χ=0
. The structure is identical to the usual

hierarchy [33] but for the last term, which connects it to
the hierarchy associated with the previous moment, which
is compatible with results in the Markovian, weak-coupling
case [30]. A cutoff at a maximum hierarchic level nmax is
usually justified in terms of numerical convergence and is
roughly proportional to the system-bath coupling strength.

In order to demonstrate the numerical validity of Eq. (10),
let us consider a two level system with Hamiltonian ĤS =
ω0σx + Jσz, where σi with i ∈ {x,y,z} are the Pauli matrices,
coupled to two bosonic baths ν ∈ {R,L} via V̂ν = σz and
B̂ν = ∑

k γνk(âνk + â†νk), characterized by a spectral density
Jν(ω) = ∑

k γ 2
νkδ(ω − ωνk) and an inverse temperature βν .

The following results are derived for ρ(0) = σx+1
2 and the

choice of an Ohmic spectral density with exponential cutoff
J (ω) = λ

ωc
ωe− ω

ωc , where λ = ∫ ∞
0

J (ω)
ω

dω is the reorganization
energy and ωc is the scale of the cutoff.

Energetic conductance values are shown in Fig. 1(1.b).
Following the discussion presented above, two methods are

(a) (b)

FIG. 2. (a) Steady-state energetic transport coefficient
limt→∞ κR(t ; TR,TL) as a function of the temperature of the
left bath TL and for different spectral density cutoff frequencies
ωc. Other parameters are TR = 10ω0, J = ω0, λ = ω0. Lines show
results computed via numerical derivation of steady-state currents.
Dots are computed following Eq. (10). (b) Transient dynamics of the
energetic transport coefficient as a function of time and for different
reorganization energies λ. Other parameters are TR = TL = 10ω0,
J = ω0, ωc = 3ω0. Results shown in blue are computed via
numerical derivation of transient currents. Red lines are computed
following Eq. (10).

used for their computation. On the one hand, simulations under
small temperature bias (TR − TL)/TR = 0.01 are run in order
to obtain steady-state energy currents, which are related to
the energetic conductance through the definition of J 1

1 (βR,t).
On the other hand, second order moments computed in the
two-measurement and the single-measurement schemes for
equilibrium conditions (TL = TR) are further used to derive
conductance values as per Eq. (10). Results show excellent
agreement between both pictures and also approach predic-
tions from the weak coupling theory and the noninteracting
blip approximation (NIBA) [13] in their respective regimes
of validity. Whereas a linear increase of conductance with the
coupling strength λ is expected in the weak coupling limit,
a turnover is reproduced for higher coupling strengths. The
relationship Eq. (10) is valid also in the transient regime and
far from equilibrium as shown in Fig. 2. In this case, the
steady-state energetic conductance of a biased two level system
(J 
= 0) is studied in situations where TR − TL � TL. The
transient dynamics are also accurately reproduced by Eq. (10),
where the oscillating effect is introduced by the tunneling,
which acts as an effective driving.

Finally, the transient deviation of high order transport
coefficient relations Eq. (3) is shown in Fig. 3 for a range
of coupling constants λ and spectral density cutoffs ωc. It
constitutes a quantitative confirmation that the failure of
steady-state fluctuation-dissipation theorems is proportional
to the coupling strength to the bath and lasts longer for
higher degrees of non-Markovianity. Additionally, the sign
of the deviation changes for odd orders, as predicted from the
comparison of Eqs. (3) and (10).

VI. CONCLUSIONS

When considering the transient transport dynamics of
non-Markovian systems, it is possible to quantify deviations
from fluctuation-dissipation theorems and the nonlinear Saito-
Utsumi relations, which are only valid in the steady state. These
deviations have a physical interpretation and are associated
with equilibration dynamics of the same system under a
different measurement scheme. We demonstrate this relation
by developing a tool that allows for the simulation of the
full counting statistics of a broad range of bath observables
under dissipative and nonequilibrium settings, which is a
generalization of the celebrated hierarchy of equations of
motion for non-Markovian and strong-coupling settings. By
accessing high order cumulants of the bath energy, it is
possible to derive energetic conductances and higher order
derivatives thereof while, at the same time, avoiding finite bias
simulations. This approach is immediately applicable to the
study of observables such as the particle number, environments
of fermionic nature, more complex and higher dimensional
systems, and time-dependent driving.
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FIG. 3. Transient dynamics of the time derivatives of the first
five cumulants of the bath energy ĤR in the single measurement
scheme (S) for different values of the cutoff frequency ωc and the
reorganization energy λ: λ = 0.05ωc for the dotted lines, λ = 0.1ωc

for the dashed lines, and λ = 0.2ωc for the solid lines. Other parameter
values are TL = TR = 10ω0, J = 0.

APPENDIX A: RELEVANT LIMITS OF THE CUMULANT
GENERATING FUNCTION

Let us reproduce the definition of the cumulant generating
function

G(χ,A,t) ≡ ln〈eiχÔ(t)e−iχÔ(0)〉A
= ln Tr{eiχÔ(t)e−iχÔ(0)π (A)}, (A1)

with π (A) = ρ ⊗ e−AÔ

Tr {e−AÔ} a separable initial state of the total
system, where ρ is an arbitrary state of the subsystem where
the measurement has no effect and A is a thermodynamic
constraint fixing the initial expected value of Ô. Evaluating
the second variable of the cumulant generating function at
A − iχ one obtains

G(χ,A − iχ,t) = ln Tr{eiχÔ(t)π (A)} − ln
Tr{e(−A+iχ)Ô}

Tr{e−AÔ}
= ln〈eiχÔ(t)〉A − ln〈eiχÔ(0)〉A. (A2)

One may interpret this function as the difference between
two single-measurement cumulant generating functions: one
where the measurement takes place at time t and another one

where the measurement takes place at time t = 0. We denote
it by

GS(χ,A,t) ≡ ln〈eiχÔ(t)〉A − ln〈eiχÔ(0)〉A. (A3)

APPENDIX B: COUNTING-FIELD-RESOLVED
HIERARCHY OF EQUATIONS OF MOTION

As indicated in the main text [Eqs. (7) and (8)], let us
consider a general total Hamiltonian consisting of a system,
interaction, and bath parts

Ĥ = ĤS +
∑

ν

V̂ν ⊗ B̂ν + ĤB, (B1)

ĤB =
∑

ν

Ĥν =
∑
ν,k

ων,k â†νk âνk. (B2)

The index ν labels the baths, âν,k and â†ν,k are the usual
bosonic or fermionic annihilation and creation operators for
the mode k in bath ν. The goal is to derive the full counting
cumulant generating function Eq. (1) of an observable Ô of
one of the baths which commutes with its free Hamiltonian
Ĥν and with the initial state of the system and baths π (0) =
ρ(0)

⊗
ν

e−βν Ĥν

Tr {e−βν Ĥν } . For simplicity we will omit the explicit
dependence on the thermodynamic constraint in the derivation,
so that the two-measurement cumulant generating function
takes the form

G(χ,t) = ln Tr
{
e−iĤ[ χ

2 ]tπ (0)eiĤ[− χ

2 ]t
}
, (B3)

where Â[χ ](t) = eiχÔÂ(t)e−iχÔ. This problem can be formu-
lated in terms of the solution to a hierarchy of equations of
motion for the counting field resolved density matrix

ρ(χ,t) = TrB
{
e−iĤ[ χ

2 ]tπ (0)eiĤ[− χ

2 ]t
}
, (B4)

and the equation G(χ,t) = ln [Tr {ρ(χ,t)}] directly relates
both quantities.

For the sake of clarity, we will derive the equations of
motion for Eq. (B4). The case associated with Eq. (A3)
immediately follows under modification of the initial state
of the bath with the imaginary inverse temperature βν − iχ .
The matrix ρ(χ,t) satisfies the differential equation

d

dt
ρ(χ,t)=−i TrB

{
Ĥ

[
χ

2

]
π (χ,t)−π (χ,t)Ĥ

[
−χ

2

]}
,

(B5)

with π (χ,t) ≡ e−iĤ[ χ

2 ]tπ (0)eiĤ[− χ

2 ]t . The formal solution of
Eq. (B5) in the interaction picture with respect to ĤS + ĤB

(denoted by an overhead tilde) can be obtained by means
of Wick’s theorem. For simplicity, we will focus on the
derivation for the bosonic case, but all steps can be trivially
generalized for the fermionic case. Wick’s theorem simplifies
the calculation of the partial trace of the bath by reducing
products of 2n operators to n products of pairwise traces

〈T̂ ˜̂Bν(t2n) ˜̂Bν(t2n−1) · · · ˜̂Bν(t2) ˜̂Bν(t1)〉=
∑
app

∏
ij

〈T̂ ˜̂Bν(ti)
˜̂Bν(tj )〉,

(B6)
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where the sum is over all possible pairs (app) of indices up
to 2n, T̂ is the time ordering operator and the average may be
performed over any Gaussian state. Therefore, the solution of
Eq. (B5) in the interaction picture is ρ̃(χ,t) = Ũ(χ,t)ρ(0,0),
with

Ũ(χ,t) =
∏
ν

∏
jk=0,1

exp+

(∫ t

0
ds ˜̂Wjk

ν (χ,s)

)
, (B7)

where exp+ stands for the time ordered exponential and

˜̂Wjk
ν (χ,t) = −

∫ t

0
ds ˜̂Vj

ν(t)Cjk
ν (χ,t − s) ˜̂Vk

ν(s). (B8)

Here we introduce the superoperator notation Â
0
ρ ≡ Âρ and

Â
1
ρ ≡ ρÂ and the bath correlation functions

Cjk
ν (χ,t) = (−)j+k

〈
˜̂Bj

ν

[
(−)j

χ

2

]
(t) ˜̂Bk

ν

[
(−)k

χ

2

]
(0)

〉
, (B9)

where 〈A〉 = Tr {Aπ (0)}. Note that this definition should be re-

placed by 〈A〉 = Tr {Aπ (0)eiχÔ Tr {eiχÔπ (0)}−1} for Eq. (A3).
The HEOM formalism uses an approximate representation

of the correlation functions by means of linear combinations
of decaying exponential functions. The extended version gen-
eralizes the framework to more involved functional bases [36].
In our case, the coefficients of the linear combination are
functions dependent on the counting field χ , so that we
approximate C

jk
ν (χ,t) = ∑

r c
jk
νr (χ )φr (t) by means of a set

of functions {φr (t)} whose derivatives are well defined within
the set by d

dt
φr (t) = ∑

n ηrsφs(t), where η is a matrix with

complex entries. The form of c
jk
νr (χ ) is general and depends on

the specific observable of interest Ô. For instance, in the case
Ô = Hν and B̂ν = ∑

k γνk(âνk + â†νk), Cjk
ν (χ,t) = C

jk
ν (χ ± t)

and the dependence is expected to be similar to that of φr (t).
With this representation, it is possible to define the auxiliary
objects

ρ̃{n}(χ,t) = T̂
∏

ν,r;k=0,1

(∫ t

0
dsφr (t − s) ˜̂Vk

ν(s)

)nk
νr

× Ũ(χ,t)ρ(0,0), (B10)

where {n} ≡ {. . . ,nk
νr , . . . } is a rank-three tensor of nonnega-

tive integer entries which sum up to n and n is the so-called
hierarchic level. It is clear that ρ̃{0}(χ,t) = ρ̃(χ,t) and the
auxiliary fields satisfy the equation

d

dt
ρ{n}(χ,t)

= −iĤ
×
S ρ{n}(χ,t) +

∑
ν,r;k=0,1

(
¯̂Vk

νr ρ{...,nk
νr+1,... }(χ,t)

+
∑

s

nk
νrηrsρ

{...,nk
νr−1,...,nk

νs+1,... }(χ,t)

+ nk
νrφr (0)V̂

k

νρ
{...,nk

νr−1,... }(χ,t)

)
, (B11)

where we have used the notation Â
×
ρ ≡ Âρ − ρÂ and ¯̂Vk

νr ≡∑
j=0,1 c

jk
νr (χ )V̂

j

ν . This is an extension of the usual HEOM
formulation [33].

APPENDIX C: HIERARCHY OF EQUATIONS OF MOTION
FOR HIGH ORDER STATISTICAL MOMENTS

Although Eq. (B11) can be used on its own to obtain the
generating function, in the case where one is interested in
specific statistical moments, a specialized hierarchy can be
derived. Let us define the object

σ̃m(t) ≡ ∂m

∂(iχ )m
ρ̃{0}(χ,t)

∣∣∣∣
χ=0

= T̂
∂m

∂(iχ )m
Ũ(χ,t)

∣∣∣∣
χ=0

ρ(0,0), (C1)

so that the moment m of the full counting distribution may
be obtained by tracing: Tr {σ̃m(t)}. It contains correlation
functions of the form ∂q

∂(iχ)q C
jk
ν (χ,t)|

χ=0
≡ C

jk
νq (t), which

are well defined in terms of the approximate representation
as C

jk
νq (t) = ∑

r c
jk
νrqφr (t) with c

jk
νrq ≡ dq

d(iχ)q c
jk
νr (χ )|

χ=0
. In a

procedure analogous to the one followed for the obtention of
Eq. (B11), we define

σ̃
{n}
{m}(t) = T̂

∏
ν,k;j=0,1

(∫ t

0
dsφk(t − s) ˜̂Vj

ν(s)

)n
j

νk

×
∏
q

(∫ t

0
ds ˜̂Wνq(s)

)mq

Ũ(0,t)ρ(0,0), (C2)

where {m} ≡ {. . . ,mq, . . . } is a vector of nonnegative

integer entries such that
∑

q mqq = m and ˜̂Wνq(t) ≡∑
j,k=0,1 − ∫ t

0 ds ˜̂Vj
ν(t)Cjk

νq (t − s) ˜̂Vk
ν(s). This object satisfies

the equation

d

dt
σ

{n}
{m}(t)

= −iĤ
×
S σ

{n}
{m}(t) +

∑
ν,r;k=0,1

(
¯̂Vk

νr σ
{...,nk

νr+1,... }
{m} (t)

+
∑

s

nk
νrηrsσ

{...,nk
νr−1,...,nk

νs+1,... }
{m} (t)

+ nk
νrφr (0)V̂

k

νσ
{...,nk

νr−1,... }
{m} (t)

+
∑

q

mq
¯̂Vk

νrq σ
{...,nk

νr+1,... }
{...,mq−1,... } (t)

)
,

where ¯̂Vk
νrq ≡ ∑

j=0,1 c
jk
νrqV̂

j

ν . The structure is identical to
the usual hierarchy [Eq. (B11)] but for the last term, which
connects it to the next tier elements of the hierarchy associated
with the previous moment. This can be interpreted as an
additional driving that each moment exerts on the next one.
This naturally defines a cascade of hierarchies that can be
exploited for parallel simulation of several moments with
reduced overhead.

The relationship between σ̃m(t) and the set of σ̃
{n}
{m}(t) follows

σ̃m(t) =
∑
{m}

a{m}σ̃
{0}
{m}(t), (C3)
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where the sum is over all partitions {m} of m (all vectors mq

with the property
∑m

q=1 mqq = m) and

a{m} ≡
m∏

q=1

mq∏
j=1

1

j

(
m − ∑m

r=q rmr + jq

k

)

is the number of permutations associated with that partition.

Finally, cumulants recursively relate to moments by means
of the formula

〈〈An〉〉 = 〈An〉 −
n−1∑
m=1

(
n − 1
m − 1

)
〈〈Am〉〉〈An−m〉. (C4)

Furthermore factorial cumulants are obtained by

〈〈An〉〉F = 〈〈An〉〉 −
n−1∑
m=1

{
n

m

}
〈〈Am〉〉F , (C5)

where {n

m} are the Stirling numbers of the second kind.
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