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Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF3
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We present diffuse x-ray scattering data on the strong negative thermal expansion (NTE) material ScF3 and
find that two-dimensional nanoscale correlations exist at momentum-space regions associated with possibly
rigid rotations of the perovskite octahedra. We address the extent to which rigid octahedral motion describes
the dynamical fluctuations behind NTE by generalizing a simple model supporting a single floppy mode that
is often used to heuristically describe instances of NTE. We find this model has tendencies toward dynamic
inhomogeneities and its application to recent and existing experimental data suggest an intricate link between
the nanometer correlation length scale, the energy scale for octahedral tilt fluctuations, and the coefficient of
thermal expansion in ScF3. We then investigate the breakdown of the rigid limit and propose a resolution to an
outstanding debate concerning the role of molecular rigidity in strong NTE materials.
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Structural negative thermal expansion (NTE) is a fasci-
nating and growing field of condensed matter physics due
to the rarity of the phenomenon, a stunning display of
unconventional lattice dynamics, and the strong potential for
structural applications where dimensional stability is required.
This type of NTE phenomenon refers to the unusual tendency
for materials to shrink when heated as a property of bond
network topology and the associated fluctuations [1–3], which
is distinct from NTE arising from electronic or magnetic
instabilities observed in Invar [4] and valence transitions [5].
Recently, the nonmagnetic ionic insulator ScF3 has drawn
particularly intense attention in the chemistry community [6]
as the first instance of a perovskite-structured material with
strong, isotropic, and thermally persistent NTE, a distinction
which no longer appears to be an isolated case [7]. ScF3 dis-
plays strong NTE (−15 ppm/K < αL < 0) over a temperature
window of 1000 K, but is also unusual in its lack of any type of
phase transition whatsoever within the solid state: The system
retains a small, four-atom (formula) unit cell at all temperatures
below the solid-liquid phase boundary T < 1800 K.

Work aimed to develop a mechanistic understanding of
the NTE effect in ScF3 and similar behavior in the more
complex open-framework NTE compound ZrW2O8 has com-
pared complementary experiments to simulations with an
outstanding debate as to the role of molecular rigidity in the
NTE mechanism. One may naturally expect such an approach
to apply when considering the hierarchy of energy scales
within the lattice degrees of freedom. For transition metal
perovskites, these break down as bond-stretching motion at
high (50–100 meV) energy, bond-bending motion at medium
(20–50 meV) energy, and a lower (1–3 meV) set of external
modes described as the coordinated motion of units which re-
spect the internal dimensions of molecular subunits such as the
ScF6 octahedra [8–10]. This tiered energy structure suggests
that some normal modes are frozen out at temperatures where
the boson population is much lower than one. For example,
the lowest zone-center optical mode in ScF3 observed [11]
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at 24 meV has a boson population n � 0.62 at 300 K,
suggesting that these uniform intramolecular distortions are
frozen out even at room temperature while the much softer
(3.6 meV [12]) intermolecular degrees of freedom on the
zone boundary dominate with a population n � 2. These
estimates suggest that some progress on the problem may be
developed by using a view of lattice dynamics which shifts
focus from the atom to molecular subunits as the basic building
blocks may be appropriate to describe certain phenomena
such as NTE. Building on this idea, some researchers find
an adequate description of NTE in terms of rigid molecular
units which draw in the lattice when thermally activated, with
still finer points of debate on which senses of motion are
appropriate for which particular system [13–15], or across
which momentum manifolds rigid external modes exist [16].
Others have suggested that molecular rigidity is neither
necessary nor favorable as an NTE mechanism [15,17–19].

Separately from any consideration of NTE, studies of the
perovskite space group landscape show that the cubic open
perovskites in the Pm3̄m structure such as ScF3 and ReO3 can
undergo coordinated tilt patterns [20] of rigid octahedra. The
associated soft modes reside on one-dimensional manifolds
along the simple cubic Brillouin zone (BZ) edges. Recent
inelastic x-ray scattering (IXS) work analyzing the temporal
correlations of single-crystal ScF3 has indeed shown the
presence of a soft mode manifold circumscribing the BZ
edges [12]. Here we extend this study using high-energy res-
olution diffuse x-ray scattering and find that these soft modes
imply two-dimensional (2D) spatial correlations associated
with NTE. In our analysis, we exploit the structural simplicity
of ScF3 and agnostically assess the viewpoint of molecular
rigidity. In what follows, we develop a mathematical model
with rigid constraints and compare to recent and existing
data. We show explicitly that a strictly rigid network is
both unphysical and inconsistent with observations, but a
picture of locally rigid correlations is capable of unifying
disparate experimental observations within a simple and
intuitive approach.

Figure 1(b) shows a momentum surface of the elastic x-ray
intensity in single-crystal ScF3 taken at T = 300 K with a high-
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FIG. 1. (a) Inset: Experimental geometry for the diffuse scattering
experiments in single-crystal ScF3. The main panel shows a H = 0.5
cross section of the Ewald sphere. Blue and orange arcs indicate the
extrema of the crystal rocking angle. (b) Diffuse scattering intensity
collected using the experimental geometry in (a). Midzone intensity
at M points are indicated by dashed circles and are found in almost
every BZ. Dashed lines indicate cuts through the intensity patterns
shown in (c). Each cut in (c) is taken at an equivalent K value but
corresponds to a different L value. The negligible change in widths
is strong evidence of 2D spatial correlations.

resolution incident beam and an image plate at sector 30-ID-C
of the Advanced Photon Source (APS), Argonne National
Laboratory (ANL). Momentum space is indexed to the simple
cubic four-atom unit cell using Miller indices HKL and the
surface sampled is an Ewald sphere (ES) shown approximately
in Fig. 1(a). The ES samples approximately the HK0 plane
near the origin, but finite curvature extends the sampled
volume along the L direction. Cuts in the H (horizontal)
direction are taken at equivalent half-integer values of K , but
correspond to different L positions along the scattering rods,
as described in Fig. 1(a). Lorentzian fits to these transverse
cuts produce widths corresponding to about 1/0.18–5.5 unit
cells, independently of where the cut is made along the M-R
branch. We conclude that scattering rods are present along the
BZ edges, reflecting short-range 2D nanoscale correlations of

order 6 unit cells. The weak dispersion of optic modes reported
previously [12] along this cut further suggests a decoupling of
planar correlations corresponding to 2D coordinated rotations.
In terms of microscopic interactions, the lack of dispersion
along the M-R branch can be interpreted as a small steric
barrier—the energy cost to twist the Sc-F-Sc bond is very
low. This produces an effective decoupling of the phase of
coordinated octahedral motion in one plane with another.

Figure 2(b) shows the simple cubic BZ of ScF3 with
breakouts indicating the nature of the correlated motion
comprising M-R zone boundary modes. The experimentally
observed decoupling of coordinated rotations within planar
manifolds suggests there is prominent importance of the lattice
dynamics of a 2D section, shown in Figs. 2(c) and 2(d).
A model consisting of stiff diamonds connected by hinged
joints shown in Figs. 2(c) and 2(d) appears in numerous
contexts in the literature describing the NTE phenomenon
as a physical model wherein one may see that the collective
motion of a rigid network could generically provide a NTE
influence [21–23]. The diamonds could represent metal-anion
octahedra in the structural NTE perovskites ScF3 or ReO3,
but the idea has been used to schematically describe more
complex structures [21–25]. In what follows, we momentarily
enforce the rigidity of the molecular units in an analysis of this
two-dimensional constrained lattice model (2D CLM) to study
the rigid limit expectations before comparing to experiment in
order to provide insights into the limitations and strengths of
rigid models in the NTE problem.

The 2D CLM consists of corner-linked diamonds with
coordinate origin at its center of mass (COM). The N� = NxNy

diamonds are attached by hinged joints, so that their motional
degrees of freedom are constrained. The CLM is isostatic,
or marginally constrained, in the sense that even in the
thermodynamic limit, there is exactly one internal degree
of freedom: a staggered rotation of each diamond by an
angle θ . Increasing θ from zero contracts the lattice from
initial area A0 to an area A0 cos2 θ , and thermal activation
of this collective mode is often attributed as the origin of
NTE [21–25]. Efforts to expand this model to field theories
which respect the high-energy constraints of bond-stretch and
bond-bend degrees of freedom include mimicking polyhedral
pliancy through a split-atom approach [8], by lowering the
degree of constraint [3,9], or permitting some diamonds to be
replaced by springs [10], and unusual properties such as NTE
are found in each case.

When there is no staggered rotation, θ = 0, and a diamond
center can be located at position �r(θ = 0) = (nx,ny)a0. When
θ �= 0, the distance between neighboring diamond centers is
reduced by a multiplicative factor cos θ and each position
vector is scaled similarly �r(θ ) = (nx,ny)a0 cos θ with velocity
�̇r(θ ) = −(nx,ny)a0θ̇ sin θ . The velocity vectors of each dia-
mond always point directly toward or away from the COM. The
total translational kinetic energy summed over all diamonds in
the crystal is

K trans
� = 1

2Icθ̇
2 sin2 θ,

where Ic = ∑
nxny

m�[(nxa0)2 + (nya0)2] is the moment of
inertia of a similar crystal where diamonds are replaced by
points, each of mass m�.
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FIG. 2. (a) A 5 × 5 × 5 crystallite of ScF3 in the average structure (125 octahedra). (b) The hollow cube shows the simple cubic BZ with
shaded regions indicating the positions of observed scattering rods from the data in Fig. 1. Breakouts show possible real-space staggered
rotation patterns which preserve internal octahedral dimensions at the indicated high-symmetry momentum-space points. Red and blue shading
in the diamonds indicate equal but opposite magnitudes of rotation. (c) A 2D CLM which supports a single floppy mode (FM). As a result of
the constraints, a staggered rotation by an angle θ in (d) causes a shortening of the vector locating each diamond by a factor cos θ .

Including the rotational kinetic energy of each diamond and
summing, the total kinetic energy of the 2D CLM is

K = 1
2N�I�θ̇2 + 1

2Icθ̇
2 sin2 θ = 1

2N�I�θ̇2(1 + k2 sin2 θ ),

where k =
√

Ic

N�I�
= √

γN� and γ depends on the aspect ratio

of the crystal and mass distribution for the diamonds (�1.79
for a square crystallite of ScF3). Finally, we introduce the
lowest Fourier component of an intermolecular bond-bending
potential at the hinges κ(1 − cos θ ) to stiffen the structure
from collapse. Microscopically, this influence arises from
a competition between mutual repulsion of like charges
including dipolar contributions and anion polarizability and
is considered low for trifluorides with a large B-site atomic
radius such as Sc [26]. The total energy, expanded for a small
angle to the harmonic case, is then

E = 1
2N�I�(1 + k2θ2)θ̇2 + 1

2Nbκθ2, (1)

where Nb � 2N� is the total number of intermolecular link-
ages. One may view Eq. (1) as a generalization of a harmonic
oscillator (k → 0) describing a residual degree of freedom
resultant from integrating out high-energy bond-stretch and
bond-bend degrees of freedom.

Significantly, the total effective inertia of the FM has a
rotational part (the first term) which scales with system size
in an intensive way (∝ N�), while the translational kinetic
energy scales extensively (Ic ∝ N2

� ). As the thermodynamic
limit is approached, molecular units at the boundary of a
free crystallite must traverse macroscopic distances within a
single FM cycle while experiencing enormous force gradients,
pointing to a necessary breakdown of rigidity and falsifies
the rigid approach on physical grounds. A homogeneous FM
in an infinite system therefore has an infinite kinetic energy
density, and the effect favors inhomogeneous spatial textures
through intramolecular deformations at a penalty of elastic
potential energy. In what follows we entertain the possibility
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FIG. 3. (a)–(d) show classical solutions for θ (t) which follow
from Eq. (3). These are plotted for different values of kθ0, which
uniquely quantifies the anharmonic behavior. The time axes in (a)
and (c) are scaled by the FM period.

that the nanoscale correlations we observe are a signature of
such a breakdown, as an alternative approach to a conventional
phonon population of optical modes.

In the limit of small-angle and large system size (k), one
can integrate (1) to find

(t − t0)2

(kθ0/ωp)2
+ θ2

θ2
0

= 1,

where θ0 is the amplitude and ωp = √
Nbκ/N�I� is the

angular frequency of small oscillations in the limit k = 0.
Several aspects of the thermodynamic FM are distinct from the

harmonic case: (i) The period τ = 4kθ0
ωp

= 4θ0

√
Ic

Nbκ
diverges

and is proportional to the amplitude of oscillation, (ii) the
time-averaged classical probability distribution P (θ ) dwells
much longer near the extrema than the harmonic case, and
(iii) the system spends a vanishingly small time in the average
structure θ = 0 [Fig. 3(b)]. The latter two points are apparent
in recent molecular dynamics simulations of ScF3 that reach
similar surprising conclusions of nearly vanishing probability
for straight Sc-F-Sc bonds at elevated temperatures [27].
A physical expression of this peculiar distribution in the
present model can be seen in the time-averaged area, related
to the moments of this distribution, 〈A〉t = A0〈cos2 θ (t)〉t =
A0(1 − ηθ2

0 ), where η = 1/2 for the sinusoidal k = 0 case
and η = 2/3 for the thermodynamic limit k → ∞ (see the
Supplemental Material [28] ), showing that the strain dynamics
of the 2D CLM enhances NTE over its harmonic counterparts.
The lessons from these results on the CLM is that the collective
motion of the dilating FM is slow and anharmonic, dwelling
near extrema as a feature of its dynamics.

We note that the dispersion away from the zone boundaries
is very steep, approaching the longitudinal acoustic velocity,
suggesting the dominant importance of the BZ edge modes to
NTE. We are therefore positioned to compare the experimental
a(T ) for ScF3 with that of an uncorrelated stack of N� = N2

x

thermally averaged 2D CLMs of area A(T ) = A0〈cos2 θ〉T �
A0(1 − 〈θ2〉T ). The lattice parameter of the stack is then

a(T ) = a0〈cos2 θ〉
1
3
T � a0(1 − 〈θ2〉T /3), where we sum over

the BZ edges to obtain

〈θ2〉T = 1

Z

∫
θ2e−βH dkzdθdLθ = 2kBT

Nbκ

1

1 + K0(δ)
K1(δ)

, (2)

β = 1/kBT , Z is the classical partition function, δ = Nbκ

4k2kBT
=

I�ω2
p

4kBT γ
, and Kn(δ) is the order n modified Bessel function of

the second kind.
Using the inertial parameters for ScF3 and a0 = 4.0285 Å,

Figs. 4(a) and 4(b) show plots of a(T ) and the transverse
anion thermal parameter U33(T ) = (a0/2)2〈θ2〉T determined
from the model along with existing experimental data [12,18]
using the observed Nx = 5.5 for different values of ωp.1 Best
agreement is met when �ωp � 1.6 meV, which is similar in
magnitude to the observed branch energy at low temperature
(1.2–1.4 meV) and somewhat lower than the observed values at
ambient temperature (3.4–3.6 meV). We remark that existing
computational work gives mode energies ranging from 3 to
6.5 meV [11,17,18], and that inclusion of other low-energy
modes off of the high-symmetry cut is expected to raise this
effective energy scale somewhat.

Remarkably, this analysis has the implication of an intricate
link between the following experimental quantities: (i) the
length scale ∼6 unit cells we observe in diffuse x-ray
scattering, (ii) the energy scale ∼1 meV for the M-R branch
reported using IXS, and (iii) the degree of dimensional fluc-
tuation measured through the coefficient of thermal expansion
measured using x-ray diffraction. Recent purely theoretical
analyses of square and kagome lattices crossing the isostatic
limit using different approaches have also pointed to emergent
nanometer length scales [29–31]. In contrast, the present
results use a simple approach motivated by experimental
observations to relate disparate experimental observables in
a real material system.

Recent classical molecular dynamics simulations and gen-
eral arguments have suggested the strict rigidity of molecular
units is not possible or necessary for NTE [15,17–19],
fully consistent with the finite correlation length implied
by our experiments and divergent kinetic energy density in
the thermodynamic limit of the CLM. Here we propose
a mechanism of strain relief and kinetic energy lowering
consistent with experiments, the quantized nature of the
vibrational spectrum, and the hierarchy of stiffness present in
the bond patterns. The pileup of translational kinetic energy at
the boundary of a dilating region implied by molecular rigidity
could be alleviated by introducing bond-bend intramolecular
polyhedral deformations. Within a FM cycle, the separation
between the edges of two adjacent, dilating nanoregions is
minimized if the phases of oscillation ϕ1 and ϕ2 differ by
ϕ1 − ϕ2 = ±π/2. These two choices keep the edges in contact
without parting the junction and lower the translational kinetic
energy significantly. We can demonstrate this savings by
considering the kinetic energy of a homogeneous excitation
of a 2D CLM in a long, narrow solid shown in Fig. 4,

1We note the offset in U33(T ) can be a result of residual strain
or disorder in the experimental data and remark that the slope is of
similar size to the model when �ωp = 1.6 meV.
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FIG. 4. (a) Lattice parameter of ScF3 below T = 300 K from Ref. [12]. (b) Transverse fluorine thermal parameter determined from x-ray
pair density function analysis [18]. Superimposed on (a) and (b) are the corresponding quantities from (2) using Nx = 5.5 for varying values of
�ωp . (c) Velocity field superimposed on a homogeneously excited FM, with phase and kinetic energy below. (d) shows the significant kinetic
energy lowering when a π/2 defect is introduced.

Nx × Ny , with Nx  Ny is given in (1) with moment of inertia
I (1)
c = 2m�a2N3

x Ny/3. An inhomogeneous excitation with a
locally straight domain wall at the origin separating a region of
FM phase 0 (maximum volume) for x < 0 and FM phase π/2
(minimum volume) for x > 0 has an effective crystal moment
of inertia which is four times lower I (2)

c = m�a2N3
x Ny/6 =

1
4I (1)

c . A similar calculation for two semiplanes in contact gives
I (2)
c = 1

2I (1)
c , in any case lowering the energy. The interface

between these regions must feature excited optical modes
with an elastic energy penalty made possible by the enormous
lowering of translational kinetic energy.

The molecular velocity field in this scenario may be
described as monopole-antimonopole pairs. The topological
defects proposed here are resultant from the alleviation of
strain at the interface and are protected at a �20 meV
scale. While details of a possible superstructure await further
experiments and modeling, we identify a large kinetic energy
lowering occurs through the formation of a π/2 phase slip
defect, which may pose intrinsic challenges to theories which
embark with a classical approach. For a large single 2D
planar section, the ±π/2 phase slip could occur in multiple

ways, potentially benefitting the stability of the proposed
excitations. A three-dimensional extension of such defect field
is beyond the scope of the present work, but may give rise
to nontrivial topological textures in the phase field of the
FM, raising the interest in lattice systems with unconventional
dynamics. Future time-resolved and coherent x-ray scattering
experiments are likely to address the phase relationship
intrinsic to the nanoscale correlations in NTE materials.
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