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Ab initio simulations of phase stability and martensitic transitions in NiTi
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For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite
phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic
questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the
simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the
temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation
functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that
finite temperature, entropic effects stabilize the experimentally observed martensite (B19’) and austenite (B2)
phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio
thermodynamic integration confirm these results and permit estimates of the transition temperature between the
phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19’
phases. The role of defects in suppressing phase transformation temperatures is discussed.
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I. INTRODUCTION

Shape memory alloys are materials that after deformation
recover their original shape upon heating. They are techno-
logically important for a wide range of applications, including
actuators, shape-morphing wings, and next generation space
suits, among others. Nickel titanium (nitinol) is perhaps the
best-known example in this class of alloys and figures promi-
nently in many commercial applications. The shape memory
effect in NiTi is driven by a martensitic phase transition
from a low-temperature martensite phase (B19’) to a high-
temperature austenite phase (B2) [1,2]. Many applications
involving shape memory alloys are tied to the specific value
of the martensitic phase transition temperature [3]. Having the
ability to tune this transition temperature, for example, through
ternary additions in NiTi-based alloys [3–5], will open the door
to significantly more far-reaching applications. However, even
for binary, equiatomic NiTi, which is the simplest example in
this class of materials, basic questions regarding the stability of
the phases and the martensitic phase transition remain unclear.
In this paper, we resolve several of these important, outstanding
issues.

Experimentally, the high-temperature austenite phase of
NiTi has the cubic B2 (Pm3̄m symmetry) structure. The
low-temperature martensite phase has the monoclinic B19’
(P 21/m symmetry) structure, with an experimentally deter-
mined angle γ of 98◦ [6,7]. The transition temperature between
the two phases is reported to be approximately 341 K [8].
Relevant crystal structures are shown in Fig. 1. Considerable
computational work has been performed to understand the
phases of NiTi and related materials. In particular, density
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functional theory (DFT) studies [9–22] have provided many
insights into the energetics and properties of NiTi, but they
have also generated new unanswered questions. For example,
DFT formation energies for B2 are in good agreement
with experiments [23–26]; however, B2 is predicted to be
dynamically unstable at T = 0, i.e., certain phonon modes
have imaginary frequencies [27]. Recent attempts using small
systems to include finite temperature effects into B2 stability
analyses have given contradictory results [28,29]. On the other
hand, B19’ at the experimental monoclinic angle γ of 98◦ is
dynamically stable at T = 0; however, the computed structure
is unstable to shear [12]. Huang et al. determined the DFT
ground state of NiTi at T = 0 to be a new orthorhombic phase
(B33) with an angle of γ = 107.3◦ [30]. However, the B33
structure has not been observed experimentally in NiTi and
its crystal symmetry (Cmcm) is incompatible with the shape
memory effect, and therefore cannot represent the martensitic
phase of this material. Thus, after considerable computational
analysis, we are in the unsatisfying position that the two
experimentally observed phases for NiTi have undetermined
stability, whereas the only computed stable phase has never
been observed and is incompatible with the shape memory
effect.

To address these discrepancies, we perform high accuracy,
ab initio molecular dynamics (AIMD) simulations based
on density functional theory combined with generalized
thermodynamic integration methods to evaluate the stability
and relative free energies for the defect-free, single crystal
phases (B2, B19’, B33) of NiTi for a range of temperatures
up to 900 K. These materials are strongly anharmonic, and,
therefore, methods based primarily on phonon analysis, even
at finite temperatures, will not capture the full behavior. This
necessitates high accuracy computations of the free energy.
We show that finite temperature, entropic effects resolve many
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FIG. 1. Phases of NiTi including B2 in its primitive, two-atom
cell as well as in a four-atom cell that is analogous to the primitive
cells of B19’ and B33. The monoclinic angle γ is defined to be
between the a and b lattice vectors.

of the controversies derived from previous studies, bringing
computation into much closer agreement with experiment.
Specifically, we show that entropic effects stabilize both
B2 and B19’ while destabilizing B33. Furthermore, the
martensitic transition temperature is estimated between these
stable phases. In addition, we also identify a new phase
transition between B33 and B19’.

II. METHODS

A. Finite temperature optimization

The free energy of the B33, B19’, and B2 phases was
optimized with respect to lattice parameters at temperature
to produce structures having negligible stress. This requires
minimization of Helmholtz free energy F , with respect to the
lattice vectors �. For a generalized crystal, � is given by

� =

⎡
⎢⎣

ax bx cx

ay by cy

az bz cz

⎤
⎥⎦, (1)

where the lattice vectors are a = (ax,ay,az), b = (bx,by,bz),
and c = (cx,cy,cz).

The value of ∂F
∂�

can be written in terms of � and the
stress tensor σ . The free energy of the system in the canonical
ensemble is given by

F = −β−1ln(Z), (2)

where Z is the partition function and β−1 is equal to
the product of the Boltzmann constant and temperature.
The partition function is given by Z = ∫

�N
i=1dridpie

−βH,
where

∫
�N

i=1dridpi ... represents the integral over phase
space. The Hamiltonian H describing this system is

H =
N∑

i=1

pi · pi

2mi

+ U ({ri}), (3)

where pi and mi are the momentum and mass of particle i,
the summation in the first term is taken over the N atoms in
the system, and U is potential energy, which is determined by
the set of all atomic positions {ri}. The derivative of F with
respect to � is given by

∂F

∂�
= −β−1 1

Z
∂Z
∂�

. (4)

One may expand the derivative of Z with respect to � by
performing a canonical transformation on r and p, such that

ri = �ρi

pi = π i�
−1, (5)

where ρi are reduced coordinates, π i are transformed mo-
mentum, and a superscript “−1” indicates the inverse tensor.
This transformation preserves the dynamics derived from the
Hamiltonian and leads to the partition function being written
as

∫
�idπ idρie

−βH({π i },{ρi }). The free energy expression in
Eq. (4) then reduces to

∂F

∂�
=

〈
∂H({π i},{ρi})

∂�

〉
, (6)

where 〈...〉 denotes the ensemble average. The transformed
Hamiltonian is given by

H =
N∑

i=1

1

2mi

(π i�
−1) · (π i�

−1) + U ({�ρi}). (7)

The derivative of H with respect to � may then be written as

∂H
∂�

=
N∑

i=1

1

mi

(π i�
−1) · ∂(π i�

−1)

∂�
+

N∑
i=1

∂U

∂(�ρi)
· ∂(�ρi)

∂�
.

(8)

Employing vector-matrix manipulations, one may rearrange
Eq. (8) as

∂H
∂�

= −
N∑

i=1

1

m
(π i�

−1) ⊗ (π i�
−1)�−T −

N∑
i=1

fi ⊗ ρi , (9)

where f is force, ⊗ is the outer product operation, and “−T ”
indicates the transpose of the inverse. Transforming back to p
and r leads to

∂H
∂�

= −
N∑

i=1

1

mi

(pi ⊗ pi)�
−T −

N∑
i=1

(fi ⊗ ri)�
−T . (10)

The quantity given by −∑N
i=1{ 1

m
(pi ⊗ pi) + (fi ⊗ ri)} is the

product of the absolute value of the determinant of �T , or
volume, with the stress tensor, |det�T |σ . Using these relations
with Eq. (6) leads to the final expression for the derivative of
free energy,

∂F

∂�
= |det�T |(σ�−T ). (11)

For the systems in the present work, the derivative of
free energy with respect to cell parameters was minimized
iteratively. This entailed performing AIMD simulations to
obtain average stresses and altering the cell according to
�k+1 = �k − α ∂F

∂�
, where k is an iteration index and α is

a constant parameter. The stresses employed for optimization
were averaged over 3 ps AIMD simulations, and a value of
2 × 10−4 was used for α. The optimization procedure was
iterated until all components of the stress tensor were <1 kbar.

B. Phonon dispersions

Zero-temperature phonon dispersions were obtained from
the frozen phonon approach using displacements of 0.01 Å.
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We use the PHONOPY software package to plot the phonon
dispersions along particular crystal directions [31]. Imaginary
frequencies are indicated with negative numbers.

To obtain phonon dispersions at finite temperature, we
applied the temperature-dependent effective potential (TDEP)
technique developed by Hellman and coworkers [32,33]. The
TDEP procedure fits the elements of the force constant matrix
(Dij ) to the forces (fi) and displacements (ui) generated from
an MD simulation. The fit is carried out by performing a least
square minimization of the difference between fi and the force
as described in the harmonic approximation.

The force as given by the harmonic approximation f̃i is
represented as

f̃i =
∑

j

Dijuj . (12)

The quantity that is minimized, S, is then given by

S =
∑
t,i

(
f t

i − f̃ t
i

)2
, (13)

where the summation is performed over all i atoms and t time
steps. In the present work, temperature-dependent phonons
were computed by fitting force data from 50 ps AIMD
simulations. The force constant matrix was then symmetrized
in accordance with the crystal structure.

C. Free energy

1. Generalized stress-strain method

If a transformation between two given phases can be
continuously and reversibly induced via changes in lattice
parameter, one may apply the principle of thermodynamic
integration to obtain changes in Helmholtz free energy with
respect to changes in the lattice vectors. When applicable, this
powerful technique yields both the difference in Helmholtz
free energy 	F between the phases as well as the profile
of 	F as a function of lattice parameter. An important case
of such a procedure has been described in detail for the
case of the constant volume bcc → fcc Bain path [34]. We
here generalize this formalism to treat the variable volume
deformation of any cell. Incorporation of variable volume
allows for a transformation path between two stable phases
at a given temperature but with different volumes, which is the
case for the martensitic transformation.

This transformation between phases can be effected by
defining � to be dependent on a mixing parameter λ, that
linearly changes � from an initial state to a final state, or
�(λ) = �0 − λ(�0 − �1). The values of � at λ = 0 and
1 correspond to structures of stable phases, �0 and �1,
respectively. Through the use of Eq. (4), the free energy change
upon such a deformation may be represented as

	F = −β−1
∫ 1

0

1

Z
∂Z
∂λ

dλ = −β−1
∫ 1

0

1

Z
∂Z
∂�

:
∂�

∂λ
dλ,

(14)

where ∂Z
∂�

and ∂�
∂λ

are both tensors and “:” denotes the Frobenius
inner product (i.e.,

∑
ij

∂Z
∂� ij

∂�
∂λ ij

). The free energy expression

in Eq. (14) further reduces to

	F =
∫ 1

0

〈
∂H(π,ρ)

∂�

〉
:

∂�

∂λ
dλ. (15)

Using Eq. (10) with Eq. (15) leads to the final expression for
free energy,

	F =
∫ 1

0
Vλ

[
(σ�−T ) :

∂�

∂λ

]
dλ, (16)

where Vλ is defined as |det�T |.
In terms of NiTi, both the B33 → B19′ and the B19′ → B2

phase transformations can be reversibly effected through
changes in lattice parameter alone. The transformations as
a function of � are furthermore continuous, as both atomic
coordinates and the stress tensor vary smoothly. The gener-
alized stress strain technique was applied here as a function
of temperature between the B33 and B19′ phases as well as
between the B19′ and B2 phases. The integral in Eq. (16)
for each phase transformation was taken over 11 values of
λ, or a 0.1 spacing. The stresses needed for application of
Eq. (16) were obtained from 5–10 ps AIMD simulations.
Where applicable, the procedure is applied between stress free
phases, which results in the difference of F between the phases
being equivalent to the Gibbs free energy (G) difference.

2. Einstein crystal method

One may use the principles of thermodynamic integration to
obtain the total free energy of a phase represented with DFT.
This requires the definition of a reference crystalline phase,
similar in structure to the phase as represented by DFT, with
a known free energy. The free energy difference between the
reference and DFT representations of the phase, F DFT − F ref ,
is given as

F DFT − F ref =
∫ 1

0

〈
∂U

∂λ

〉
λ

dλ. (17)

The potential energy U is given by U ref − λ(U ref − UDFT) and
the value of λ smoothly transitions the potential from U ref at
λ = 0 to UDFT at λ = 1. The thermodynamic average of ∂U

∂λ
for

various values of λ may be obtained with AIMD simulations
using the mixed potential.

The prototypical example of a reference system is the
Einstein crystal, where atoms are anchored to fixed coordinates
with a single spring constant. However, as the most desirable
reference potential is one that closely approximates DFT,
the Einstein crystal is a generally poor choice for U ref [34].
Alternatively, one may improve the accuracy of the reference
system by employing the full force constant matrix, provided
the phonons are real. For NiTi, the B2 phase is unstable at 0 K,
resulting in negative vibrational modes, which means the 0 K
force constant matrix is not a suitable reference. To solve this
problem, we employ the temperature-dependent force constant
matrix as determined from AIMD simulations and the TDEP
procedure previously described. Our reference system, then,
takes the form,

U ref = 1

2

∑
i,j

uiDijuj , (18)
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where the displacements u are referenced to the temperature
averaged atomic coordinates. This approach is highly accurate
and allows the integration in Eq. (17) to be performed using a
λ spacing of 0.25.

D. Density functional theory simulations

Simulations are performed with the Vienna Ab Initio
Simulation Package (VASP) [35–38] using the frozen core
all-electron projector augmented wave method (PAW) [39,40]
and the generalized gradient approximation of Perdew, Burke,
and Ernzerhof [41]. All AIMD simulations employ an energy
cutoff of 269.5 eV, an electronic energy convergence criteria
of 1 × 10−7 eV, a time step of 3.0 fs, and ∼3000 k points per
reciprocal atom (KPPRA). Furthermore, electronic smearing
is handled through the Methfessel-Paxton scheme [42] with
a smearing width of 0.05 eV, and the computations are not
spin polarized. For both Ni and Ti the 3d94s1 and 3d34s1

electrons, respectively, are included in the valence. This
valence configuration was found to produce free energy results
within 1 meV/atom agreement with simulations employing
smaller cores that include the 3p6 electrons in the Ni and Ti
valences. Computations are performed on 144 atom supercells,
using the four-atom unit cell, which were found to be free of
vibrational size effects. Temperature is controlled through the
use of a Langevin thermostat with a simulation-time equivalent
friction factor of 100 fs.

E. Convergence tests

We perform a thorough set of tests to ensure our results are
converged with respect to DFT parameters, pseudopotential,
and simulation cell size. We consider the convergence of both
T=0 K DFT energies as well as finite temperature free energies
with respect to increasing KPPRA and Ec. Similarly, we assess
the impact of the pseudopotential valence configuration on the
accuracy of the simulation by considering pseudopotentials
of decreasing core sizes, i.e., increasing number of valence
electrons. Finally, simulation cell size effects were evaluated
by examining the convergence of finite temperature phonon
spectra. We found that phonon spectra are especially sensitive
to finite size effects and must be converged carefully to obtain
reliable results.

For DFT parameters, we consider convergence with respect
to the number of KPPRA and the value of Ec, though energetic
convergence with respect to additional factors is examined
in the Supplemental Material [43] (Tables S1 and S2 and
Figs. S1–S3). In particular, convergence of the T=0 K potential
energy difference between B2 and B19′ (	E) with respect to
these parameters is provided in Fig. S1 of the Supplemental
Material [43]. The level of accuracy is varied from that
employed in our AIMD simulations (∼3000 KPPRA and
Ec = 268.5 eV) to higher levels. We see that increasing the
number of KPPRA from 3000 to 42 000 leads to a 1 meV/atom
increase in 	E. Conversely, increasing Ec up to 700 eV leads
to only a slight decrease in energy between the B2 and B19′

phases.
To extend our DFT parameter tests to finite temperature

systems, we have applied the generalized stress-strain method
to obtain the free energy profile as a function of γ between

FIG. 2. Free energy as a function of normalized monoclinic
angle (90-γ )/(90-γ B19′

) between B2 and B19′ as determined by the
stress-strain method for various levels of numerical accuracy, given
in brackets as (KPPRA,Ec) and different valence configurations. The
default configuration is a 3 × 2 × 2 supercell using the four-atom
unit cell representation (48 atoms), the 3d84s2 valence for Ni, and the
3p63d24s2 valence for Ti, a plane-wave energy cutoff of 269.5 eV,
and 10 080 KPPRA.

the B19′ and B2 phases at various values of KPPRA and Ec.
These tests employ a small 3 × 2 × 2 supercell composed of
four-atom unit cells (48 atoms) and are performed at 300 K,
and the results are taken with respect to the free energy of
the B2 phase. The free energy profiles, given in Fig. 2, show
that varying the number of KPPRA from 3072 to 16 464 and
Ec from 269.5 to 500 eV leads to a negligible change in the
free energy difference between B2 and B19′ (	F ), equivalent
to the value at γ B19′

. In particular, the barrier between the
phases is more sensitive to these changes and varies by up to
2 meV/atom depending on accuracy. Our results suggest that
	F is less sensitive to simulation accuracy than the 0 K 	E

values.
The influence of pseudopotential valence configuration on

the energetics as a function of normalized γ (90◦ and 107.3◦
correspond to B2 and B33) are shown in Fig. S2 of the
Supplemental Material [43]. The smallest valence considered
is the 3d84s2 for Ni and the 3d24s2 for Ti, while the largest is
the 3p63d84s2 for Ni and 3s23p63d24s2 for Ti. One may note
the oscillatory approach to convergence, where adding the 3p
electrons to the Ni valence leads to a 3.7 meV/atom decrease
at B33, which is attenuated by increasing number of Ti valence
electrons. The energy of B33 using the smallest valence
deviates from that of the largest valence by 2.4 meV/atom.
It appears that the systems are converged with respect to the
Ti valence, where the additional 3s electrons do not further
alter the energy. Though valence configurations including Ni
3s electrons were not investigated, it is unlikely that deeper
electron states will significantly alter the energetics. The
smallest valence is also differentiated from the others in that
it yields a stable B19′ phase while the others yield no energy
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minima aside from B33. This result parallels the calculations
shown in the Supplemental Material [43] (Table S1), where
potentials with small valences are shown to produce phases
that are not stable when calculated with larger valences.

Because of computational expense, we use the smallest
valence configuration pseudopotential for the MD simulations.
To understand the influence of this choice of valence on the
free energy, we show the free energy profile as a function
of γ as obtained from our small 48 atom supercell between
the B2 and B19′ as a function of normalized γ for different
valence configurations at 300 K in Fig. 2. Three valence
configurations were tested: the smallest configuration with
only 3d and 4s electrons, one including the 3p electrons of
Ti, and one including the 3p electrons of both Ni and Ti. As
with our assessment of numerical accuracy, we again find only
minor differences in 	F between the B2 and B19′ phases.
The largest differences in the free energy profiles occur for
intermediate interpolated cells, which vary in free energy by
up to 2.5 meV/atom at a given value of γ , similar to the
variation noted for changes in KPPRA and Ec.

The primary outcome of the numerical and valence size
tolerance tests is that errors in 0 K 	E values do not
correspond, necessarily, to errors in temperature-dependent
	F values. In fact, 	F appears to be relatively insensitive
to all tested changes in numerical accuracy. To expand upon
this, we have evaluated 	E at finite temperature between the
B2 and B19′ phases employed to generate the free energy
curves in Fig. 2. We have found for all cases that 	E varies
by less than 1 meV/atom for each numerical or valence
configuration. This implies that the noted errors in 	E at
0 K for a given level of accuracy can be reduced through
thermal effects. In particular, anharmonicity, which leads to
temperature-dependent deviations in average potential energy
from harmonic expectations, could reduce the sensitivity of
finite temperature 	E and 	F to simulation accuracy.

The noted anharmonic effects are largely a product of
phonon scattering. For AIMD simulations using small systems
with periodic boundaries, anomalous phonon self-interactions
can dramatically alter the nature of anharmonic effects on the
system. It is thereby necessary to ensure that such effects
are sufficiently converged with respect to system size. An
evaluation of the dependence of the phonon dispersion with
respect to supercell size at 0 K was performed for all phases,
as given in Figs. S4–S6 of the Supplemental Material [43].
The resulting phonon dispersions are relatively insensitive to
supercell size, though the B2 acoustic modes near � show
slight sensitivity along the M → � direction. The vibrational
modes of B33 and B19′ are real, indicating that the phases
are stable at 0 K. On the other hand, the TA mode of B2
exhibits several imaginary (given as negative) frequencies both
at M and along the � → R → X direction. To examine the
influence of size-dependent anharmonic effects on B2, we
perform a limited set of AIMD simulations on the 3 × 3 × 3
(54 atoms), 4 × 4 × 4 (128 atoms), and 6 × 6 × 6 (432 atoms)
supercells of B2 at 600 K and use the TDEP approach to
characterize the vibrations, as given in Fig. 3. At the 54-atom
size, the imaginary modes centered on the M point are present,
indicating instability. For the larger 128- and 432-atom cells,
the imaginary modes are not present, and the B2 phase appears
to be stable. We therefore use systems similar in size to the

FIG. 3. Size dependence of temperature-dependent phonon dis-
persions of 3 × 3 × 3 (54 atoms), 4 × 4 × 4 (128 atoms), and
6 × 6 × 6 (432 atoms) supercells of B2 at 600 K.

128-atom cell for our AIMD simulations to avoid error in
the vibrational dispersion. For the four-atom unit cell, this
corresponds to a 4 × 3 × 3, or 144-atom, supercell, which
is employed in the majority of this work. Simulations using
this supercell size are computationally tractable and provide
vibrational accuracy comparable to larger supercells.

III. RESULTS

A. Phase stability

For B2, B19′, and B33, we consider phase stability from
several complementary viewpoints. For each case, the lattice
vectors of the AIMD simulation cells are optimized such
that all finite temperature components of the stress tensor
are zero. This procedure not only accounts for thermal
expansion, but also places the system at a critical point on
the free energy surface, implying elastic stability. We also
examine deviations of the crystalline structure from ideality
during the course of the simulations in these optimized
cells. Structural evolution is evaluated quantitatively with (1)
normalized position correlation functions (NPCFs) [44] and
(2) atomic displacement scatter diagrams [45]. The NPCF
is proportional to

∑
i〈(ri(t − t0) − R0

i ) · (ri(t0) − R0
i )〉 where

ri(t) are the atomic trajectories from the AIMD simulation,
R0

i is the ideal reference lattice vectors of interest, and
the brackets are ensemble averages. For long times (t →
∞), vibrational motion becomes uncorrelated, and therefore,
NPCF → 0 indicates stabilization with respect to the reference
lattice whereas nonzero values indicate the converse. Atomic
displacements are plotted relative to the reference structures
on scatter diagrams. Significant deviations from zero displace-
ment signal an instability. Finally, the temperature-dependent
phonon dispersions are computed using the TDEP method.
The presence of imaginary modes indicate instability.

Concerning the temperature-dependent structure optimiza-
tion, the value of γ for B19′ and B33 is allowed to change to
produce negligible shear stress, while γ is held 90◦ for B2.
The value of γ is sensitive to temperature for B19′, while it
remained near 107.3◦ for B33. Barrierless, and spontaneous,
B33 → B19′ and B19′ → B2 transitions were found upon
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optimization at critical temperatures of 400 K and 800 K,
respectively, which represent upper temperature bounds to
stability. For simulations on these phases at and above the
critical temperature, geometry optimization was performed
with γ for B33 and B19′ being held to the terminal values
of 107.32◦ and 97◦, respectively.

Both NPCFs as well as atomic displacement scatter plots
are shown in Fig. 4 for 144 atom cells of B33, B19′, and B2.
Figures 4(a)–4(c) show very different behavior for the three
phases at different temperatures. For B33, the NPCFs indicate
structural stability at lower temperatures, 50 K and 300 K,
but instability for T > 300 K. Convergence times at 300 K
are almost two orders of magnitude larger than at 50 K. This
may indicate the proximity of a stability transition for B33.
Interestingly, the B19′ phase loses its T = 0 nonzero shear
stress even at low T and maintains its ideal configuration up
to 700 K. Perhaps most striking is that while the B2 structure
is unstable at 50 K, it stabilizes for T � 300 K. Unlike B33,
the NPCF convergence rates for B2 increase with increasing
temperature.

The atomic displacement scatter plots for B2, B19′, and B33
are shown in the overlay plots in Figs. 4(a)–4(c), respectively.
For each case, displacements are provided for 50 K (blue
circles) and 600 K (red squares). At low temperatures, B33
displacements are negligible; however, at high temperatures,
large displacements on the order of 0.5 Å can be seen in the
a direction. Displacements in a result from thermally induced
motion along the [100](011) stacking fault, which previously
has been shown from DFT calculations to be important for the
martensitic transition [9,10]. At low and high temperatures,
the B19′ phase exhibits only minor displacements, ∼0.05 Å.
The B19′ displacements do not show any particular ordering
and can most likely be attributed to vibrational motion, as
indicated by the loss of correlation in the NPCF. The B2 phase
at low temperatures shows large displacements ∼0.4 Å from
ideality. At higher temperatures, however, these displacements
largely vanish, as seen in the tight clustering near the origin.
Both the NPCF and the atomic scatter plots indicate that for
T > 300 K, the high temperature phase of NiTi is very closely
approximated by ideal B2.

Phase stability is further investigated by explicit compu-
tation of temperature-dependent phonons as derived from
the AIMD simulations [32,33]. Imaginary phonon modes
(represented as negative numbers) indicate the crystal structure
is dynamically unstable, i.e., it is not a local minima of
the energy. Phonon spectra are shown in Fig. 5 at both
zero temperature and at 600 K. It is important to note that
these results are very sensitive to cell size, and as mentioned
before, using sufficiently large cells is crucial to obtain
reliable results. The B33 phase, given in Fig. 5(a), develops
imaginary modes at 600 K through the lowering of the TA
mode along the � → A direction. The presence of imaginary
frequencies for long wavelength modes indicates loss of elastic
stability, which drives B33 → B19′. Phonon dispersions for
the B19′ phase show stability across the full temperature range
investigated, as given in Fig. 5(b). Most dramatically perhaps,
the imaginary modes reported for the B2 T = 0 K phonon
dispersion lift and become positive at 300 K, as shown in
Fig. 5(a), indicating stabilization of this phase, consistent with
the structure analysis of Fig. 4.

FIG. 4. Normalized position correlation function (NPCF) and
scatter plots of average atomic displacements from ideal positions
along the a (	ra) and b (	rb) lattice vectors for (a) B2, (b) B19′, and
(c) B33. The NPCFs are given for the 144 supercell at 50, 300, and
600 K and differentiate between stable [NPCF(∞) ∼ 0] and unstable
[NPCF(∞) ∼ 1] structures. For all cells, scatter plots are given for
the lowest tested temperature of 50 K (blue circles) and 600 K (red
squares).

The stress tensor, structure, and phonon analyses provide a
complementary picture of the temperature-dependent stability
of the three phases that is consistent with experiment. Namely,
stable phases at a given temperature exhibit the following
properties: all components of the stress tensor (normal stresses
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FIG. 5. Phonons of the (a) B2, (b) B19′, and (c) B33 phases
of NiTi at 0 K (blue, dashed line) and 600 K (red, solid line).
Temperature-dependent phonons are extracted from simulations
using 144 atom supercells for B33 and B19′ and a 128 atom supercell
for B2.

and shears) are on average zero; the NPCF goes to zero
in finite time; and all phonon modes are positive. Though
shown for a representative set of temperatures here, these
analyses were performed for all cells between 50 K and 900 K
in regular intervals of 50 K. Our results along the entire

temperature range show that finite temperature, anharmonic
effects stabilize the high-temperature B2 phase at and above
300 K. The low-temperature B33 phase is progressively
destabilized, fully losing stability near 300 K. The B19’ phase,
on the other hand, is unstable to shear at T = 0 but exhibits
full stability from 50 K up to 700 K.

B. Free energy computations

To obtain further insights into phase stability as well as
transitions between the phases, we compute the relative free
energies of the phases. Vibrational entropy is frequently eval-
uated via the quasiharmonic approximation (QHA). However,
stability issues at T = 0 invalidate this approach for B2 due
to the appearance of imaginary phonon modes. Alternatively,
stable, finite temperature phonon spectra can be used with the
QHA expressions to obtain entropy estimates. However, for
strongly anharmonic phases, such as B2 NiTi, this approach is
not expected to be a good approximation to the full anharmonic
free energy. Strongly anharmonic systems warrant the use of
high accuracy methods for computing free energies. For this
reason, we use two different methods based on thermodynamic
integration to compute the free energies.

Our first approach is a generalization of the stress-strain
methods developed previously for transition metals [34].
Such methods have been used to investigate the Bain path
transformation between fcc and bcc under a constant volume
constraint volume conserving; however, many systems of
interest including NiTi do not conserve volume between the
phases. As previously described, we generalized that approach
to account for arbitrary cell and volume changes in an exact
way. Our generalized stress-strain method requires a well-
defined, continuous path in lattice vector space between the
two given phases. For NiTi, the monoclinic angle γ provides
a natural, continuous parameter to connect the three phases
of interest shown in Fig. 1. In general, multiple paths can
be considered; however, the B33 → B19′ → B2 path was
determined to be the best behaved and is equivalent to motion
along the 〈100〉{110} generalized stacking faults. Spontaneous
motion along this fault was found in the high-temperature B33
phase during structural stability tests. The B33 → B19′ path
is largely a transformation in γ space, as the lattice vectors
are of comparable magnitude, while the B19′ → B2 path
involves nontrivial changes to both γ as well as the lattice
vectors. Optimization of the simulation cells to obtain zero
stress is required to ensure that the obtained free energy
differences, which are Helmholtz free energy differences,
are equivalent to Gibbs free energy differences. We find the
internal atomic coordinates for the 144 atom cell for this
path to transform continuously and that the stresses converge
rapidly (<10 ps) (see Supplemental Material [43], Fig. S7).
It should be noted that while free energy differences between
stable phases can be rigorously computed, evaluation of free
energy differences involving unstable structures is still an
area of active investigation. Therefore, free energies involving
unstable structures may contain some systematic error as
discussed recently [46].

Our second approach uses the Einstein crystal method
to compute free energy differences at isolated points along
the transformation paths. These computations were used to
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FIG. 6. Profile of 〈∂U/∂λ〉 at 300 K as a function of λ for B2,
B19′, and B33. Results are shown for 300 K and a 4 × 3 × 3, 144-
atom supercell. Larger differences between derivative values at λ = 0
and 1 signify more anharmonic character.

check the stress-strain method and were only performed
at free energy mimina along the transformation path. The
reference harmonic free energy is obtained from the force
constants associated with the temperature-dependent phonon
dispersions. This approach overcomes difficulties in using
T = 0 K phonon dispersions with imaginary modes. For
each stable crystal at a given temperature, thermodynamic
integration is performed from the system described by the
harmonic reference potential to the one described by DFT.

The strongly anharmonic nature of these materials can be
seen by considering the integrand for the Einstein crystal
integral, 〈∂U/∂λ〉, as a function of the potential energy mixing
parameter λ. This quantity is provided in Fig. 6 for all phases at
300 K. The harmonic nature of B33 and B19′ can be seen from
the minor variation in ∂U/∂λ over the λ range, suggesting the
major anharmonic correction to the harmonic free energy is
simply a constant shift. The large variation of ∂U/∂λ for B2,
on the other hand, results from its highly anharmonic character.
The anharmonic contribution to the free energy for B2 is on the
order of 3–5 meV/atom compared to the harmonic reference
free energy. These nontrivial anharmonic contributions to the
free energy can shift the transition temperature by as much as
100 K and thus confirm the need for high accuracy methods to
study these systems.

Free energy results using the generalized stress-strain
method at 0, 50, 300, and 600 K are given in Fig. 7(a)
as a function of γ . Einstein crystal results are shown as
open symbols. Agreement between the methods is excellent
(�1 meV/atom). The T = 0 curve reproduces previous DFT
results, and clearly shows that B2 and B19′ are not energetic
minima whereas B33 is a stable minimum, as reported by
Huang et al. [30]. We see that the free energy surface changes
considerably as a function of temperature. Between B33 and
B19′, a small but distinguishable barrier develops between
the phases for T =50–300 K. At and above 600 K, however,
the free energy is monotonically decreasing from B33 to
B19′. Importantly, B19′ develops a clearly defined free energy
minima above 50 K. Thus, B19′ is entropically stabilized and
develops into a separate phase distinct from B33. The B2 phase

FIG. 7. Helmholtz free energy along the γ reaction coordinate
as a function of temperature. (a) The free energy profile along the
γ reaction coordinate for 0, 50, 300, and 600 K. Filled symbols
and lines are obtained through the generalized stress-strain method,
while open symbols are provided for free energy minima using the
Einstein crystal approach. Error bars for the Einstein crystal method
are <1 meV/atom and not visible at the present scale. (b) Free energy
color map as a function of temperature and γ . Regions of low free
energy are given as blue, while regions of high free energy are given
as red. White lines indicate stable phases and display the temperature
dependence for the B19′ monoclinic angle.

is unstable to transitions to B19′ until 300 K, above which a
free energy barrier develops stabilizing this phase as a local
minima. These results are consistent with the structural and
phonon analysis.

Further detail is provided by Fig. 7(b) where free energy
differences relative to the most stable phase are mapped as
a function of T and γ . Blue and red represent small and
large free energy differences, respectively. The free energies
are again derived from the generalized stress-strain method.
The free energy map illustrates the stability regions associated
with each of the phases: B33, B19′, and B2. White circles
indicate stable points of each phase, i.e., all finite temperature
stresses are zero and all finite temperature phonons are real and
positive. Thus each white circle represents a stable, free energy
minimum for that phase and the white lines denote the extent of
the stable free energy basins. Free energy and stability results
are provided for 50 K as well as between 0 and 900 K in steps
of 100 K. The regions of stability for each phase are found to
be 0 < T < 200 K for B33, 50 < T < 700 K for B19′, and
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FIG. 8. Gibbs free energy differences between B33 and B19′

(squares) as well as between B19′ and B2 (circles) phases as a function
of temperature. Interpolated transition temperatures are indicated
with dashed lines. Error bars reflect the 1 meV/atom accuracy of
the computations.

T � 300 K for B2. Interestingly, the B19′ angle is shown to be
a function of temperature, ranging from ∼100◦ at 50 K to ∼98◦
at 600 K. Furthermore, the stable basin of B19′ is relatively
shallow suggesting that γ values for this phase might be fairly
sensitive to small changes in stress. This could be important
as stress fields associated with defects could potentially alter
the value of γ quoted here. The free energy results allow us to
estimate the phase transition temperatures. In particular from
Fig. 7, the transition between B33 and B19′ clearly occurs
between 50 and 300 K. The B19′ → B2 free energy path is
uphill until 600 K, indicating that a transition occurs between
300 and 600 K.

Differences in the Gibbs free energy (	G), as derived from
the Helmholtz free energy differences between the stress-free
stable phases, are given in Fig. 8 as a function of T . A
free energy difference of zero indicates the phase transition
temperature. For the B33 to B19′ transition, 	G becomes zero
at 75 ± 26 K. For B19′ to B2, 	G goes to zero at 500 ± 14 K.
The larger error for the low-T transition is a function of
the slope of 	G and the target accuracy of 1 meV/atom.
The low values for the B33 → B19′ transition temperature
explain the lack of experimental evidence for B33, despite
being energetically favored at 0 K. If B33 becomes unstable
at low temperatures, it may be difficult to synthesize and,
therefore, to observe. The B19′ → B2 transition temperature
is roughly 150 K above the experimental value of 341 K
[8]. The methods used to obtain this value, based on ab
initio thermodynamic integration, are numerically exact to
within the accuracy of DFT. Therefore, we expect it to be

a reliable estimate of the martensitic transition temperature for
defect-free, single crystal NiTi. The nontrivial difference with
experimental values is most likely due to defects that have been
shown to suppress transition temperatures in this and related
materials [47]. This also suggests that improved processing
resulting in higher material quality could produce materials
with higher measured transition temperatures. In addition, it
is also known that the transition temperature is dependent on
the heating and cooling rates with slower rates giving higher
transition temperatures. As we use equilibrium methods to
estimate this temperature, our results correspond effectively to
infinitely slow rates. For that reason, we expect them to be an
upper bound for the experimental transition temperature.

IV. CONCLUSIONS

We have performed a comprehensive computational anal-
ysis based on ab initio molecular dynamics of the stability
and transitions between the major phases of NiTi: B2, B19′,
and B33. Considerable previous computational analysis based
mainly on T = 0 DFT resulted in significant discrepancies
between experiment and computation. We have shown that
by including temperature-dependent entropic effects into the
computations, many of these differences can be resolved. We
show that B2 and B19′ are stabilized due to these entropic
effects, whereas B33 is destabilized. These materials are shown
to be highly anharmonic. Anharmonic contributions to the
free energy can shift the transition temperature by as much as
100 K and thus necessitates the need for high accuracy or exact
methods to study these systems. We develop a generalized
stress-strain method to perform such computations. The phase
transition temperature between B2 and B19′ is computed
to be approximately 500 K for defect-free, single crystals
which is about 150 K above experimental results. Defects
and nonequilibrium rate effects are expected to suppress the
transition temperature and bring it more into line with exper-
iments [47]. This also suggests opportunities to obtain higher
transition temperatures with current materials by improved
material processing. A new phase transition in this material
is identified between B33 and B19′ at a computed transition
temperature of 75 K. High-temperature destabilization of B33
and the corresponding low transition temperature to B19′ could
explain why B33 has not yet been observed experimentally.
Defects could affect this transition as well.
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