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Voltage-induced dynamical quantum phase transitions in exciton condensates
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We explore nonanalytic quantum phase dynamics of dipolar exciton condensates formed in a system of
two-dimensional quantum layers subjected to voltage quenches. We map the exciton condensate physics on to
the pseudospin ferromagnet model, showing an additional oscillatory metastable phase beyond the well-known
ferromagnetic phase by utilizing a time-dependent, nonperturbative theoretical model. We explain the coherent
phase of the exciton condensate in quantum Hall bilayers, observed for currents equal to and slightly larger than
the critical current, as a stable time-dependent phase characterized by persistent flow of charged order parameter
defect in each of the individual layers with a characteristic ac Josephson frequency. As the magnitude of the
voltage quench is further increased, we find that the time-dependent current oscillations associated with the
charged order parameter defect flow decay, resulting in a transient pseudospin paramagnet phase characterized
by partially coherent charge transfer between layers, before the state relaxes to incoherent charge transfer between
the layers.
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I. INTRODUCTION

The dipolar exciton condensate (DEC) has provided dra-
matic observations of collective phenomena in a broad swath
of host systems, including cold atoms [1–4], semiconduc-
tor microcavities [5–7], and semiconductor quantum wells
[8–14]. In each of these settings, the Coulomb interaction
between spatially segregated charge carriers drives many-
body phase transition from the normal Fermi liquid phase
to that of a superfluid. Beyond the interesting correlated
physics these systems demonstrate, they continue to har-
bor tantalizing prospects for ultraefficient, electrically tun-
able information processing systems based on predictions
of elevated Kosterlitz-Thouless transition temperatures Tc

without the need for external magnetic fields to quench
the kinetic energy [15]. These prospects may be directly
traced to the realization of new Dirac material systems such
as graphene [16–18] and time-reversal-invariant topological
insulators [19–23]. In particular, recent experimental work in
monolayers of graphene separated by hexagonal boron nitride
shows signatures of correlated behavior well above cryogenic
temperatures [24].

Of the signatures indicative of the collective phenomena
associated with the pseudospin ferromagnetism model (PFM),
some of the most dramatic are those found in carrier transport.
Within the context of carrier transport, one of the most
fundamental parameters is the critical current Ic, the maximum
current that the DEC can sustain by simply reorganizing its
order parameter. The behavior of the PFM is well understood
below Ic, where the system exhibits coherent superfluid flow,

*Also at Micro and Nanotechnology Laboratory, University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

characterized by time-independent coherent current flow and
perfect Coulomb drag [25,26]. However, in the region past
the critical current, there is a clear deficiency concerning
PFM system behavior as voltage quenches resulting in current
flow greater than Ic are applied. Naturally, in this regime, the
linear response approach is not applicable, and nonperturbative
approaches are required. As a corollary, a recent study on
dynamical phase transitions in the transverse field Ising model
has shown nonanalytic behavior when considering real-time
quenches from a ferromagnet to a paramagnet [27] whose
behavior is not captured within framework of linear response
theory.

Here, we theoretically explore the behavior of a generic
PFM system beyond linear response theory. We consider spa-
tially segregated two-dimensional (2D) semiconducting layers
using a time-dependent Kadanoff-Baym (TDKB) formalism
[28,29] subjected to time-dependent voltage quenches. We are
motivated by recent experiments on DEC [8,9], in which,
surprisingly, at an interlayer voltage equal to the critical
voltage Vc, the condensate behaves in a manner consistent
with the fully coherent regime. We explain this observation as a
voltage-driven competition between the PFM and a pseudospin
paramagnetic (PPM) phase characterized by a time-dependent
coherent exciton state which recovers its coherence by period-
ically launching order parameter defects (OPDs). We define
OPDs to be zeros in the excitonic order parameter that contain
π discontinuity of the order parameter phase. This regime
could serve as an ideal setting for a direct measurement,
which should be more definitive than observations of nonzero
longitudinal resistance of condensates at finite temperatures
[10,11] or indirect influence of topological excitations on
Shapiro steps [30]. As the magnitude of the voltage quenches is
increased well beyond Vc, we find that the system can no longer
relax the superfluid flow by inducing OPDs, the interlayer
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coherence, which characterizes the PFM phase, is lost, and the
layers behave independently, as expected from experiments
[8,9]. Moreover, our analysis shows that the condensate in
the crossover regime not only will respond to microwave
frequencies [30] but shows possibilities as a voltage-tunable
electrical oscillator.

This paper is organized in the following manner. We begin
in Sec. II with an explanation of the methods and approxi-
mations that we have utilized to explore the nonequilibrium
time-dependent dynamics of the DEC as a function of bias.
In this paper, we endeavor to understand the physics of the
DEC within spatially segregated systems through the use of
the PFM [31]. Using the pseudospin language, the layer degree
of freedom, either top or bottom, is mapped onto an s = 1/2
spin in which the top-layer quasiparticles have pseudospin up
(|↑〉) and bottom-layer quasiparticles have pseudospin down
(|↓〉). In Sec. III, we present the numerical results of our
self-consistent time-dependent quantum transport calculations
of two coupled 2D layers, which are the main subject of this
paper. We show that our time-dependent method qualitatively
reproduces the well-known interlayer transport characteristics
of exciton condensates in the quantum Hall regime as the
system transitions from the coherent PFM phase to the
incoherent PPM phase [8]. Furthermore, we show the existence
of an additional oscillatory metastable phase that exists beyond
an interlayer voltage that is beyond the PFM phase and prior
to the onset of the PPM phase resulting from interlayer-
exchange-related destabilization of the steady-state transport.
We attribute the existence of this metastable state to a persistent
flow of charged OPDs in each layer with a characteristic ac
Josephson frequency. In Sec. IV, we summarize our results
and conclude.

II. METHODOLOGY

A. System and Hamiltonian

We begin in Fig. 1(a), where we schematically picture the
system of interest. We consider a system consisting of two 2D
semiconducting layers in which the top layer is assumed to
contain electrons and the bottom layer is assumed to contain
an equal population of holes. For simplicity, we assume that
the layers are free from disorder, and the system temperature
for all of our simulations is set to the zero-temperature limit
or, Tsys = 0 K. We attach contacts to the left and right ends of
the top layer (CT L and CT R) and the bottom layer (CBL and
CBR) from which we inject and extract currents. The contacts
are modeled as semi-infinite layers with the same Hamiltonian
parameters as the device region described below. Within our
system, we apply bias to the top left contact VT L and set all
of the other contact potentials to be zero, or VT R = VBL =
VBR = 0. In this bias configuration, all carriers are injected
from CT L when VT L < 0, while the injected carriers are then
extracted via the other three contacts. Similarly, all carriers
are extracted from the coupled wire system through CT L when
VT L > 0. With the system defined, we may now write the
tight-binding Hamiltonian for a single layer using a simple 2D
single subband chain as

HT,B =
∑
i,j

−(τc
†
i,j ci,j±1 + τtransc

†
i,j ci±1,j ), (1)

FIG. 1. (a) Schematic illustration of a pseudospin ferromagnet
with contacts attached to each of the edges of the system. The arrows
indicate the directions of the inter- and interlayer quasiparticle motion
in each layer. Above Ic the system proliferates charged vortices
which propagate in the same direction within each layer. (b) Plot
of the calculated time-averaged coherent tunneling current from CT L

to CBL (CBR to CT R) as a function of interlayer bias. We obtain
the experimentally expected behavior which may be associated with
the existence of three distinct pseudospin regimes: coherent (PFM),
metastable (PFM-PPM), and incoherent (PPM). The bars on the
plot illustrate the range in time-averaged currents calculated via our
model.

where lattice points i and j are the coordinates of the x and y

directions. In Eq. (1), τ is the nearest-neighbor hopping energy,
which we have set to be τ = 2τtrans = ±1 (with the plus for
the top layer and the minus for the bottom) for the calculations
presented in this work. We choose the value of |τtrans| = 0.5
so that the range of the voltage we apply during the simulation
does not exceed the top or the bottom of the transverse-mode
band. This choice allows the current flow through the device
to exceed the critical current of the condensate. We may now
generalize our single-layer Hamiltonian to the double-layer
Hamiltonian by coupling the top and bottom layers [18,32],

Hsys =
[
HT 0
0 HB

]
+

∑
i=x,y

�i ⊗ σi, (2)

where σi represents the Pauli spin matrices acting on the
layer degrees of freedom and ⊗ represents the Kronecker
product. In Eq. (2), the first term on the right-hand side
is the noninteracting contribution to the total Hamiltonian
consisting of the single-layer Hamiltonians. The second term
on the right-hand side represents the mean-field interlayer
interaction term that consists of both single-particle tunneling
and the mean-field many-body contribution resulting from the
Coulomb interactions between the layers. � represents an
effective pseudospin magnetic field and originates from the
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interactions, will be explained later more fully in this section.
As we are interested in the interacting physics between the
two layers in a qualitative sense, we use a local-density ap-
proximation in which the interaction contribution between the
layers is the on-site in-plane direction [18,32,33]. Additionally,
full quantum many-body calculations have shown that the
interlayer interaction is screened in the coupled-layer system,
and thus, the local-density approximation we utilize in this
work is reasonable [34]. As a result, each component of � in
Eq. (2) is described using a typical mean-field decomposition
as

�x = �sas + U
〈
mx

ps

〉
,

�y = U
〈
my

ps

〉
, (3)

where �sas is the single-particle tunneling amplitude between
the top and bottom layers. In Eq. (3), the terms 〈mx

ps〉 and 〈my
ps〉

represent x̂ and ŷ directional pseudospin magnetizations that
are a part of the overall pseudospin magnetization vector mps ,
which we define as [20,31,33]

mps = 1
2 Tr[ρpsσ ]. (4)

In Eq. (4), σ = (σx,σy,σz) is a vector of the Pauli spin matrices,
and ρps is the 2×2 Hermitian pseudospin density matrix, which
we define as

ρps =
[
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

]
. (5)

The interlayer exchange interactions defined in Eq. (3), 〈mx
ps〉

and 〈my
ps〉, are obtained from the pseudospin density matrix as〈

mx
ps

〉 = 1
2 (ρ↑↓ + ρ↓↑),〈

my
ps

〉 = 1
2 (−iρ↑↓ + iρ↓↑), (6)〈

mz
ps

〉 = 1
2 (ρ↑↑ − ρ↓↓),

where ρ↑↓ and ρ↓↑ are the off-diagonal contributions to the
pseudospin density matrix that arise due to the interactions
between the two layers. In Eq. (6), we justify the omission
of the exchange potential in the ẑ direction because this
contribution is small compared to the electrostatic potential
difference between layers induced by the interlayer bias
voltage quench. As a result, we may express the system
Hamiltonian in terms of pseudospin field contributions,

Hsys =
[

HT �x − i�y

�x + i�y HB

]
. (7)

The planar pseudospin angle that will play a central role in the
discussion below is defined as

φps = tan−1

[〈
m

y
ps

〉
〈
mx

ps

〉
]
. (8)

This angle corresponds physically to the phase difference
between electrons in the two layers.

With the system Hamiltonian defined, we select the param-
eters for the simulations, although the qualitative physics we
address in this paper is irrespective of the parameter choices.
In Eq. (3), we have set U = −0.8 and �sas = 10−4. The initial
populations of electrons and holes are set to result in half-filled

energy bands. Within each layer, we have 30×10 lattice
points along the transport (ŷ) and transverse (x̂) directions.
For the transverse direction, we assumed periodic boundary
conditions. Therefore, the order parameter is constant over the
transverse direction. With the methodology established, we
begin our calculations by obtaining the equilibrium density
matrix ρps self-consistently by iterating over the Hamiltonian,
via Eq. (2). Our particular choice of parameters results in a
condensate gap size of �DEC = 0.009.

B. Time evolution of pseudospin density matrix

After having self-consistently obtained the equilibrium
pseudospin density matrix, we now seek the evolution of the
system with time after a voltage quench has been applied. In
order to incorporate the time-dependent dynamics associated
with voltage quenches of the PFM, we must solve the TDKB
equations [29,35] using as an input the self-consistently
obtained equilibrium pseudospin density matrix at t = 0 as
the starting point for the time evolution. The Kadanoff-Baym
equation governs time propagation of the nonequilibrium
pseudospin density matrix as

(i∂t − Hsys)Gsys(t,t
′) = δ(t,t ′) +

∫
dt1
(t,t1)Gsys(t1,t

′).

(9)

In Eq. (9), Gsys is the Green’s function that connects nearest-
neighbor points i and j as G<

sys(t) = i〈c†j ci〉 = iρps(t) [36],
with ρ being the single-particle density matrix and 
(t,t ′)
being the self-energy term. We may significantly reduce the
complexity of the time propagation when the interactions are
local in time. In this case, the off-diagonal time terms in the
self-energy must vanish, resulting in a very simple expression
for the self-energy, 
ij (t,t ′) = δ(t − t ′)vjiG

<
sys(t,t

′), which
includes the exchange interaction vij . Within the mean-field
approximation, the interaction terms are always local in time,
which justifies our methods. In order to obtain the time
evolution of the density matrix, we solve Eq. (9) using
a standard fourth-order Runge-Kutta method. Utilizing this
result, we are capable of calculating the time evolution of the
density matrix ρps(t) at any time t > 0 after the voltage is
applied.

C. Review of pseudospin transfer torques

In this section, we briefly review the concept of pseudospin
transfer torques [18,32,33,37–39], which will serve in inter-
preting the subsequent numerical results of the next section.
In the DEC we consider here, the transport properties depend
only on the quasiparticle Hamiltonian and on the chemical
potentials within the leads. As we represent the ẑ direction of
the pseudospin orientation as the difference of the occupation
numbers between the top layer and the bottom layer, the
change in mz

ps over time is given as a sum of intra- and
interlayer currents. From the current conservation, the system
must satisfy [39]

∂tm
z
ps = −∇ · jz − 2

�
(mps × �)z, (10)
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where jz is the ẑ component of the pseudospin current
contribution within the same layer. In Eq. (10), the contribution
of jz originates from the quasiparticles injected via the various
layer contacts. The interlayer current contribution in the
second term is rewritten as a cross product of the pseudospin
density matrix mps and the interaction �. Note that the above
representation of the current equation shows that the dynamics
of the DEC behaves as a ferromagnet under the influence of
an effective field � and injected pseudospin polarized current
jz. In order to achieve steady-state transport, whereby Eq. (10)
must go to zero, the injected current from the contact twists
the angle between the pseudospin orientation and the exchange
field to satisfy

2|mps ||�| sin(φps − φ�) = 2�sasm
y
ps = �∇ · jz. (11)

In Eq. (11), we define φ� as the orientation of � within the
x̂-ŷ plane. The pseudospin orientation does not align with the
effective pseudospin exchange field that the injected quasipar-
ticles experience because their pseudospin orientations must
precess away from the injected pseudospin orientation as they
move between layers in the bilayer system. The realignment of
transport orbital pseudospin orientations in turn alters the total
pseudospin and therefore the interaction contribution to �. As
a result, the change in mps × � due to transport currents is
referred to as the pseudospin transfer torque, in analogy with
the terminology commonly found in metal spintronics. If the
interlayer bias voltage drives a current, ∇ · jz, that exceeds
Ic = 2�sas〈my

ps〉/�, or the maximal interlayer current that
occurs when sin(φps − φ�) = 1, it will no longer be possible
to achieve steady state as the condensate can no longer adjust
its phase across the layer in order to accommodate current
flow. Under these circumstances, the interlayer current will
oscillate in sign, and the time-averaged current will be strongly
reduced. In the next section, we show that DEC actually has
an interesting nonequilibrium phase oscillating between the
coherent and incoherent phases.

III. NUMERICAL RESULTS OF TIME-DEPENDENT
NONEQUILIBRIUM DYNAMICS

With an understanding of the physics we expect, we now
apply positive voltage to the top left contact (VT L = Vint) that
serves to drive both interlayer and intralayer current flow
within the dipolar exciton condensate for times t > 0. We
examine the current flow into and out of each respective contact
to determine the nonequilibrium dynamics and resultant
phase diagram of the dipolar exciton condensate after a
voltage quench. As we are interested in voltage-based phase
transitions, we may delineate these phases with the definition
of the critical voltage Vc or the interlayer voltage that results
in the critical current Ic, thereby signaling the end of the
PFM region. In Fig. 1(b), we plot the time-averaged interlayer
coherence as a function of the bias applied to VT L.

We immediately notice that Fig. 1(b) can be directly
compared with the known experimental interlayer transport
properties over the entire range of interlayer voltages [8].
Specifically, we recover the observed experimental trends
in steady-state interlayer conductivity in PFM systems for
VT L − Vc < 0 and φps �= 0, corresponding to the growth
of the coherent tunnel current of the exciton condensate

with the applied voltage. In this case, when the system
is in the PFM phase, the associated interlayer current
[32,40] is

Jint(r) = i[H,Ntop] = �sasc
†
T cB − �sasc

†
BcT = 2�sasm

y
ps,

(12)

where cT (B) is a quasiparticle annihilation operator in the top
(bottom) layer. In the PFM regime, when current is injected
from CT L (CT R), an equal and opposite amount of current
will flow into CBL (CBR). This perfect Coulomb drag may
be understood from a simple analogy to Andreev reflections
in superconductivity [18,26,32]. Within the PFM regime of
a condensate, it is always possible to obtain a self-consistent
steady-state solution between the equations of motion, the
electrostatics, and the interactions with respect to global time-
dependent phase rotation. In other words, the static limit of the
Landau-Lifshitz-Slonczewski (LLS) equation must possess a
solution [40].

When the applied voltage is equivalent to the critical
voltage, VT L − Vc ≈ 0, the interlayer current reaches Ic, and
we observe an abrupt drop in the magnitude of the interlayer
current transfer in Fig. 1 along with a suppression of the
interlayer Coulomb drag. This drop signals the termination
of the purely PFM regime and the onset of an intermediate
metastable regime. While the drop in interlayer charge transfer
is expected based on the misalignment of the layer Fermi
surfaces, the bars on the plot within Fig. 1(b) detailing
the tunneling current indicate the presence of significant
oscillations in the magnitude of the terminal currents within
the metastable regime. This behavior is associated with the
persistent launching of OPDs in both layers, which slows
down the condensate velocity and recovers the coherent
phase. Further increase in the applied potential, in which
VT L − Vc � �, shows that the magnitude of the interlayer
current continues to decrease as the two layers become
increasingly energetically separated. In this range of voltages,
the system is in the incoherent, or PPM, phase, in which the
magnitude of the interlayer current is governed solely by the
value of �sas, in agreement with previous experimental results
[8,9].

To form a more complete understanding of the nature
of the terminal currents past Vc, we examine the resulting
terminal currents and |mps | for several interlayer voltages,
each resulting in VT L > Vc. In Fig. 2(a), we apply a bias of
VT L = 0.184 that results in a current within the metastable
regime. Indeed, in Fig. 2(a), we see that each of the terminal
currents begins to stably oscillate, with the largest-magnitude
oscillations appearing in IT R and IBR . These oscillations are
signatures of competition between the PFM and PPM phases
with a frequency consistent with the ac Josephson frequency
proportional to e(V − Vc)/h [41,42] (see the Supplemental
Material [43] for numerical confirmation of the frequency
dependence). Its maximum value is limited by the excitonic
gap size, which corresponds to a frequency of 16.7 GHz,
using the experimentally measured value of the gap [44].
The coherence between the layers triggers an electron current
in the top layer and an equivalent hole current flow in the
bottom layer. Time-averaged current flow in the bottom layer
is lower than in the top layer as a consequence of the partial
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FIG. 2. Time evolution of the order parameter and the terminal
current for (a) and (b) the metastable regime and (c) and (d) the PPM
regime. (a) Plot of the terminal currents versus time for VT L = 0.184
for the layers containing 30 × 10 points in the computational space.
(b) Plot of the magnitude of the pseudospin order parameter as a
function of time and length. (c) Plot of the terminal currents versus
time for VT L = 0.5. (d) Plot of the magnitude of the pseudospin order
parameter as a function of time and length.

suppression of coherence brought about by the competition
between the two distinct phases and nonzero spatial overlap
between successive OPDs. At minimum points of IBR and IT R ,
the layers temporarily lose coherence. The loss of coherence
results in IBR possessing nearly zero value and a peak in IT R

indicating that the observed behavior is associated with the
negative density fluctuations.

Beyond Vc, we expect there is nonzero electric field inside
the system, which accelerates the exciton pairs across the
system and is approximately given by E ≈ (VT L − Vc)/L.
By launching the defect, the phase gradient is reduced, and
the exciton pairs in the PFM phase are decelerated in order
to keep a constant superfluid velocity. To be more specific,
when φps winds into the ẑ direction, the system launches
an electronlike OPD that flows from the left of the system
to the right at an applied bias of VT L = 0.184, as seen in
Fig. 2(b). The OPDs are topological defects [45,46] that break
the order of the condensate and retain pseudospin order that
points solely in the ẑ direction. The corresponding zeros in
|mps | are accompanied by a π phase slip in the condensate,
after which coherence is restored within the DEC. Therefore,
the stable oscillations in the terminal currents are attributed to
voltage-driven fluctuations between the PFM and PPM phases
characterized by the entering and exiting of the OPD pair from
the contacts. The maxima in IBR and IT R indicate that the
coherence is recovered after the fluctuation passes. In Fig. 2(a),
the condensate is not fully recovered at maximum points as
the OPD bound states are not fully localized and the nonzero
spatial overlap between bound states forms the discrepancy
with the strong interaction limit.

In Fig. 2(c), we see another transition from the intermediate
metastable oscillations between PFM and PPM phases to
a stable PPM phase, which arises when mz dominates the
pseudospin orientation. In this regime, the bias-induced energy
separation between the two layers wins a competition with
the coherence of the bilayer. As a result, in the PPM phase,
the current flows from CT L to CT R with only a transient
response in CBL and CBR . Yet within the transient regime
the current flowing to the lead CBR is positive, indicating
the presence of transient interlayer coherence in the system.
Figure 2(d) shows the exponential decay of order parameter
magnitude as the exchange enhancement is lost and the
value asymptotes towards the noninteracting �sas with φps

pointing in the ẑ direction. It is critical to note that, in a
closed system, the transition to the PPM phase is forbidden
since total magnetic moment in the ẑ direction mz−tot =∑

i mz is a roughly conserved quantity within the time scale
1/�sas. However, open contacts act as a thermal reservoir that
exchanges both energy and pseudospin. Thus, the existence
of the reservoir allows the thermalization to the PPM state.
In other words, at t > 0, direct insertion and extraction of
pseudospin (quasiparticles) through open contact can relax
the system to the PPM phase.

To more clearly illustrate voltage-induced phase transition,
Fig. 3 shows the trajectory of normalized pseudospin evolution
along the Bloch sphere. Figure 3(a) shows the oscillatory
behavior between the PFM and PPM phases characteristic of
the metastable phase as the pesudospin orientation precesses
in the x-y plane. It precesses out of the plane to touch the z axis
before returning to the x-y plane when a launched OPD passes
through the observation point. Afterwards, the orientation
returns to the x-y plane, and we observe persistent precession
in its orbit until the next OPD reaches the observation
point. The pseudospin precession within the x-y plane is a
consequence of global phase evolution and the acceleration of
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FIG. 3. Time evolution of pseudospin orientation at x = 5 lattice
points for (a) the intermediate PFM-PPM metastable oscillations at
an applied bias of VT L = 0.184 and (b) the PPM phase at an applied
bias of VT L = 0.5. Each of these plots is taken within the time frame
of a couple of phase-slip periods for visual simplicity.

the superfluid. When the pseudospin phase touches the north
pole of the pseudospin Bloch sphere, it winds once about the
pole as a direct reflection of the presence of the OPD. The
regression of the pseudospin to the x-y plane indicates the
recovery of phase coherence. In Fig. 3(b), the excessive bias
breaks the coherence between the layers, forcing the transition
from the PFM phase to the PPM phase. After the initial
transient behavior, the pseudospin phase angle eventually
precesses into the z direction, consistent with the current-
induced phase transition to the PPM phase. In the transient
regime before the PPM phase is fully established, pseudospin
winds around the north pole several times before reaching
its stable out-of-plane orientation along the pseudospin Bloch
sphere and confirming the quenched phase transition.

Based on our results, it is clear that there is a dependence
of the locations of the phase transitions on the strength of
the interlayer interactions. We explore this relationship in
Fig. 4, which shows the interaction strength dependence of
the phases. We find that the location of the phase boundary
of the PFM-PPM metastable transition, defined to be a point
where two OPDs are launched within 10 fs, is proportional to
the excitonic gap. In Fig. 4, we find a clear linear dependence of
Vc on � when we examine the location of the phase transition
between the PFM and PFM-PPM metastable phases. As the

FIG. 4. Phase boundaries of PFM-metastable transition (blue
circles) and metastable-PPM transition (red circles). The phases are
calculated within a given time window of 10 fs. For each point on the
blue curve, we use interaction strengths of U = −0.85,0.9,0.95,1,
while for the red curve, U = −0.85,0.9,0.95 are used.

gap size increases with the increase in the interaction strength,
the PFM phase stability to changes in interlayer voltage
increases in concert with the critical voltage Vc, which also
moves to higher interlayer voltages. Additionally, we observe
a similar trend in the transition between the metastable and
PPM regions. In this work, we define the metastable-PPM
transition to be the point at which the interlayer coherence
decreases to 30% of the initial self-consistently obtained value.
In the zero-gap limit, we know that both the PFM and the
PFM-PPM metastable phase must vanish. Therefore, in the
limit of the infinite-time response, the intersection of the two
boundaries must meet at the origin of the plot. In Fig. 4, the
intersection of the two lines is shifted from the origin due
to the nature of time-dependent simulation. As we always
have a finite time window within the simulation methodology
associated with the TDKB formalism, it is inevitable that
setting criteria to determine the location of a phase transition
from a given finite-time simulation will result in discrepancies
when compared to the infinite-time limit. These criteria give a
time-scale cutoff which shifts the phase boundaries from the
infinite-time response limit.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have studied the nonequilibrium time-
dependent dynamics of dipolar exciton condensate phases
focusing on the behavior past Vc via the time-dependent
Kadanoff-Baym equations in coupled 2D layers. We have
explained the salient features within the dipolar exciton
condensate using the language of pseudospin ferromagnetism.
We have demonstrated that, using this nonperturbative ap-
proach, we are able to completely reproduce the well-known
experimental interlayer transfer characteristics associated with
dipolar exciton condensates in quantum Hall semiconductor
bilayers without assuming the phase of the system. We
have shown that for voltages VT L − Vc < 0, the system
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exhibits pseudospin ferromagnetism denoted by perfect drag
counterflow between the two layers. As the interlayer voltage
is increased past the critical voltage, VT L − Vc ≈ 0, the
system exhibits stable oscillation between the pseudospin
ferromagnet phase and the pseudospin paramagnet phase. The
voltage-induced oscillation between the two phases manifests
as persistent oscillations in terminal currents corresponding
to the continuous launching OPDs across the superfluid
with a characteristic ac Josephson frequency. When the
interlayer bias exceeds, VT L − Vc � �, we have shown that
the coherence between the layers is destroyed and the system
transitions into the pseudospin paramagnet phase in which the
interlayer transport is limited by single-particle tunneling.
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