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High resolution inelastic x-ray scattering experiments are widely used to study the electronic and chemical
properties of materials under a range of conditions, from ambient temperature to the warm dense matter regime.
We use the real-space multiple scattering (RSMS) Green’s function formalism coupled with density functional
theory molecular dynamics (DFT-MD) to study thermal effects on the Compton profile (CP) of disordered
systems. The RSMS method is advantageous for calculations of highly disordered, aperiodic systems because it
places no restriction on symmetry. As a test, we apply our approach to thermally disordered Be, Li, and Si in
both liquid and solid phases. We find good agreement with experimental and other theoretical results, showing
that the real-space multiple scattering approach coupled with DFT-MD is an efficient and reliable method for
calculating the CP of disordered systems at finite temperatures.
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I. INTRODUCTION

The high-resolution Compton profile (CP) is widely used to
investigate the electronic and chemical properties of materials
[1–6]. For metallic systems, it can be used to probe the Fermi
surface and its behavior as a function of temperature and
density. In materials that undergo phase transitions, the CP has
proven to be a useful technique to distinguish and characterize
different phases. For instance, in the solid-to-liquid phase
transition in Si, CP analysis revealed persistent covalent
bonding in the liquid phase [6,7]. CPs at momentum values
larger than the reciprocal lattice vector G (high momentum
components) are sensitive to anharmonic and thermal-disorder
effects and can be used in the study of thermal effects on the
valence electrons [6,8,9].

A variety of methods have been used to compute CPs. For
example, ab initio band-structure methods have been widely
used for periodic systems. Their application to studies of
electronic properties in disordered systems though, is more
challenging. Early theoretical calculations of CPs in thermally
disordered materials used the self-consistent temperature-
dependent linear muffin tin orbital (LMTO) method
[10–12] based on local density approximation (LDA) with
a frozen supercell of eight atoms, where the disorder was
generated by using Boltzmann statistical averages over atomic
configurations generated from Gaussian distributions along
the harmonic phonon modes [13]. This early approach was
used to study thermal disorder effects in Li and predicted a
broadening of the CP due to the thermal disorder. However,
that investigation neglected thermal lattice expansion, which
was later found to be a dominant effect in Al, Li, and Be,
negating the thermal broadening due to vibrational disorder
[8,9,14,15]. Although this later study gave a good explanation
of thermal effects, the theory employed empirical parameters
to incorporate thermal effects and, therefore, its predictive
capability is limited.

Another widely used theoretical method for calculating
CPs is the Korringa–Kohn–Rostoker (KKR) and the coherent
potential approximation (CPA) approach [16], which has been
applied to systems such as substitutionally disordered alloys.
KKR uses a coherent potential approximation, where the
disordered alloy is replaced with an ordered system with an

averaged effective site potential [17]. Correlation corrections
have also been applied [18] and used in the study of Li [19].
Differences between theory and experiment in the Li study
were attributed to the effects of correlation on the momentum
density beyond the LDA. Further investigations of electronic
correlation beyond the quasiparticle approximation reported
that the excitation of plasmarons produce a broadening of the
CP [20].

The GW approximation has also been used as a method for
treating correlation effects beyond density functional theory.
Early results in Li showed CPs that are very close to experiment
[21]. However, a later critique found that numerical instability
played a role in those results [22]. Later studies [23,24]
of the electron momentum density (EMD) of Li are based
on the modified augmented plane-wave method with full
potential and Lam–Platzman correlation corrections [18] give
a moderately good description of spectra. However, plane-
wave-based methods are not ideally suited for calculations of
highly disordered systems, because they require very large
supercells. A later study accounted for thermal effects beyond
the harmonic approximation [25], as well as zero-point motion,
using the ab initio beyond-harmonic approximation [26],
and found excellent agreement with the experimental results.
However, one can expect that, at temperatures well above the
Debye–Einstein temperature, zero-point motion will play a
minor role.

More recent studies have used MD simulations to generate
structural configurations for thermally disordered materials,
in an attempt to obtain better electronic structure properties.
In the case of ice [27,28], anisotropy in the CP was studied
by using maximally localized Wannier functions coupled with
Car–Parrinello molecular dynamics [29] (CPMD) simulations.
The CPMD approach was used to investigate the solid-liquid
phase transition in Si and B [6,7], where differences in the
CPs of the two phases were attributed mainly to covalent bond
breaking, while thermal disorder produced relatively small
effects [6].

In this paper we report ab initio calculations of the CP in
the impulse approximation (IA), as well as calculations of the
EMD, using a real-space Green’s function (RSGF) approach
coupled with DFT-MD simulations in order to include thermal-
disorder effects.
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Unlike band-structure calculations, the RSGF approach
coupled with MD simulations has the advantage of not
being limited to crystalline systems. It also allows efficient
calculations of valence electron properties of materials as a
function of thermal disorder and thermal expansion, making it
well suited to investigate liquids and solids over a wide range of
temperatures from zero temperature to the warm dense matter
(WDM) regime. The RSGF approach is implemented in FEFF9
[30] code, which is widely used in the x-ray spectroscopy
community. It has capabilities of calculating nonresonant
inelastic x-ray scattering (NIXS) core contributions [31] and
valence CP in the IA [32]. Here we apply this approach to
thermally disordered Be, Li, and Si and compare our results
to experimental [6,8,9] and other theoretical results, including
recent results based on CPMD calculations [6,7]. We focus
particularly on the high-momentum components of the CP. We
find that, in Li, the directional anisotropy of the CP decreases
as a function of temperature, consistent with the observations
of Erba et al. [25] in the case of LiF.

This paper is organized as follows: in Sec. II, we give a
brief overview of key equations. In Sec. III, we present details
of molecular dynamic (MD) simulations and CP calculations
using FEFF. In Sec. IV, we present results of the CP calculations
for Be, Li, and Si. We discuss in detail anharmonic and
thermal-disorder effects on the CP and the influence on
high-momentum components of CP. Finally, in Sec. V, we
present and discuss our conclusions.

II. COMPTON SCATTERING THEORY

Nonresonant inelastic x-ray scattering (NIXS) in the limit of
large momentum transfer, often called Compton scattering, is
directly related to the CP. Experimentally, the system is probed
by a narrow x-ray beam incident on the sample and the intensity
of scattered radiation is measured as a function of energy
and scattering angle. In this two-photon process, the double
differential scattering cross section (DDSC) d2σ (q,ω)/d�dω2

is measured, where � is the measured solid angle and ω2 is
the detected energy of radiation, and q and ω are, respec-
tively, the momentum and energy transferred to the sample.
Thus, the DDSC determines the relative probability of transfer-
ring momentum q and energy ω to the sample in the scattering
process. Here we focus on cases where the incident energy
in the XRTS experiment is far larger than any binding energy
in the sample. In this regime, first-order perturbation theory
shows that the main contribution arises from the dominant A2

term in the interaction Hamiltonian, where A is the vector
potential [33]. In the nonrelativistic limit, the DDSC is given
by

d2σ

d�dω2
=

(
dσ

d�

)
Th

S(q,ω). (1)

Here, the Thompson scattering cross section is

(
dσ

d�

)
Th

= ω2

ω1
r2

0 (ε̂1 · ε̂∗
2 )2, (2)

where ω1 is incident energy, and the dynamic structure factor
is

S(q,w) =
∑
F

∣∣∣∣∣∣〈F |
∑

j

exp(iq · rj )|I 〉
∣∣∣∣∣∣
2

δ(EF − EI − ω).

(3)
In the above equations, r0 = α2 is the classical electron radius;
ε̂1 and ε̂2 are the incoming and outgoing photon polarizations,
respectively; |I 〉 and |F 〉 are the initial and final states with
energies EI and EF ; and rj is the position operator for the j th
electron. Throughout this work, we adopt atomic units where
� = m = e = 1 and c = 1/α ≈ 137.036.

For large energy transfer relative to the binding energy
of a given electronic orbital of the target species, i.e., in
IA, Platzman and Eisenberg have shown that the x-ray
Thomson scattering (XRTS) can be described approximately
as a Doppler-broadened CP [34]. The energy difference is
given by

ω = Ef − Ei = 1

2
[p + (k1 − k2)]2 − p2

2
= |q|2

2
+ q · p,

(4)
where p is the initial momentum of the electron and q is the
momentum transferred to it. The CP factor J (pq), defined by

J (pq) ≡
∫

d3pρ(p)δ(pq − (ω/q − q/2)), (5)

has a direct relation to the dynamic structure S(q,ω):

S(q,ω) = (1/q)J (pq). (6)

Here, ρ(p) is the EMD with momentum p, and the δ function
ensures energy conservation with pq ≡ ω/q − q/2. The EMD
can be calculated from the real-space density matrix by taking
the Fourier transformation

ρ(p) =
∫

d3rd3r ′eıp·(r−r′)ρ(r,r′). (7)

In the RSGF approach, the real-space density matrix is given
by

ρ(r,r′) = − 2

π
Im

∫ ∞

Ec

dEG(r,r′,E)fT (E), (8)

where fT (E) is the Fermi function. Finally, the real-space
Green’s function G(r,r′,E) in the muffin-tin approximation is
given by [35]

G(r,r′,E) = −2k

[
δn,n′

∑
L

HE
Ln(r>)R̄E

Ln′(r<)

+
∑
L,L′

RE
Ln(rn)eıδLngE

Ln,L′n′e
ıδL′n′ R̄E

L′n′(r′
n′ )

]
. (9)

Additional details of this formulation have been reported
elsewhere [32].

If the CP is spherically averaged over the direction of
momentum transfer, the spherically averaged EMD is related
by

ρ(p) = − 1

2πp

d

dpq

J (pq)

∣∣∣∣
pq=p

, (10)
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and the following important sum rule holds for the number of
the valence electrons per unit cell N :

N = 2π

∫
dpp2ρ(p) = 2πρ0

∫
dpp2f (p). (11)

III. DETAILS OF THE CALCULATIONS

A. Molecular dynamics calculations

All MD simulations reported here were performed with
the Vienna Ab Initio Simulation Package (VASP) [36,37].
Projector augmented wave (PAW) potentials [38,39] were
used throughout this work, with plane-wave cutoffs of 308.8
eV for Be, 140 eV for Li, and 245.7 eV for Si. For Be,
the simulation cell consisted of 4 × 4 × 6 repetitions of the
orthogonal four-atom conventional cell, for a total of 384
atoms. For Li, the simulation cell had 250 atoms originat-
ing from 5 × 5 × 5 repetitions of the orthogonal two-atom
conventional cell. The Si simulation cell was generated from
4 × 4 × 4 repetitions of the eight-atom conventional cell, for
a total of 512 atoms. The temperature was controlled using the
Nosé-Hoover thermostat [40]. For the range of temperatures
used in this work, the thermostat smass parameter was adjusted
to match the characteristic phonon frequencies, which range
from 10–18 THz in Be [41], 2–8 THz in Li [42], and 4–15
THz in Si [43].

The Be and Li MD runs used a time step of 2 fs and, for
temperatures below melting, were thermalized for 8 ps. For
solid Si, the time step was reduced to 1 fs and the runs were
thermalized for 6 ps. For liquid Si, the system was first run at
3000 K for about 1.7 ps to ensure that the structure would be
in the liquid phase. Next, the temperature was brought down
to 1757 K in about 0.4 ps and thermalized for about 1.2 ps
until equilibrium was reached. Given that the Fermi energies
of these systems are much larger than the temperatures studied
here, we set the electronic temperature to 0 K in both the MD
dynamics described above and the CP calculations described
in the following section.

B. Compton profile calculations

Calculations of the CP presented here were performed by
using the RSGF code FEFF, which does not require periodicity.
FEFF includes self-consistent potentials and quasiparticle
effects and has been widely used for a variety of x-ray
spectroscopies, including NIXS, which permits calculations
of the core-level contributions to Compton scattering. For
a detailed description of the methodology used here, see
Refs. [30] and [32]. To get a sampling of the disordered
system, we used 24 MD snapshots at temperatures above
400 K and 12 MD snapshots at temperatures below 400 K.
We chose snapshots 50 to 70 fs apart in the thermalized
regime. The snapshots were used to construct models for
the FEFF RSGF calculations, where the cluster radii used for
the calculation of the self-consistent field (SCF) potentials
and full-multiple-scattering (FMS) Green’s functions were set
so that the clusters would have about 170 and 260 atoms,
respectively. These calculations used 13 unique self-consistent
muffin-tin potentials, which roughly account for the absorber
and its nearest neighbors. All other atoms outside the first
coordination shell shared the same muffin-tin potential. The

final CP was then calculated as an average over the CP from
each structural snapshot, and the vertical bars displayed in this
paper correspond to errors in the mean unless otherwise stated.

Given that the computational demand of the simulations
depends greatly on the angular-momentum cutoff lmax, we
used the lowest possible value that ensures converged results.
In the cases of Li and Be, the convergence test for lmax > 3
gives errors lower than 30% for the range of momentum values
of interest. For Si, the errors are still larger for lmax � 4, thus
we use lmax = 5.

Approximations made in integrating the density matrix lead
to small errors (∼5%) in the number of valence electrons
according to the sum rule. The CP is thus rescaled to give
the proper number of valence electrons by using the sum
rule [Eq. (11)], although the scaling is usually very close to
unity. The CP is broadened by π/z′

max due to the convolution
theorem, where z′

max is set by the FMS radius. In the cases of
Be and Li, the integration bound z′

max ≈ 30 a.u., which results
in a broadening on the order of 0.1 a.u.

IV. RESULTS AND DISCUSSION

One of the objectives of this study is to find signatures of
temperature-driven structural change in the CP. Therefore, we
begin by discussing changes in the pair distribution functions
(PDFs) g(r). Figure 1 shows the PDFs for Be, Li, and Si
as a function of temperature. Thermal expansion was taken
into account, with the system density taken from available
values in the literature [6]. The Be PDF [Fig. 1(a)] at 300 K
displays well-defined peaks for the first through fifth shells.

0
1
2
3
4
5
6
7
8

4 5 6 7 8 9

(a) Be

g
(r

)

T = 300K, ρ=1.856 g/cm3

T = 650K, ρ=1.832 g/cm3

T = 850K, ρ=1.815 g/cm3

0

1

2

3

4

5

5 6 7 8 9 10 11 12 13

(b) Li

g
(r

)

95K, ρ = 0.55 g/cm3

300K, ρ = 0.534 g/cm3

400K, ρ = 0.526 g/cm3

500K, ρ = 0.518 g/cm3

0
1
2
3
4
5
6
7
8

4 5 6 7 8 9 10

(c) Si

g
(r

)

r (a.u.)

300K, ρ = 2.33 g/cm3

973K, ρ = 2.31 g/cm3

1573K, ρ = 2.30 g/cm3

1787K, ρ = 2.56 g/cm3

3000K, ρ = 2.56 g/cm3

FIG. 1. Pair distribution functions g(r) of Be (a), Li (b), and Si
(c) as a function of temperature and adjusted densities. For Li, the
density was adjusted by using its linear thermal expansion coefficient
(α = 46 K−1). For Si, the 3000 K PDF is included to illustrate the
melted behavior.
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FIG. 2. Compton profiles for Be along the q = [110] direction
at various temperatures and their corresponding densities [44].
Experiment and pseudopotential theory with thermal disorder [8]
are included for comparison. For clarity of presentation, each data set
was shifted by 0.02 electrons/a.u. Theoretical results were broadened
to match the experimental resolution of 0.16 a.u. [8].

In contrast, the PDFs at 650 and 850 K show that the shells
are smeared out, with the second and third shells coalescing
into a single peak. Simulations of Be at ambient density and
temperatures up to 2000 K show that melting occurs between
1800 and 2000 K. Comparison with the PDF of expanded
and ambient density systems shows that melting in expanded
systems occurs at lower temperature. Due to weaker bonding,
melting in Li [Fig. 1(b)] occurs at lower temperatures than in
Be and Si. The change in structure evidenced by the merging
of the first and second shell peaks in the PDF above 95 K
should affect the valence electron state probed and thus the CP.
Finally, Fig. 1(c) shows the PDFs for Si at 1787 and 3000 K.
Both PDFs show the behavior of a liquid, with only the first
shell peak well defined, and the two PDFs are very similar.

Role of disorder versus thermal expansion

1. Beryllium

Figure 2 presents the CP of thermally disordered Be at
finite temperature. For comparison, we also show experimental
results from Huotari et al. [8], as well as their theoretical results
[8] obtained by using pseudopotential theory with disorder
implemented by using Debye-Waller factors. Coefficients for
pseudopotentials were fit to match the experiment.

Although the overall intensity in our theory is underesti-
mated, the general agreement between theory and experiment
is reasonable, in particular for the position of the visible
features. Contrary to what is observed for Na and Li [13,45],
Be does not show a significant sharpening of the CP as a
function of thermal expansion, which is due to Be’s smaller
thermal expansion factor (α). The “Umklapp” peak around
p = 2.4 a.u. closely matches the position of the peak in the
experiment [8]. This peak corresponds to a nonzero reciprocal
lattice vector contribution. As the temperature is increased
from 300 to 850 K, it becomes smeared out due to the thermal-
disorder effects. To highlight the agreement between our
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Theory Huotari et al.

FIG. 3. Compton profile differences for Be along the q = [110]
direction. Experiments and pseudopotential theory with thermal
disorder [8] are included for comparison: (a) difference between
300 K and 850 K CPs, and (b) difference between 300 K and
650 K CPs.

theory and the experiment, Fig. 3 shows the difference between
the high- and low-temperature CPs, normalized by the CP at
zero momentum [8]. As can be seen in the plot, calculated and
experimental results are well within their error margins, which
indicates that, although our calculations underestimate the
absolute value of the CP, changes are accurately reproduced.
Figure 4 shows the temperature dependence of the Umklapp
peak at 650 and 850 K as a function of thermal disorder, with
and without thermal expansion. When the system is allowed
to expand, the broadening is moderately enhanced due to the
larger amplitude of nuclear motion, as reported by Huotari
et al. [8]. Temperature has only a small effect on the valence
electron wave function of Be. This is likely due to its relatively
high Debye temperature.

To summarize, we find that thermal expansion of Be has
a moderate effect on the high component of CP. As reported
in Huotari et al. [8], thermal disorder at moderate temperature
smears out the intensity of the Umklapp peak. The presented
calculation of Be CP is the first ab initio calculation with MD
simulated disorder.

2. Lithium

Figure 5 shows the CP for Li as a function of temperature,
where the crystal structure was expanded by using the
experimental coefficient of thermal expansion α = 46 K−1.
For comparison, experiments [19,20] and theoretical results
with the KKR and GW approximations [20,21] are also
included. Our results are in good agreement with the KKR ap-
proximation with Lam–Platzman correlation corrections [18].
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FIG. 4. CP Umklapp peak for Be as a function of temperature.
(a) Calculation of expanded and ambient density system. For clarity,
results were shifted by 0.05 electrons/a.u. (b) Umklapp peak region
as a function of temperature.

Both methods are based on the LDA approximation; neither
takes many-body effects into account. Thus, we believe that the
discrepancy between the LDA and GWA results is due to many
body effects. Schulke et al. [20] attributed this discrepancy to a
self-energy effect, due to the excitation of the plasmaron mode.
The results of the GW approximation (GWA) [21], on the
other hand, are in very good agreement with the experiment.
The same authors have performed LDA calculations with
correlation effects [46], which reduce the discrepancy between
LDA and the experiment. The GWA method provides better
results than the corrected LDA, but it was emphasized [22]
that GWA calculations by Kubo have an unphysical behavior
of the imaginary part of the self-energy at the Fermi level.
The EMD ρ(p) = ∑

b π−1
∫ μ

−∞ ImGb,b(p,E)dE in the LDA
approach was obtained by using the Fermi gas model and is
different from the EMD obtained in the GW approximation.
Our results for the EMD of Li are shown in Fig. 6 for the
system at 0 K and compared with both the Fermi gas model
and the GW approximation [21]. The differences between the
theories in Fig. 6 highlight how much the many-body effects
influence the EMD.

In contrast to previously reported LMTO calculations of Li
[13,45], we do not observe broadening of the CP as thermal
disorder increases. The inset in Fig. 5 shows the behavior of
the Umklapp peak as a function of both thermal expansion and
thermal disorder. Although it behaves similarly to Be, in the
case of Li the peak essentially disappears above 400 K, likely
due to the fact that Li is a softer material with a much lower
Debye temperature.

To study the anisotropy of the CP, the lower panels of
Fig. 5 present differences between directional CPs, labeled
accordingly, together with experimental results [20]. We find
that the oscillation amplitudes decrease as a function of
temperature, with the largest amplitude observed at 95 K.
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FIG. 5. Compton profiles for Li with thermal disorder as a
function of temperature along the q = [110] direction (top), and dif-
ferences in CP between directions (center and bottom). Comparison
with experimental results from Sakurai et al. (“Expt. 1”) [19] and
Schulke et al. (“Expt. 2”) [20], and theoretical results from Schulke
et al. (“KKR”) [20] and Kubo et al. (“GWA”) [21]. The inset in the
top panel shows the Umklapp peak amplitude in detail. The 0 K data
corresponds to a calculation without disorder and at ambient density.

The largest anisotropy occurs in the [110] − [111] directions
difference. Although our results follow the oscillation pattern
in the experiment, discrepancies due to neglecting many-body
effects are still noticeable. Our calculations generally become
closer to the experiment with increasing temperature.
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FIG. 6. Valence EMD for Li calculated by using the RSGF, Fermi
gas model, and GW approximation [21].

214201-5



KLEVAK, VILA, KAS, REHR, AND SEIDLER PHYSICAL REVIEW B 94, 214201 (2016)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

q=[110] Li

CP (T=95K)-CP (T=300K)

Δ J
(p

q
) 

(1
0-2

 a
.u

.-1
)

pq (a.u.)

Expt. Sternemann et al.

Our theory

FIG. 7. Differences in calculated CP of Li for q = [110] between
T = 95 K and T = 300 K and comparison with experiment [9].

The differences between the CPs calculated at 95 and
300 K are presented in Fig. 7 and compared with experimental
measurements of thermally disordered Li along the q = [110]
direction of momentum transfer [9]. With the exception of a
small discrepancy in the position of the peak at around 0.5 a.u.,
which is likely due to the use of a constant value for the thermal
expansion coefficient, our results are in good agreement with
the experiment.

3. Silicon

Finally, we study the CPs of solid and liquid Si. Our results
(Fig. 8) are in fair agreement with recent experiments [6,47]
for a broad range of momentum pq .

To study the effects of melting, Fig. 9 shows differences
between the CPs of solid Si at 298 K and liquid Si at 1787 K.
Our results are shown for angular-momentum cutoffs l = 5,
together with experimental and theoretical results [6,47]. Our

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Si liquid 1787K
(a)

J(
p

〈q
〉)

 (
a.

u
.-1

)

Our theory
Expt. Okada et al.

Expt. Matsuda et al.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0

Si solid 298K
(b)

J(
p

〈q
〉)

 (
a.

u
.-1

)

p〈q〉 (a.u.)
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Refs. [6,47] the CP of Si in (a) liquid phase and (b) polycrystalline
solid phase.
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FIG. 9. Differences in polycrystalline Si CP calculations for an-
gular momentum l = 5 between T = 300 K (solid) and T = 1757 K
(liquid) and CPMD calculations, in comparison with experiments
[6,47].

calculations agree reasonably well with experimental results,
in particular those from Okada et al. [6]. The differences
between our theory and the CPMD results arise both from
the differences in the methodologies used to compute the CP,
i.e., our RSGF approach vs momentum-based theory, and from
differences in MD simulations.

Figure 10 presents the EMD for solid and liquid Si at 298
and 1787 K, respectively, and comparison with experimental
values obtained from the experimental CPs [6,47]. Although
we achieved good agreement between our theory and the
experimental results for both CP and for changes in the CP
in solid-liquid transitions, some noticeable differences remain
between EMDs in our theory and those in the experiment. The
differences in the EMD results might be due to the many-body
effects, which do not strongly affect CP.
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FIG. 10. (a) Valence EMD for Si at T = 298 K and comparison
with experiments [6,47]. (b) Valence EMD for Si at T = 1787 K and
comparison with experiments [6,47].
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V. CONCLUSIONS

In summary, we presented RSGF calculations of the CP
coupled with MD simulations to model thermal disorder for
Be, Li, and Si for a number of temperatures. We find that
our calculations are in good agreement with experiments and
other theories. We investigated both thermal disorder and
thermal expansion effects on the high-momentum components
of the CP. We find that the lattice thermal expansion has a
moderate effect on the CP in both Be and Li, as previously
reported. Thermal disorder has the effect of smearing the
high-momentum Umklapp peak of Be and Li. Our results
also predict changes in the CP of polycrystalline Si, which
undergoes a solid-to-liquid phase transition to a good degree of
precision. We observe that, in the case of Li, strong directional
anisotropy, which was discussed in the recent work on LiF
[25] as a function of thermal disorder, becomes weaker as a
function of temperature.

For temperatures close to the melting point, both thermal
disorder and thermal expansion play an important role and
need to be taken into account when studying the electronic
properties of Be and Li. For Si structure, which undergoes a
solid-liquid phase transition, disorder has an important role and
MD simulations coupled with real-space theory can reasonably
predict the influence of the disorder on the CP.

We have shown that the RSGF approach combined with
DFT-MD is a reliable method for predicting the CP of

disordered systems. In addition, the RSGF approach is not
limited to crystalline systems and permits efficient calculations
of valence electron properties of the materials as a function of
thermal disorder and thermal expansion. Electronic tempera-
ture effects are also naturally included in the approach. It is
thus ideally suited for studies of highly disordered materials
across a wide range of temperatures, from zero to the WDM
regime, where solid-state effects are still not well understood.
A more detailed application to the WDM regime, including
ionic as well as electronic temperature effects, remains as a
straightforward procedure for future studies.
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