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The damping (�a) of the transverse acoustic (TA) phonon in single crystals of the relaxor KTa1−xNbxO3

with x = 0.15–0.17 was studied by means of high resolution inelastic cold neutron scattering near the (200)
Brillouin Zone (BZ) point where diffuse scattering is absent, although it is present near (110). In a wide range of
temperatures centered on the phase transition, T = 195 K ÷ 108 K, the TA phonon width (damping) exhibits a
step increase around momentum q = 0.07, goes through a shallow maximum at q = 0.09–0.12, and remains high
above and up to the highest momentum studied of q = 0.16. These experimental results are explained in terms of
a resonant interaction between the TA phonon and the collective or correlated reorientation through tunneling of
the off-center Nb+5 ions. The observed TA damping is successfully reproduced in a simple model that includes
an interaction between the TA phonon and a dispersionless localized mode (LM) with frequency ωL and damping
�L(�L < ωL), itself coupled to the transverse optic (TO) mode. Maximum damping of the TA phonon occurs
when its frequency is ωa ≈ ωL. The values of ωL and �L are moderately dependent on temperature, but the
oscillator strength, M2, of the resonant damping exhibits a strong maximum in the range T ∼ 120 K ÷ 150 K in
which neutron diffuse scattering near the (110) BZ point is also maximum and the dielectric susceptibility exhibits
the relaxor behavior. The maximum value of M appears to be due to the increasing number of polar nanodomains.
In support of the proposed model, the observed value of ωL ≈ 0.7 THz is found to be similar to the estimate
previously obtained by Girshberg and Yacoby [J. Phys.: Condens. Matter 24, 015901 (2012)]. Alternatively,
the TA phonon damping can be successfully fitted in the framework of an empirical Havriliak-Negami (HN)
relaxation model that includes a strong resonancelike transient contribution.

DOI: 10.1103/PhysRevB.94.214116

I. INTRODUCTION

The KTN is a member of the family of relaxor ferro-
electrics, a now well recognized subgroup of highly polarizable
compounds with substitutional disorder and off-center ions
displaced from their high symmetry lattice site (see review
and recent results [1]). Other well-known and extensively
studied systems of the same family are the lead compounds
PbMg1/3Nb2/3O3 (PMN) and PbZn1/3Nb2/3O3 (PZN). With
decreasing temperature, correlations develop between the
dipoles introduced by the off-center ions, leading to the
formation of polar nanoregions (PNRs) below a temperature
known as Burns temperature, Td . At a still lower tempera-
ture, T ∗ < Td , the dielectric susceptibility begins to exhibit
the characteristic frequency dispersion displayed by relaxor
ferroelectrics. This suggests a distinction between quasistatic
PNRs, resulting from dynamical polar correlations, and polar
nanodomains (PNDs) [2] when these correlations become
static or long lived, resulting in local distortions evidenced by
the elastic diffuse scattering (DS) shown below. The existence
of quasistatic PNRs in the intermediate temperature range
T ∗ < T < Td has been recognized for a long time and was
initially thought confirmed by neutron DS. In the past few
years, however, it has been found that the DS observed in this
intermediate temperature range corresponds to quasielastic
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scattering by low energy phonons [1]. True elastic DS appears
only at a lower temperature than Burns temperature, Tdr < Td ,
where Tdr appears to coincide with the temperature T ∗ at which
the static PNDs appear. In the case of PMN, for example,
Td = 620 K, but Tdr = 420 ± 20 K, which is indeed very close
to T ∗ ≈ 400 K [2]. Eventually, long range (LR) ferroelectric
order develops at a lower Curie temperature, Tc < T ∗. These
recent findings suggest that one should reexamine the original
meaning of Burns temperature, Td , and the development of the
local polar order. What appears to be well established at least
is the presence of precursors in the dynamical pair correlation
in the range T ∗ < T < Td [1]. New data concerning the
genesis of PNRs have recently been reported by Manley
et al. [3]. These authors have measured inelastic neutron
scattering in a single crystal PMN-30%PbTiO3 (PMN-PT)
and have found additional intensity between the transverse
acoustic (TA) and transverse optic (TO) branches, ETA(q) <

ERM(q) < ETO(q), exhibiting little dispersion and probably
due to phonon localized modes (LMs). They have suggested
that the interaction between the lattice TO phonon and a low
dispersion LM is the driving force leading to the appearance
of PNRs. However, Gehring et al. [4] have recently shown
that the peak observed in the data [3] is spurious and most
likely results from a simple double scattering process involving
a longitudinal acoustic (LA) mode and strong elastic Bragg
scattering at the (2, −4, 0) Brillouin Zone (BZ) point.

Diffuse scattering (DS) in relaxors can, in fact, exhibit
unusual features, and its connection to the damping of the
TO and TA phonons is still unclear. (i) In PMN, Hirota et al.
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reported strong DS near the (110) BZ point but very weak
or almost absent near (200) [5]. They explained their results
by proposing that DS is not necessarily due to a condensed
soft TO mode but can also be due to a collective shift δ of
all the atoms within a PNR along the local polar direction,
which should certainly have an effect on the TA phonon. (ii)
Also in PMN, Stock et al. [6,7] found DS to be strong near (1,
1, 0) and accompanied by strong TA damping but also small,
although still accompanied by moderate TA damping near (2,
0, 0). These authors therefore concluded that a connection
exists between DS and the damping �a of the TA phonon.
However, they did not propose a conclusive physical model that
would explain their observations. Recently, Phelan et al. [1]
have shown that the unique electromechanical and dielectric
features of the relaxor Pb(Mg1/3Nb2/3)1−xTixO3(PMN-xPT),
when compared with Pb(Zn1/3Nb2/3)1−xTixO3 (PZT), could
be explained by the presence of strong random electric
fields (REFs) generated by the heterovalent Mg2+/Nb5+-Ti4+
cations on the B-site in PMNxPT. By contrast, the homovalent
Zr4+ and Ti4+ cations on the B-site in PZT or Ta5+ and Nb5+ in
KTN generate only weak or no REFs. But, unlike Pb in the lead
relaxors, the K cation in KTN is not off-centered. The KTN is
therefore a simpler system and offers a particularly interesting
case that puts into question the explanation given above for
PMN and PMN-xPT. As shown below, DS is observed in KTN
near the (110) BZ point but is only weak or absent near the
(200) BZ point where significant TA damping is nevertheless
observed [8]. In the present paper, we examine the cause of
this TA damping in a neutron study of KTN.

In KTN, the Ta5+ ion is replaced by the isovalent Nb5+
ion with almost the same ionic radius, unlike PMN and
PZN in which Nb5+ replaces the divalent Mg2+ and Zn2+
ions, respectively. Hence, chemical disordering leads to the
existence of static REFs in PMN and PZN but not in KTN.
Moreover, due to the heterovalency of the cations, Coulomb
forces are expected to suppress long range (LR) composition
fluctuations in PMN and PZN but to be absent in KTN. The
KTN is therefore a useful model system for the study of relaxor
ferroelectrics with homovalent cations and weak or nonex-
istent REFs. Other such systems are (K1−xLix)TaO3 (KLT),
Ba(Zr1−xTix)O3 (BZT), and Ba(Sn1−xTix)O3 (BST), etc. The
essential feature of these systems is the presence of isovalent
off-center ions and the two types of dynamics in which they
participate: one, the strictly local motion between crystallo-
graphically equivalent sites within the unit cell and the other
the correlated/collective motion of off-center ions in different
unit cells within PNRs/PNDs coupled to the soft TO mode.
In KTN, the Nb5+ cations within each unit cell are displaced
from their high symmetry site by 0.145 Å in eight equivalent
〈111〉 directions between which they can reorient [9]. These
off-center ions create electric dipoles that become correlated at
lower temperatures and collectively reorient under the action
of an external electric field, giving rise to the characteristic
relaxor behavior of the dielectric susceptibility. In addition,
these are likely to give rise to localized modes (LMs) within
PNRs/PNDs that can couple to the TO and TA lattice phonons.

In the present paper, we have studied the damping of the
TA phonon by means of high resolution inelastic cold neutron
scattering near the (200) BZ point where DS is very small [8].
We find that the TA damping is small for small wavevectors

q but increases rapidly to a maximum value in the vicinity
of q ∼ 0.1 reciprocal lattice units (r.l.u.). We show that this
TA damping can be qualitatively explained by either one of
two models. In the first model, it is successfully explained
in terms of a resonant interaction between the TA phonon
mode and a dispersionless LM of frequency ωL and damping
�L, �L < ωL, strongly coupled to the soft TO phonon mode
(TA-[LM-TO]). The value of the frequency ωL is found to
be close to the theoretically estimated value for the tunneling
splitting of the Nb5+ ions in their motion between off-center
positions, ωL ∼ 30 ÷ 35 K [9,10].

Alternatively, the TA damping can be successfully de-
scribed in terms of an empirical Havriliak-Negami (HN) [11]
relaxation, revealing a strong resonancelike transient response.

In the following, we present diffuse and inelastic neutron
scattering experimental results in Sec. II, their analysis in
Sec. III, and a general discussion in Sec. IV. The mathematical
details of the HN model are presented in Appendix A. The
interaction between tunneling off-center ions among (111)
positions and the TO and TA phonons is formally described
in Appendix B. Some earlier results can also be found in
Refs. [12] and [13].

II. EXPERIMENT

A. DS in the relaxor KTa0.85Nb0.15O3 (KTN15)

The DS measurements were made on a single crystal
KTa0.85Nb0.15O3 (KTN15). The development of a local struc-
tural order (PNDs), with lower symmetry than the surrounding
lattice, was first evidenced in the KTN15 crystal through elastic
DS (within the limit of resolution). The DS measurements were
carried out on the BT2 spectrometer at the neutron facility at
the NCNR neutron center at the National Institute of Standards
and Technology (NIST) with collimations of 60′-40′-40′-80′
and neutron energy of 14.7 meV. Pyrolytic graphite was used
to filter out harmonics. The scattering plane was (100)-(011),
and elastic scattering was measured around the (110) Bragg
peak in transverse 〈001〉 scans and upon warming. The results
are presented in Fig. 1(a) on two different scales, highlighting
the DS on a reduced vertical scale and the full scale Bragg
intensity as an inset. These elastic scattering results were fitted
with two peaks: a Gaussian for the Bragg and a Lorentzian for
the DS. The DS is clearly visible and seen to grow below 160 K.
The Bragg peak intensity increases rapidly below 140 K due
to the relief of primary and secondary extinction caused by
atomic plane distortions. In Fig. 1(b), the integrated intensity
of the DS is seen to reach a maximum, and its width [full
width at half maximum (FWHM)] reaches a minimum at the
transition, Tc ≈ 130 K. Figure 2 shows the relaxor behavior of
the dielectric susceptibility. Its frequency dispersion becomes
clearly visible below approximately 140 K but is weaker than
in other relaxors, such as KLT. It is worth noting, however,
that this frequency dispersion in KTN crystals with lower
concentrations of niobium (e.g., 3%) is greater and very similar
to that in PMN and PZN.

The minimum of the FWHM of the DS provides an
estimate of the maximum correlation length at the transi-
tion, ξ (T = 130 K) ≈ 10 unit cells ≈ 39.5 Å. Whether the DS
observed in KTN15 unequivocally indicates dynamic PNRs,
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FIG. 1. (a) (110) Elastic diffuse scattering for different temperatures; inset: Bragg peak intensity vs T . (b) The FWHM and integral intensity
of the DS around (110) vs T .

the formation of static PNDs (within the energy resolution of
the measurement) or both PNRs and PNDs is not a completely
settled question. A likely answer to this question can, however,
be obtained from the results of dielectric resonance studies
by one of us [14]. These resonances, which appear well
above the transition, are due to polarization-acoustic strain (or
piezoelectric) coupling in the paraelectric phase of KTN and
other relaxors. Such a coupling should be absent in the perfect
cubic phase of KTN, and its existence reveals the presence
of PNDs—or static correlations of Nb ion displacements in
neighboring crystal cells—and the accompanying polarization
and local strain fields. In a KTN15.7%Nb crystal, for example,
these resonances have been observed at temperatures as high
as 200 K upon cooling under an external dc electric field
and up to approximately 180 K upon zero-field heating, with
a large change in amplitude around T ∗ ≈ Tc + 25 K with
Tc ≈ 139 K [14]. Their metastability indicates that the PNDs
probably form as a diffuse first order transition, similar to the
condensation of water droplets in a supersaturated vapor. We
should also note that, by analogy with a vapor, the presence of

FIG. 2. Dielectric susceptibility of KTN15 vs temperature.

static PNDs does not preclude the simultaneous presence of
PNRs with dynamically correlated Nb ions.

B. High resolution inelastic neutron scattering in KTN15

High resolution measurements of the TA phonon in a single
crystal KTN15% were also made on the SP4F2 cold neutron
triple axis spectrometer at the Laboratoire Leon Brillouin in
Saclay (France), near the (200) BZ point in the (100)-(010)
scattering plane, with the phonon propagating in the (010)
direction. Elastic neutron DS was absent at that point [13],
within the limit of our resolution, but was, however, present
near the (110) BZ point, as reported above. For the inelastic
neutron scattering measurements, the effective collimations
used were as follows: horizontally, 273′-27′- 40′-40′; verti-
cally, 51′-69′-137′-275′; and the final neutron wave vector

was 1.64 Å
−1

from q = 0.025 to q = 0.9, providing a high

energy resolution of ∼0.2 meV (0.05 THz), and 2.662 Å
−1

at q = 0.12 and 0.16, providing a resolution of 1 meV.
Pyrolytic graphite was also used to filter the harmonics. Several
representative spectra are shown in Fig. 3 for the TA phonon
with q = 0.025 and q = 0.12 near the (200) Bragg reflection
at different temperatures in the region where DS is very
small. Fitted curves are also shown, using a damped harmonic
oscillator description for the phonon, including the thermal
population and taking into account the combined influence of
the spectrometer resolution and of the strong anisotropy of the
phonon dispersion surface away from the 〈100〉 direction, as
indicated in the legend.

1. The TA phonon dispersion in KTN15

The TA phonon dispersion is presented as a function of
wave vector in Fig. 4 and temperature in Fig. 5. As previously
observed, the dispersion curve in Fig. 4 exhibits a kink at a
frequency of � ≈ 0.7 THz around q = 0.12, still quite far
from the zone boundary, which is reproduced here by a
sine function. In Fig. 5, the phonon frequency is relatively
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FIG. 3. Transverse acoustic phonon spectra (experimental data and fitting curves for a damped harmonic oscillator). The functional form
used to fit the spectra corresponding to q = 0.025 was ω2 = 26q2

y
+ 60q2

x
+ 30q2

z
and that for q = 0.12, ω = 0.5 + 1.5qy + 20q2

x
+ 20q2

z
. The

same functional form was used for all temperatures.

FIG. 4. The transverse acoustic wave (TAW) dispersion curve for
KTN15 at T = 135 K. Fitting curve � = P 1/(3π ) sin(3πq) with
P 1 = 8.024 ± 0.17 THz/r.l.u. Note the strong deviation (∼14%)
from a linear dispersion, even at q ∼ 0.1.

flat with temperature for small wave vectors, q � 0.07. But
the frequency shows a clear dip around 136 K (temperature
measured) for q � 0.09 and a broad minimum also around the
same temperature with a clear hardening at lower temperatures
for q = 0.16. As a rule, acoustic phonon frequencies increase
at low temperatures due to anharmonic interactions. Here
instead, a frequency minimum is observed (especially for
q = 0.16) in the region where strong polarization fluctuations
are present (PNDs).

2. The TAW damping in KTN15

The evolution of the TAW damping as a function of
temperature is shown in Figs. 6(a) and 6(b). In Fig. 6(a),
the phonon width, �, is relatively flat and independent of
temperature for small wave vectors. For larger wave vectors,
however, � increases with decreasing temperature and reaches
a maximum for q � 0.07 around 136 K, a temperature at
which the PNDs are clearly present (see DS in Fig. 1).
� then decreases significantly at lower temperatures. This
temperature profile of the TA damping indicates that the lattice
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FIG. 5. The TAW (2, q, 0): frequency vs temperature for KTN15
(1 THz = 4.139 meV).

is relatively ordered at high temperature; becomes partially
disordered at intermediate temperature, when the PNRs and
then the PNDs are present and then scatter the TA phonons;
and returns progressively to a more homogeneous although
still distorted state (large Bragg intensity) below Tc as the
PNDs grow and merge. It is also interesting to note that the
curves corresponding to q � 0.08 all tend to converge toward
≈220 K, the upper temperature limit at which the PNDs are
known to appear (see dielectric resonances mentioned earlier
[14] and again below).

In Fig. 6(b), the q dependence of the damping also reveals
an interesting trend. At all temperatures, the phonon width ex-
hibits a step increase around q = 0.07, goes through a shallow
maximum at q = 0.09–0.12, and remains high beyond. The
step increase is moderate at 195 K, the highest temperature
measured; maximum at intermediate temperatures around
140 K; and significantly smaller at the lowest temperature

measured of 108 K. Such a step increase with maximum
around q = 0.09–0.12 suggests scattering of the TA phonon
by inhomogeneities of approximate size 8 ÷ 11 unit cells.
As mentioned at the beginning of the paper, dynamic PNRs
appear at Burns temperature, Td , then become quasistatic or
static PNDs at T ∗, giving rise to DS and the characteristic
frequency dispersion of the dielectric constant of relaxors. As
seen in Fig. 2, T ∗ � 160 K in KTN15. In fact, based on the
observation of the dielectric resonances mentioned earlier, we
conclude that PNDs probably become stable at temperatures as
high as T = 200 K in KTN15.7% upon cooling in an external
electric field [14]. It is important to note that the temperature at
which the PNDs are observed to appear also depends upon the
characteristic frequency of the measurement, that temperature
being higher for higher frequencies.

C. Inelastic neutron scattering in KTN17

To help with the interpretation of the high resolution
inelastic neutron scattering data presented here for KTN15%,
additional data on the TA and soft TO phonon mode dynamics
were obtained on another single crystal with a similar con-
centration, KTN17 (17%Nb), which exhibited similar features
to those in KTN15. Measurements of KTN17 were made on
the thermal neutron triple axis spectrometer BT9 at the NCNR
neutron center (NIST) with fixed incident energy of 14.7 meV
[15]. Constant q and constant E scans of the TO and TA
phonon branches were performed along the line (q, 2, 0) in the
temperature range between 100 K and 310 K. The dispersion
curves obtained directly from the observed frequencies in
the inelastic spectra measured at constant q and at higher
temperatures (310 K and 240 K) are shown in Fig. 7(a). The
soft TO phonon peaks are seen to be already unusually broad
at these higher temperatures, as indicated by the large vertical
bars. The temperature dependence of the TO phonon frequency
at the (0, 2, 0) BZ point is shown in Fig. 7(b). The measured
spectra are analyzed below in terms of the dynamic structural
factor, |F (Q)|, which is proportional to the scattering cross

FIG. 6. (a) Damping (FWHM), �a , of the transverse acoustic (TA) mode vs temperature for different values (2, q, 0) in the single crystal
KTN15 (1 THz = 4.139 meV, 1 meV = 11.59 K). (b) The TA phonon damping �a vs wave vector qat the different temperatures. Experimental
data and three-parameter fit with Eq. (4) in the text. (see Sec. III A).
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FIG. 7. (a) The KTN17: dispersion of the transverse optic wave (TOW) and TAW at T = 310 K and 240 K. Note the large width of the TO

peak (vertical bars). y =
√

ω2
0 + C2

oq
2, ω0 = 2 THz, Co = 15 THz/r.l.u. The dash-dot line at E = 2.9 meV (0.72 THz) marks the estimated

energy of the dispersionless localized modes mentioned in the text. (b) The KTN17: temperature dependence of the TO phonon frequency at
the (0, 2, 0) BZ point. The TO phonon is softening, but its frequency remains high even at zone center with a gap b ∼ 1.2 THz. The vertical
bars indicate the phonon peak width.

section and is obtained from the experimental intensities, I ,
after correction for the Bose temperature factor and assuming
an inverse square root energy dependence of the harmonic
phonon displacement amplitude (see Shirane et al. [15]):

I = A
1

E(q)
|F (Q)|2

{
n + 1
n

with n = 1

exp [E(q)/T ] − 1
,

(1)

in which E is the phonon energy and A is a numerical factor
determined by the parameters of the spectrometer. We note
that the transformation given in Eq. (1) corrects for the varying
scattering weight at different energies but, unfortunately, also
enhances background fluctuations. We also note that effects of
the spectrometer resolution are not taken into account in such
a simple approach. In the following, we omit the factor A for
the purpose of a semi-quantitative analysis.

Constant energy spectra measured at E = 4 meV and
6 meV are reproduced in Figs. 8 and 9. These two energies
were conveniently chosen to separately probe the behaviors of
the TAW (4 meV) and TOW (6 meV). As seen in Fig. 8(a)
for E = 4 meV, the overall TA phonon intensity is smaller in
the temperature range 130 K < T < 160 K, with significant
intensity present at the zone center, q = 0. The F 2 returns to
a more usual phonon spectral shape at 100 K. The same TA
phonon curves are presented in a more detailed manner and
fitted with damped harmonic oscillator functions in Figs. 8(b)
and 8(c) at T = 130 K and 100 K, respectively. Note that the
different peak shapes for positive and negative q are only an
effect of the spectrometer resolution (focusing for positive q

and defocusing for negative q).
Constant E spectra taken at E = 6 meV and fitted peaks are

shown in Fig. 9. At this energy, only one peak corresponding
to the TO phonon is observed in the spectra, consistent with

the dispersion curves shown in Figs. 7(a) and 7(b). (Note: The
two peaks at T = 130 K correspond to the same phonon at
positive and negative q.) The width of the TO phonon peak
is seen to increase or, equivalently, the correlation length of
the TO phonon is seen to decrease with temperature. The
high background at 130 K and 100 K points to a very broad
distribution of intensity in q space, corresponding to a very
short correlation length, or localized excitations (LM). In
Fig. 9(c) at 100 K, the TO peak is absent.

In trying to understand the origin of the TA phonon damping
in KTN15, the main experimental results obtained on the
KTN15 and KTN17 single crystals are as follows:

(1) a deviation from the linear dependence in the TA
dispersion curve, ω vs q, between q ≈ 0.1 and 0.16 and a
broad minimum in the TA frequency around the transition
temperature, T = 135 K, in this same q range;

(2) a steplike increase in TAW damping with inflection
point around q = 0.07;

(3) maximum TA damping at T = 135 K for q between
0.12 and 0.16;

(4) a high minimum of the TO mode frequency near the
transition; and

(5) no observed crossing of the TA and soft TO phonon
branches, at least for q � 0.16, but crossing of the TA phonon
branch and a dispersionless branch of localized excitations
(LM).

In the following analysis, we show that the high fre-
quency of the soft TO mode in the transition region, T <

160 K, is due to its strong coupling to localized excitations
(LM) whose flat branch at ωL = 0.7 THz crosses the TA
curve. These localized excitations can be attributed to the
collective reorientational motion of the off-center Nb ions
within each PNR/PND through tunneling. The TA damping
is then due to scattering of the TAW by mixed TO-LM
excitations.
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FIG. 8. (a) The KTN17: q scan at constant energy, for several temperatures upon cooling and warming (E = 4 meV = 0.966 THz).
(b) The KTN17: T = 130 K. The q scan at constant energy, E = 4 meV. Fit: two Lorentz peaks, positions qc1 = 0.107, qc2 = −0.06; widths
w1 = 0.158, w2 = 0.144; areas A1 = 58, A2 = 49. (c) The KTN17: T = 100 K. The q scan at constant energy, E = 4 meV. Fit: two Lorentz
peaks, position qc1 = −0.084, qc2 = 0.131; width w1 = 0.1, w2 = 0.045; area A1 = 34.5, A2 = 39.5.

III. ANALYSIS OF RESULTS

A. Theoretical analysis of the TAW resonant damping

The central experimental facts that we seek to explain
are as follows: the TA phonon broadening with decreasing
temperature; its maximum damping in the temperature range
in which PNDs are present; and its return to low damping at low
temperatures, despite little or no DS near the (200) reflection
in KTN [8]. The model presented below and in the appendices
that explains these experimental results is inspired by the
model proposed by Axe et al. [16], who considered the effect
of a direct bilinear TA-TO interaction on the TA dispersion in
the incipient ferroelectric KTaO3. In the paraelectric phase, the
Hamiltonian term describing the TA-TO interaction was taken

to be proportional to the product of the two momenta (TA and
TO). In the ferroelectric phase, this term was written as the
product of the polarization P and a TA momentum, a product
that is particularly large for long-wavelength excitations. Here,
we follow a similar approach but additionally take into account
the mixing of the TO and LM modes as well as the local
polarization P that develops with PNRs/PNDs. We thus write
an interaction Hamiltonian, Hfr,

Hf r = 2f (Pξ )ikuik with

(Pξ )ik ≡ 1/2(Piξk + Pkξi − 2/3δik(Pξ )), and

uik ≡ 1/2(∂ui/∂rk + ∂uk/∂ri − 2/3δlkdiv(u)), (2)
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FIG. 9. The KTN17: the q scan of the TO phonon at constant energy, E = 6 meV at (a) T = 160 K, the correlation length is L = 1/w =
10 l.u. ≈ 40 Å; (b) T = 130 K, two Lorentz peaks are seen on higher background; (c) T = 100 K, no peak but only a high background.

in which ξk and uk are the k components of the TO and
TA (shear) mode displacements, respectively, the parameter
f is the coupling constant, and (Pξ )ik and uik are written
as traceless tensors with δik the Kronecker delta. As shown
in Appendix B (B8), the LM modes that are associated
with transitions between Nb5+ tunneling states can only
become excited by the TA phonon with the appearance of
the quasistatic or static polarization P of PNRs/PNDs. The
existence of such a condition was revealed early in the
ultrasonic results obtained by Knauss et al., which showed
that the coupling between a transverse ultrasonic wave and
the tunneling Nb ions was only initiated by the appearance of
the PNDs [16]. The similarity of our Eq. (2) with that used
in Axe et al. [16] is not a direct one but only a formal one
because ξk here represents a component of the renormalized
TO mode eigenvector, taking into account the strong TO-LM
interaction mentioned earlier. In the following, TO and LM
refer to the renormalized modes resulting from this interaction.
The normally soft TO mode is renormalized toward higher
frequencies and the LM modes in our case toward lower
frequencies (level repulsion) where they interact with the TA
phonon, causing its observed damping. We work here in the
approximation of a homogeneous medium and neglect in first
order approximation any dispersion of the resonance. Also,
unlike the TO-LM interaction, we suppose that the interaction
between the TAW and the mixed LM modes is not strong (weak
coupling approximation). Assuming the simplest form of a
plane TA wave propagating along the z axis, polarized along
the x axis, and interacting with the mixed LM mode polarized
along the same x axis, the Lagrangian 	 and dissipative
function 
 can be written as

	 =
∫

Ld3r, L ≡ 1/2(∂u/∂t)2 − C2
a/2(∂u/∂z)2

+ 1/2(∂ξ/∂t)2 − (ω2
L/2)ξ 2 − f Pzξ (∂u/∂z),


 = 1/2
∫

�L(∂ξ/∂t)2d3r, (3a)

in which Ca is the acoustic velocity of sound. The coupled
equations of motion for the TA and LM mode with momentum
q and frequency ω can then be obtained from the Lagrangian

equations, respectively, for u and ξ as

(ω2 − ωa(q)2)u + if qPzξ = 0, with ωa(q) = Caq

−if qPzu + (ω2 − ω2
L + iω�L)ξ = 0, (3b)

in which ωa(q) and ωL are the frequencies of the TA and LM,
respectively, �L is the damping of the LM, P the quasistatic
or static polarization from PNRs/PNDs, and f is the coupling
constant. It is clear from these equations that u and ξ are
coupled only in the presence of P . Solving these coupled
equations using perturbation theory to the first nonvanishing
order in f , we obtain the following expression for the acoustic
damping:

�a(q) ≈ M2q2 �L(
ωa(q)2 − ω2

L

)2 + ωa(q)2�L
2

with

M2 = f 2P 2
z /2. (4)

It is interesting to note that this damping is proportional to
the square of the oscillator strength, M , itself proportional to
the local polarization, P , from PNRs/PNDs. The experimental
TA damping data shown in Fig. 6(b) are fitted with expression
(4), taking into account the sine approximation shown in Fig. 4
for the TA mode dispersion ω(q) and considering ωL, �L, and
M as fitting parameters. The values of the fitted parameters are
presented in Figs. 10(a) and 10(b). The temperature dependen-
cies of the frequency and width of the resonance are seen to
be moderate. By contrast, its oscillator strength, M , exhibits
a strong temperature dependence [M2(T = 136 K)/M2 (T =
108 K) ∼ 2.7), which mirrors the experimentally determined
TA damping shown at Fig. 10(b). The maximum of the TA
phonon damping can thus be attributed to the resonance
maximum of the TA-LM coupling, which is discussed below.

B. The TAW damping as due to coupling to a relaxation

Alternatively, the temperature and wave vector dependence
of the TA damping can be described phenomenologically as
due to the direct coupling between the TAW and a purely
relaxational LM, distinct from the resonance mode described
in expression (4). In the framework of the standard Debye
relaxation model, the TAW damping would be written as
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FIG. 10. (a) Frequency and width of the localized mode vs temperature, obtained by fitting the experimental data in Fig. 6(b); note that
�L < ωL at all temperatures. (b) Oscillator strength M2 vs temperature.

follows:

�a(q) = qGD

ω(q)τD

1 + [ω(q)τD)2]
. (5)

Here, ω is the frequency of the TAW, τD designates
the relaxation time of the LM, and GD is a numerical
factor. With the dispersion ω(q) of the TAW taken from the
experimental data shown in Figs. 4 and 5, the TA damping
curves can be fitted with only two free parameters, τD and
GD . However, such a simple Debye-type relaxation is found
to be unable to reproduce the steplike increase observed in
the measured TAW damping around q = 0.07. Instead, the
presence of PNRs/PNDs suggests a distribution of relaxation
times. Assuming such a distribution, the TA phonon damping
can be described in the framework of the HN relaxation
model for the permittivity, χ (ω) (see Refs. [11], [17], and
[18]), which is an empirical modification of the Debye model
with two exponents α and β. The exponent α is a measure
of the distribution of relaxation times, and β introduces
an asymmetry in the distribution (β = 1 for a symmetric
distribution):

χ (ω) = χ∞ + �χ

[1 + (iωτ )α]β
with �χ = χS − χ∞, (6)

in which χ∞ is the high frequency limit of the permittivity, χS is
the static low frequency permittivity, and τ is a characteristic
average relaxation time. Special cases of the HN relaxation
function correspond to the Debye (α = β = 1), Cole-Cole
(0 < α < 1, β = 1), and Cole-Davidson (α = 1, β 
= 1) pro-
cesses. The Cole-Cole relaxation is often used to describe
the so-called stretched relaxation observed in glasses and
polymers.

As shown in Figs. 11(a) and 11(b), using, as before, the
sine approximation to the TA phonon dispersion, ω(q), shown
in Fig. 4, the TA phonon damping can be fitted with excellent
accuracy by the imaginary part of the susceptibility expression
(6), with β = 1 and three free parameters, P , τ , and α with

α ≈ 3/2:

�a(q) = qP
[ω(q)τ ]α sin(πα/2)

1 + 2[ω(q)τ ]α cos(πα/2) + [ω(q)τ ]2α
. (7)

The fitting parameters are plotted in Figs. 11(c) and 11(d).
Both P and τare seen to reach a maximum in the region of the
transition and to drop rapidly below, while α decreases to reach
a constant value below the transition. Both tendencies suggest
a freezing of the relaxation, with the faster components of the
distribution remaining dynamic to a lower temperature.

We now discuss specific features of the HN function
connected with the value of the exponent α. Comparing the
Debye, fD , and HN, fHN(β = 1) relaxation functions,

fD = 1/(1 + iωτ ) and fHN = 1/(1 + (iωτ )α), (8)

fHN with α = 1/2 (i.e., < 1) can be shown to slowly decreases
for ωτ � 1, which is often described as a stretched relaxation
in the literature of glasses and polymers. The same function
fHN exists but with α ≈ 3/2 (i.e., > 1), as in the present case,
gives rise to a resonancelike transient oscillation, which is
responsible for the steplike increase in the TAW damping
observed experimentally around q = 0.07.

In the time domain, the Debye relaxation function mono-
tonically drops to zero with time:

FD(t) ≡ 1

2π

∫ ∞

−∞

exp(iωt)

1 + iωτ
dω,

FD(t < 0) = 0 and FD(t > 0) = 1

τ
exp(−t/τ ). (9)

By contrast, the HN relaxation function with α > 1 exhibits
a resonancelike transient oscillation at short times. Its time-
domain representation, FHN(t), is shown in Fig. 12 and can be
expressed by means of the Mittag-Leffler function Eα(x) for
the case β = 1 [17,18].

The resonancelike transient relaxation indicates that the
HN function fHN (α = 3/2, β = 1) (8) has a pole in the
complex ω–plane (see Appendix A for details) and can also
be adequately fitted at short times by a Lorentzian function, as
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FIG. 11. (a) Experimental data and fit with expression (6) for the Havriliak-Negami relaxation model with β = 1 at T = 195 K, 154 K,
and 136 K. (b) Same as in Fig. 12(a) but at T = 123 K and 108 K. A steplike increase in the TAW damping around q = 0.07 is precisely
reproduced in this H-N model. (c) Values of the fitting parameters P and τ vs temperature using the Havriliak-Negami relaxation model in
Eq. (7) with β = 1. (d) Value of the fitting exponent α vs temperature using the Havriliak-Negami relaxation model in Eq. (7) with β = 1.

illustrated in Fig. 12. Another significant difference between
the fD and fHN relaxation functions is worth mentioning. A
Debye relaxation is a localized process in which each unit
relaxes independently of the others after several rapid initial
collisions. In the high-frequency range, ωτ � 1, or at short
times, fD(α = 1) can be expanded in terms of integral powers
of the parameter 1/(ωτ ), while fHN(α = 1/2) is expanded
in terms of half powers, 1/(ωτ )1/2. This point was carefully
investigated in the context of high-viscosity liquids. A detailed
theory was proposed by Isakovich and Chaban [19] who
regarded these liquids as microinhomogeneous media whose
dynamics are controlled by diffusion, as in a delocalized or
nonlocal process. Letting R designate the characteristic size
of a microformation or a diffusion length in the viscous liquid,
the long wave response of such a medium to an excitation
with wave vector q will be determined by the value of the
dimensionless parameter (qR), or equivalently by the value

of (ωτ )1/2. As discussed in the second part of the Discussion
section below, α ≈ 3/2 indicates that the local relaxation of
the polarization has now become slower than its diffusion
time, and the relaxation is therefore delocalized or a collective
process.

IV. DISCUSSION

We have studied the damping �a of the TA phonon in
the relaxor KTN with moderate niobium concentrations of
15%–17% by means of high resolution inelastic cold neutron
scattering. The TA phonon linewidth or damping exhibits a
step increase around momentum q = 0.07, goes through a
shallow maximum at q = 0.09–0.12, and remains high beyond
and up to the highest momentum studied of q = 0.16. This
step increase is moderate at 195 K, the highest temperature
measured; maximum at intermediate temperatures around
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FIG. 12. Time evolution of the Debye, stretched HN (with α =
0.51, β = 1) and transient HN relaxation (with α = 1.51, β = 1),
and Lorentzian fit y = A × exp(−t/τHN/t1) sin(πt/τHN/t2) with A =
10.56, and the dimensionless scaling factors t1 = 1.49 and t2 = 2.92.
The value of the ratio of the damping and oscillation arguments
of the Lorentzian function (t/τHN/t1)/(πt/τHN/t2) ÷ 0.624 is close
to the value 1/

√
3 = 0.5773 of the pole term (A3) in Appendix

A. For t/τHN < 0.35, the HN function can be approximated as
y1 = 6.7838(t/τHN)1/2. For convenience, the Debye and stretched
relaxation curves are displaced.

140 K; and significantly smaller at the lowest temperature
measured of 108 K.

The observed TAW damping is successfully fitted in the
framework of the simple model, described above, of the TA
phonon interacting with a mixed LM-TO mode. From fitting
the data in Fig. 6(b) using Eq. (4), the bare LM is found to
have frequency ωL ∼ 0.6 ÷ 0.7 THz and damping �L � ωL

[Fig. 10(a)]. Maximum scattering of the TAW occurs when
the frequency of the acoustic phonon is resonant with the LM,
ωa ≈ ωL. The bare frequency of the LM mode, ωL, depends
only moderately on temperature (variation �15%), and the
variation of �L with temperature is less than 30%. However,
the oscillator strength M , shown in Fig. 10(b), exhibits a
strong maximum in the temperature range ∼120 K ÷ 160 K,
which is also the temperature range of the dielectric relaxation
maximum (relaxor behavior).

We now address the possible nature of the resonant LM
in KTN. As suggested earlier, the existence of such a mode
is connected with the presence of off-center Nb+5 ions,
displaced from their high symmetry sites by 0.145 Å in one of
eight equivalent 〈111〉 directions inside PNRs/PNDs [9]. The
off-center Nb ions undergo two types of dynamics, on two
distinct time scales: The first one is associated with the TO
mode, and the second one is associated with the tunneling
motion of the Nb+5 off-center ions within each unit cell.
Whereas the intrinsic soft TO branch would normally tend
toward zero at the center of the BZ, here the observed TO
phonon frequency remains high even at the zone center with a
gap b ∼ 1.2 THz [Fig. 7(b)]. Such a gap in the soft TO mode

spectrum has also been observed in other materials [20–23].
In SrTiO3 [20], the gap ωc∞ ≈ 0.13 THz (Tc ≈ 105 K) was
attributed to the interaction between the TO phonon and
an unspecified relaxation mode [central peak (CP) theory].
Halperin and Varma [21,22] explained the existence of the CP
in terms of an interaction of the soft mode with a relaxing defect
cell. They found that a small concentration of such defect cells
in which the order parameter relaxes slowly between different
equivalent orientations may account for the narrow CP as well
as for the temperature dependence of the soft-mode frequency
near structural phase transitions. Although significantly larger
than in SrTiO3, the gap b in KTN could similarly be attributed
to the presence of an additional spectral density in the TO-
TO phonon correlation function, and Halperin and Varma’s
approach might apply qualitatively to the case of KTN crystal.
However, the much larger value of the gap b ∼ 1.2 THz near
the (020) BZ point and of the Nb concentrations in KTN
crystals suggests an additional mechanism, this one between
the TO phonon and the dispersionless LM excitations with
energy ∼0.7 THz attributed to the collective tunneling motion
of the Nb5+ off-center ions within PNRs/PNDs. The dynamics
of the off-center Nb ions would seem to correspond to a
resonance rather than to a relaxation. It is worth noting that,
somewhat similar to the present case, the interaction of the
TAW with local excitations (translation-rotation coupling)
has been evidenced in orientationally disordered crystals
and explained in terms of dipole-dipole interactions (see
reviews [24,25]). In the present case of relaxor dynamics,
however, long range (LR) dipole-dipole interactions should
have only a moderate effect. Finally, CPs have been reported
in light scattering studies of liquids where they have also been
attributed to relaxation processes [31].

Pseudospin model of the TA-[TO-LM] interaction

The model discussed below rests on the assumption that the
Nb+5 ions are likely involved in both the acoustic TA and the
soft optic TO motion as well as in their own tunneling motion
and/or thermally activated jumping between equivalent sites.
Girshberg and Yacoby [10,26] have described the dynamics
of such a system of off-center ions in terms of pseudospins.
A similar formal approach has been applied to order-disorder
ferroelectric transitions [27]. Pseudospin dynamics is usually
described in the framework of the Ising model with a spin
Hamiltonian that includes a transverse field, HT [26],

H = −�
∑
m

σx
m − 1

2

∑
m,m′

J (m − m′)σ z
mσ z

m′ + HT . (10)

Here m is the position index, σm is the Pauli spin matrix,
J (m − m′) is the direct spin-spin interaction constant, and
�0 is the tunneling frequency of an individual off-center
ion between different orientations. The term HT —the heat
reservoir—includes the interaction of the spins with all thermal
excitations, namely thermal phonons, but excluding the TO
phonon, which is being considered separately. The strength
of the direct spin-spin interaction J (m − m′) is assumed
to be moderate. Nevertheless, spin-spin interactions through
a virtual TO mode are essential and become particularly
strong near the transition as the bare TO phonon softens
toward the dispersionless LM branch. In KTN, Girshberg
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and Yacoby [10,26] estimated the value of the individual
Nb+5 ion tunneling splitting between off-center positions
to be 2� ∼ 30 ÷ 34 K = 0.625 ÷ 0.709 THz. This is almost
exactly the value of ωL obtained in Fig. 6(b) from fitting the
TA damping and is also shown in Fig. 10(a) as a function of
temperature.

We now formally describe the nature of the interaction
between the TA and the TO phonon coupled to the LM.
Because of their small off-center displacement and corre-
sponding dipole moment, the direct electric dipole-dipole
interaction between Nb+5 off-center ions can be regarded
as moderate compared with their interaction with the TO
phonon and, in first order approximation, we can write the
system wavefunctions in terms of individual off-center Nb
ions tunneling between eight equivalent (111) positions. As
indicated in Appendix B, the fully symmetric ground state
wave function corresponds to a superposition of all equiv-
alent eight positions: ψS = [1,1,1,1,1,1,1,1], with energy
〈ψs |H |ψs〉 = −3�. Similarly, the first excited state is a triplet,
XψS , YψS , ZψS , with energy –�; the second excited state is
also a triplet, XYψS , YZψS , XZψS , at +�; and the third one is
a singlet state, XYZψS , at +3�. Thus, the initially degenerate
ground state splits into eight eigenlevels of the Hamiltonian
H . However, it is important to note that the corresponding
wave functions are orthogonal and that transitions between
these various energy levels will only occur in the presence of
a perturbation, V , by either a TO or TA phonon or the qua-
sistatic or static polarization P from PNRs/PNDs. The various
possible terms and transitions are presented and discussed in
Appendix B.

Because the Nb+5 ions are only off-centered from their
high symmetric crystallographic position by a relatively small
RNb = 0.145 Å in a (111) direction, we can expand the
interaction of the TO and TA phonons with the tunneling
Nb+5 ions in terms of the small dimensionless parameter rNb ≡
RNb/l.u. = 0.036 
 1. The first order term in the expansion,
V (1)[TO|short range (SR)] ∼ rNb, describing the TO phonon-
off-center Nb interaction (B4), excites dipolar transitions with
energy 2� ≈ 0.6 ÷ 0.7 THz and leads—in combination with
the anharmonic TO-TO interaction—to the opening of the
gap b. The second order term, V (2)(TO|SR) ∼ r2

Nb, excites
quadrupolar transitions with energy 4� ≈ 1.2 ÷ 1.4 THz.
However, the probability of this transition is small, especially
near the BZ center, where the gap opens in Fig. 7(b). Because
rNb 
 1, it is therefore reasonable to expect that the first order
term (dipolar transition) will dominate. But Eqs. (B8)–(B10)
show that the TA phonon will excite transitions with energy
2� only if the system is at least partially polarized, i.e., in the
presence of PNRs/PNDs. We therefore can expect that the TA
phonon damping [at 2� = ωL ≈ 0.6 ÷ 0.7 THz; Figs. 11(a)
and 11(b)] will be small at high temperature, in the absence of
PNRs/PNDs, maximum at T ∼ 140 K near the transition in the
presence of PNRs/PNDs, and decreasing at low temperature.
The TA phonon could also excite transitions with energy 4�

due to the interaction V (TA|SR) ∼ r2
Nb of an elastic dipole

(tensor) with acoustic stress (B6) and (B7). However, such
high-energy TA phonons are not observed in our experiment
(Fig. 8). A detailed analysis of the TO-LM interaction effect
on the genesis of the PNRs/PNDs in KTN is outside the scope
of the present paper and will be published subsequently.

TAW damping and DS

We finally return to the question of the correlation between
the TAW damping and DS. Stock et al. [6] pointed out the
existence of a correlation between their DS results and the
TAW damping in the relaxor PMN. These authors showed that
strong DS near the (110) BZ point was accompanied by heavy
damping and even overdamping of the TA phonon. Based
on this result, they concluded that a firm connection occurs
between DS and TA damping at a particular BZ point. Recently
however, Stock et al. [7] have also reported in a PMN single
crystal a moderately damped TA phonon (�/ω ∼ 0.3 ÷ 0.4
at q = 0.21) near the (200) reflection where DS is small or
absent, as in our KTN results. Therefore, their results and ours
may not be in contradiction with each other, and the connection
between the DS and the TAW damping is not a necessary one
but may depend on the particular situation.

We noted in the Introduction that Hirota et al. [5] explained
their neutron DS data in PMN by proposing that DS was not
necessarily due to a condensed soft TO mode but could also
be due to a collective shift δ of all the atoms within a PNR
along the local polar direction. What can be said of DS in
KTN in light of the above discussion? Is there a δ shift in
KTN as in PMN [4]?

One of us has previously shown that a LM can be described
as a coherent superposition of the TO and TA phonons [28],
which is similar to the collective shift δ along the polarization
direction proposed by Hirota et al. [5]. However, such a shift
is only possible in the case of a strong TO-TA interaction.
Although there is presently no definite information regarding
the strength of the TA-TO interaction in KTN, recent
observations of characteristic electromechanical resonances
in several relaxor ferroelectrics by Pattnaik and Toulouse
[14,29] [K1−xLixTaO3 (KLT), KTN, and PZN] reveal the
piezoelectric character of the PNDs. These resonances are
macroscopic manifestations of a relatively strong TO-TA
coupling mediated by the PNDs. Here, we have shown that
this interaction also involves the LMs associated with the
tunneling of the off-center Nb.

The results presented here should be useful for the study
of other relaxor ferroelectrics with homovalent cations KLT,
BZT, and BST in which strong random fields are absent. In the
lead relaxors PMN and PZN, the heterovalent substituted ions
give rise to REFs that should be somewhat screened by the
off-center ions and may also partially suppress the tunneling
motion of the Nb ions within individual unit cells.

V. CONCLUSION

In the present paper, we have reported measurements of the
TA and TO phonon in KTN crystals with Nb concentrations
of 15% and 17%. In addition to the TO and TA phonons, these
results suggest the existence of LM that can be associated with
the collective or cooperative tunneling reorientation of the
off-center Nb5+ ions mediated by the TO phonon. These LM
modes are strongly coupled with the TO phonon and interact
with the TA, giving rise to increased damping for intermediate
values of the wavevector, q � 0.07, which correspond approx-
imately to the size of the PNDs. Transitions between Nb5+
tunneling states that would otherwise not be excited by the TA
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phonon become allowed with the appearance of the quasistatic
polarization of PNRs or static polarization of PNDs. The
TO-LM coupling also qualitatively explains the incomplete
softening of the TO mode. Conversely, it is the displacements
of the same Nb ions correlated through the TO field that give
rise to the formation of these PNRs and PNDs. Therefore, the
same Nb ions take part simultaneously in both the relatively
high frequency TO motion and the relatively slow off-center or
pseudospin correlated motion, i.e., a two-time scale dynamics
[30]. At high temperature, the TO mode-driven Nb dynamics
and the Nb off-center pseudospin dynamics are almost inde-
pendent from each other because of their large difference in
frequency or time scales, and the displacements of different
off-center Nb ions are mostly uncorrelated. Upon cooling, the
evolution of the system can be described as follows. (i) The
pseudo spin-pseudospin interaction strengthens, and the dis-
placements of the off-center Nb ions become correlated giving
rise to a LM. (ii) The dynamics of the TO and pseudospin
becomes mixed, and a coupled TO-pseudospin LM mode
appears. (iii) This mixed LM mode eventually condenses,
resulting in the appearance of static atomic displacements and
local polarization P within regions or droplets (PNDs), local
strain fields, the relaxor behavior of the dielectric susceptibil-
ity, and the dielectric resonances mentioned earlier [14,29,30].
The TA phonon damping reaches a maximum at ∼136 K
[Figs. 6(b) and 10(b)] due to the increasing number of PNDs.
At low temperature, the coupling between the TO mode and
the off-center Nb pseudospin dynamics weakens because the
reorientation frequency of the off-center Nb falls away from
the increasing soft mode frequency and the crystal returns to
a regime similar to that of ordinary ferroelectrics. In such a
scenario, the THz frequency TA phonon excited by neutrons
acts as a probe of the TO–Nb+5 dynamics in KTN.
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APPENDIX A

The HN relaxation model

The HN relaxation [11,17,18] is an empirical modification
of the Debye relaxation model that takes into account the
asymmetry and breadth of the dielectric dispersion curve
by adding two exponential parameters α and β to the
Debye [Eqs. (6)–(8)]. The asymmetry and breadth of the
corresponding spectra are described by the parameters α and
β. The Debye relaxation correspond to the case α = 1, β = 1.

The HN model can be described as a superposition of Debye
models with a continuous distribution g(ln τD) of the relaxation
time, τD:

χ (ω|α,β) − χ∞
�χ

=
∫ ∞

τD=0

1

1 + iωτD

g(ln τD)d ln τD

g(ln τD|α,β) = 1

π

(τD/τ )αβ sin(βθ )

((τD/τ )2α+2(τD/τ )α cos(πα)+1)
β/2 ,

θ = arctan

(
sin(πα)

(τD/τ )α + cos(πα)

)

if the argument of the arctangent

is positive, otherwise

θ = arctan

(
sin(πα)

(τD/τ )α + cos(πα)

)
+ π. (A1)

The HN model with 0 < α < 1 and β = 1 is often used to
describe the so-called stretched relaxations of polymers and
glasses. By contrast, our experimental results are satisfactorily
fitted in the framework of the HN model with values α ≈
3/2 ÷ 1.7 (i.e., greater than 1) and β = 1. The HN relaxation
model in Eq. (6) must satisfy general analytical conditions
(causality) in the complex frequency plane ω [31]. In the case
of α = 3/2 and β = 1, the HN function and the distribution
function (A1) have a branch point at ω = 0, τD = 0.The
requirement of causality [31] will be satisfied if we make
corresponding cuts in the line connecting two Riemann
surfaces in the complex ω and τD planes. In this case, it is
therefore difficult to interpret the function (A1) directly as due
to a distribution of relaxation times in this case.

Instead, let us consider the HN relaxation function FHN(t)
in the time-domain representation:

FHN(t |α = 3/2,β = 1) =
∫ ∞

−∞

exp(iωt)

1 + (iωτ )3/2 dω,

(A2)
FHN(t < 0|α = 3/2,β = 1) = 0

Expression (A2) is used in the numerical calculation of the
HN relaxation function shown in Fig. 12.

The function FHN(t > 0|α = 3/2,β = 1) can also be cal-
culated by integration in the complex ω plane with cuts along
the imaginary semi-axis from +0 to +i∞. We then have

FHN(t > 0|α = 3/2,β = 1)

= −S + 8π

3τ
exp

(
− t

2τ

)
cos

(
t

τ

√
3

2
− π

3

)
,

with S(t) = 2

t

∫ ∞

0

(wτ/t)3/2

(1 + (wτ/t)3)
exp(−w)dw

in which w is simply the variable of integration

andS(t � τ )

≈ 2τ 3/2

t5/2
×

∞∑
n=0

(−1)n�(3n + 5/2)!(τ/t)3n. (A3)

The pole term (A3) ∼ exp(− t
2τ

) cos( t
τ

√
3

2 − π
3 ) corresponds

to a resonance at the frequency ωp = √
(3/2/τ ). The pa-

rameters of this pole term (frequency, rate of decay) are in
an agreement with those obtained from the Lorentzian fit in
Fig. 12.

APPENDIX B

Model of the tunneling transitions of the Nb off-center ion
between (111) positions.

We consider tunneling transitions of one Nb ion between
(111) type positions in the cubic unit cell. The Nb ion can
occupy any one of the eight sites at the corners of the unit
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cell with coordinates x = ±1, y = ±1, z = ±1. These are
numbered as n = 1–8. Their positions can be described by the
(8 × 3) matrix S:

S[n = 1,x,y,z] = 1,1,1; S[n = 2,..] = −1,1,1; S[n = 3,..]

= −1,−1,1; S[n = 4,..] = 1,−1,1;

S[n = 5,] = 1,1,−1; S[n = 6,..]

= −1,1,−1; S[n = 7,..] = −1,−1,−1;

S[n = 8,..] = 1,−1,−1. (B1)

For simplicity, we take into account tunneling only along
cubic edges, i.e., between nearest (111) type positions, with
frequency �. The tunneling Hamiltonian HT is written as
an 8 × 8 matrix with corresponding eigenvectors E(m) and
orthogonal eigenfunctions ψ(m) in the representation (B1):
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. (B2)

The ground state energy is E = 〈ψs |H |ψs〉 = −3� and
corresponds to a fully symmetric wave function ψS =
[1,1,1,1,1,1,1,1]. Wave functions corresponding to excited
states are obtained by means of the commuting operators X,
Y , Z:

X =
8∑

j=1

X(j ), Y =
8∑

j=1

Y (j ), Z =
8∑

j=1

Z(j ),

(B3)
XY = YX, XZ = ZX, YZ = ZY, X2 = Y 2 = Z2 ∼ 1.

For example, XS[n=1,x =1,y = 1,z = 1] ∼ +S[n = 1],
XS[n = 2,x = −1,y = 1,z = 1] ∼ −S[n = 2], . . ., where
we omit factor normalization.

The excited states are the triplet XψS , YψS , ZψS with E =
−�, the triplet XYψS , YZψS , ZXψS with E = +�, and the
singlet XYZψS with E = +3�. The dipole operators, X, Y ,
Z, excite transitions with energy ±2�; quadrupole operators,
XY , XZ, YZ, excite transitions with energy ±4� and elastic
transitions within the triplet manifolds XψS , YψS , ZψS and
XYψS , YZψS , ZXψS ; and the octupole operator, XYZ, excites
transitions with energy ±2�, ±6�.

The Nb+5 ions are displaced from their high symmetry po-
sitions by a relatively small RNb = 0.145 Å in (111) directions,

and we express the values of the matrix elements in terms of the
small dimensionless parameter rNb ≡ RNb/l.u. = 0.036 
 1;
X, Y , Z ∼ rNb; XY , YZ, ZX ∼ r2

Nb; XYZ ∼ r3
Nb.

The Hamiltonian terms describing the TO and TA phonon
interaction with the tunneling ions will be different for SR
and so-called LR forces, which include polarization. For
simplicity, we do not take into account the modulation of the
potential barrier caused by the TO and TA phonons.

1. The TO, Short Range (SR)

The R(i) designates the eight polar vector operators, ξ the
TO displacement, and n is a unit vector directed along the TO
momentum q. The corresponding interaction V (TO|SR) can
be written as follows:

V (TO|SR) ≡ V (1)(TO|SR) + V(2)(TO|SR),

V (1)(TO|SR) = A(TO|dip)[n × ξ ]
8∑

i=1

[n × R(i)] ∝ (rNb),

V (2)(TO|SR) = A(TO|quad)

×
8∑

i,j=1

(R(i)R(j ))
αβ

(qξ )
αβ

∝ q(rNb)2,

(qξ )α,β ≡ 1/2(qαξβ + qβξα − 2/3δαβ (qξ )),

(R(i)R(j ))α,β ≡ 1/2(R(i)
αR(j )

β + R(i)
βR(j )

α

− 2/3δαβ (R(i)R(j ))). (B4)

The A(TO|dip) and A(TO|quad) are constants of interaction.
The term V (1)(TO|SR) describes dipole transitions with �E =
±2�. The V (2)(TO|SR) excites transitions with energy �E =
±4� and elastic transitions within the triplets XψS , YψS ,
ZψS , and XYψS , YZψS , ZXψS . We should note that the
V (1)(TO|SR) dipolar interaction is much stronger than the
quadrupolar one, V (2)(TO|SR).

2. TO, weak octupole transition

V (TO|octo) ≡ A(TO|octo)
8∑

i,j,k=1

(qR(i))(qR(j))(R(k)ξ )

∝ q2(rNb)3, (B5)

in which A(TO|octo) is the constant of the interaction.
V (TO|octo) interaction could excite octuplet transitions with
�E = ±6� and dipole transitions with �E = ±2�.

3. The TA, SR

The V (TA|SR) can be written as follows [32]:

V (TA|SR) = −
8∑

i=1

w(i)
αβ

σαβ, (B6)

where σαβ is the stress tensor and w
(i)
αβ the elastic dipole tensor

corresponding to the ith (111) type cubic corner. The value
of w

(i)
αβ is defined by the geometry of the potential well. Let’s

suppose that λL and λP are the main values of the tensor w
(i)
αβ
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in the coordinate system with z axis along a (111) direction.
We then obtain in the coordinate system (100), (010), (001):

8∑
i=1

w(i) ∼ 2

3
(λL − λP )(XY + YZ + ZX) ∝ (rNb)2. (B7)

Therefore, the interaction of the elastic dipole with the
stress generated by the TAW leads to quadrupolar transitions,
�E = ±4�, and elastic transitions, �E = 0, connecting
states inside the triplets with energy E = −� and E = +�.

4. The TA, long range (LR)

Assuming that the electric field E generated by the TA
phonon and interacting with the electric dipole moment
appears due to the displacement of the Nb+5 ion from its
high symmetry position, the interaction term, V (TA|LR), can
be written

V (T A|LR) = AT A

8∑
i=1

(R(i)P )
αβ

↼

uαβ,

↼

uαβ ≡ 1/2(uαqβ + uβqα − 2/3δαβ (uq))

(R(i)P ) ≡ 1/2(R(i)
αPβ + R(i)

βPα − 2/3δαβ (R(i)P)),

R(i)
x = X(i),... (B8)

Here ATA is the constant of interaction, and P is the
polarization vector. Such polarization arises due the atomic
displacements that accompany the formation of the quasistatic
PNRs or static PNDs. The physical meaning of (B8) can be
explained as follows. Let’s suppose that the polarization P is
directed along the z axis. This perturbation creates a correction
to the wave functions ψS and XψS :

δ
S = − P

2�
Z
S, δX
S = − P

2�
ZX
S. (B9)

The elastic dipole-stress interaction (B7) and (B8) then
leads to the existence of the nonzero matrix element between

S and X
S :

〈
S + δ
S |V (T A|SR )|X
S + δX
S〉
∼ P

�
(λL − λP )σx,z, �E = ±2�. (B10)

Therefore, the appearance of the polarization P opens
transitions �E = ±2� that are otherwise forbidden when

P = 0. This is quite consistent with the ultrasonic results
obtained by Knauss et al., which evidenced the coupling
between a transverse ultrasonic wave and the tunneling Nb
ions in the presence of the PNDs [16].

In the case of strong polarization, when P � �, the wave
function will be restricted to a subset of four corners of
the cubic unit cell, corresponding to tetragonal symmetry. If
restricted, for instance, to the plane z = 1, the wave function
components SP will then be

SP = [[1,1],[−1,1],[−1,−1],[1,−1]]. (B11)

The tunneling Hamiltonian HTP and the corresponding
eigenvalues and eigenvectors in the representation (B11) can
be written as follows:

HTP = −�

⎡
⎢⎣

0, 1, 0, 1
1, 0, 1, 0
0, 1, 0, 1
1, 0, 1, 0

⎤
⎥⎦


PS = [1,1,1,1], EPS = −2�,


PXmY = ((X − Y )/2)
PS = [0,−1,0,1], EPXmY = 0,


PXpY = ((X + Y )/2)
PS = [1,0,−1,0], EPXpY = 0,


PXY = XY
PS = [1,−1,1,−1], EPXY = +2�

(B12)

The elastic dipole-stress interaction in (B6) and (B7) leads
to the existence of nonzero matrix elements corresponding to
the inelastic and elastic transitions, �E = ±2� and �E = 0,
between states (B12) for the case of the TAW propagating
along the z axis. Transitions corresponding to �E = ±4�

could also be excited for a TAW propagating and polarized
in the x-y plane. We should note that the effect of the
phonon polarization depends on the direction of the electric
polarization P . As an example, for a strong polarization P

along the (111) axis, the wave function will be locked at
the cubic (111) corner, and tunneling of the Nb off-centers
and its effect on the damping of the TA phonon will be
suppressed. Finally, it is worth mentioning that the calculations
corresponding to (B8)–(B12) are similar to those used to
describe the features of a ferroelectric crystal placed in a
symmetry-breaking field.
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