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Hofstadter butterfly of a quasicrystal
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The energy spectrum of a tight-binding Hamiltonian is studied for the two-dimensional quasiperiodic Rauzy
tiling in a perpendicular magnetic field. This spectrum known as a Hofstadter butterfly displays a very rich pattern
of bulk gaps that are labeled by four integers, instead of two for periodic systems. The role of phason-flip disorder
is also investigated in order to extract genuinely quasiperiodic properties. This geometric disorder is found to
only preserve main quantum Hall gaps.
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I. INTRODUCTION

Quasicrystals are nonperiodic solids that nevertheless
feature long-range configurational order [1]. In reciprocal
space, this order is characterized by resolution-limited Bragg
peaks in the diffraction pattern whereas, in real space, it is
related to the nonperiodic repetitivity of local environments.
After the initial burst of interest following their discovery,
quasicrystals have drawn much attention in artificial systems
(with phonons [2], cold atoms [3], photons [4,5], polaritons [6],
microwaves [7], . . . ). These new experimental setups allow
one to investigate old problems, such as the labeling of energy
gaps or the nature of wave functions, that were out of reach in
quasicrystalline metallic alloys.

It has long been known that a relation exists between
electrons in one-dimensional quasicrystals and the integer
quantum Hall effect (IQHE) for a two-dimensional electron
gas. For instance, both systems share energy spectra with
gaps that can be labeled with integers that are topological
invariants [8,9]. A suggestive example is given by the map-
ping of the Hofstadter model [10] (two-dimensional square
lattice in a magnetic field) onto the Audry-André-Harper
model [11,12] (one-dimensional incommensurate potential).
Recently, this connection has been revisited and extended
to topological insulators and superconductors (see, e.g.,
Refs. [4,13,14]).

In the present paper, we consider these two issues simul-
taneously by studying a two-dimensional quasicrystal in the
IQHE regime. This combination has already been addressed
in the literature, but incommensurability of tile areas (in the
Penrose tiling [15]) or edge states (in the Rauzy tiling [16,17])
always prevented a complete analysis of bulk properties in
the corresponding Hofstadter butterflies [10,18]. Here, we
circumvent these two problems and obtain the butterfly of
the Rauzy tiling using periodic boundary conditions. We find
that gaps can be labeled by (four) integers related either to
the IQHE or to the irrational used in the cut-and-project con-
struction of the tiling. We also discuss the role of a structural
disorder on the energy spectrum by computing the butterfly
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of random tilings obtained by flipping the Rauzy tiling (see
Fig. 1).

II. RAUZY AND RANDOM TILINGS

Rauzy tilings can be seen as generalizations of the Fi-
bonacci chain to higher dimensions [19]. These codimension-1
quasicrystalline tilings are built using the cut-and-project
method [20–22]. In the following, we consider the two-
dimensional Rauzy tiling and its approximants that are based
on the Tribonacci sequence,

Rk+1 = Rk + Rk−1 + Rk−2, ∀ k > 1 ∈ N, (1)

with R0 = R1 = 1 and R2 = 2. The order-k approximant
contains Rk+1 sites and, after a proper ordering of the sites
(according to their position in the perpendicular space in
the cut-and-project construction), its connectivity matrix has
a Toeplitz-like structure with bands starting at positions
(Rk−2,Rk−1,Rk) [19]. This rhombus tiling contains three-,
four-, and fivefold coordinated sites. In the quasiperiodic
limit, their densities are given by ρ3 = ρ5 = 2θ−3 and
ρ4 = 1 − ρ3 − ρ5, where θ = limk→+∞ Rk+1/Rk � 1.839 is
the so-called Tribonacci constant defined as the Pisot root of
the equation x3 = x2 + x + 1. As any codimension-1 tiling,
Rauzy tiling approximants only possess an inversion symmetry
associated with the center of the one-dimensional acceptance
zone (see Fig. 1).

In its original construction [19], the Rauzy tiling has three
different types of tiles (corresponding to the projections of the
cubic-lattice faces onto the parallel space) with incommensu-
rate areas. However, one can change the projection direction
in the cut-and-project algorithm in order to obtain identical
areas. This isometric version of the Rauzy tiling displayed in
Fig. 1 (left) is especially well suited to the problem under
study [16] (see below). Moreover, we will also pay attention
to a structural disorder induced by phason flips which consist
in locally changing neighbors of threefold coordinated sites as
depicted in Fig. 1 (middle). As argued in Ref. [23] one needs
to perform about N2/2 random flips to fully disorder a tiling
with N sites. After such a rearrangement of links, one obtains a
random tiling with three-, four-, five-, and sixfold coordinated
sites [see Fig. 1 (right)].
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FIG. 1. A piece of the isometric Rauzy tiling (left) transformed
into a random tiling (right) via a random sequence of phason flips
(middle). The red dot indicates the center of the inversion symmetry
which is broken after flips.

III. MODEL AND SYMMETRIES

For simplicity, we consider a single-orbital tight-binding
Hamiltonian,

H = −
∑
〈i,j〉

tij |i〉〈j |, (2)

where the sum is performed over nearest-neighbor sites. When
a magnetic field B perpendicular to the tiling is introduced,
the hopping term from site i to site j is modified according
to the Peierls substitution tij → tij exp [− 2iπ

φ0

∫ rj

r i
d r · A(r)]

where A is a vector potential such that B = ∇ × A. In
the following, we set tij = � = 1, e = −2π so that the flux
quantum φ0 = h/|e| = 1 and the nearest-neighbor distance
a = 1. We also introduce the reduced flux per plaquette
f = φ/φ0 = ±|B|A, where A =

√
3

2 a2 is the elementary
rhombus area.

Since A is the same for all rhombi, the spectrum of H

is periodic with f (at least for open boundary conditions).
Consequently, we can restrict our study to f ∈ [0,1]. The
spectrum is also obviously unchanged when the field direction
is reversed (f ↔ −f ). In addition, since the lattice is bipartite,
the spectrum is symmetric with respect to 0. For periodic
boundary conditions, this symmetry is broken due to odd-
length paths encircling the torus that destroy bipartiteness.
Similarly, in the presence of a magnetic field, fluxes are present
in the torus and destroy the periodicity with f . However,
these two symmetry-breaking effects become negligible in the
thermodynamic limit.

IV. BOUNDARY CONDITIONS AND GAUGE CHOICE

Since the pioneering work of Hofstadter on the square
lattice [10], the spectrum of H as a function of f , dubbed
“Hofstadter butterfly” (see Ref. [18] for a recent review), has
been analyzed for many periodic two-dimensional lattices
(triangular [24], honeycomb [25], flatband [26], dice [27],
kagome [28], . . . ) unveiling very rich features. The simplicity
of these structures allows one to study the butterfly directly in
the thermodynamic limit using suitable choices for the vector
potential A.

For quasiperiodic systems, one needs to consider a finite-
size system and, for any gauge choice, two problems arise.
First, the incommensurability of tile areas breaks the periodic-
ity of the butterfly with f as originally discussed in the Penrose
lattice [15]. Second, as for any system, if one considers open

boundary conditions, edge states prevent one from identifying
bulk gaps properly as discussed in Refs. [16,17].

Here, we solve these two issues by: (i) deforming the tiling
to deal with identical tile areas (see discussion above) and
(ii) by considering periodic boundary conditions. This latter
condition induces restrictions on the accessible reduced flux f

(see Appendix A for details). Indeed, the total flux through
the system must be an integer [29,30]. In the following,
we consider a single unit cell of an approximant with
periodic boundary conditions. In the order-k approximant of
the isometric Rauzy tiling (or its disordered version): (i) all
plaquettes have the same area, and (ii) the number of plaquettes
equals the number of sites so that f has to be chosen as
a multiple of 1/Rk+1. Results presented below have been
obtained by numerical diagonalizations of H .

V. HOFSTADTER BUTTERFLY

The zero-field energy spectrum of the isometric Rauzy
tiling has been discussed in Refs. [31,32]. In the presence
of a magnetic field, the spectrum has also been computed
but only for open boundary conditions [16,17]. In this case,
edge states fill bulk gaps emerging for nonvanishing fields so
that it is impossible to analyze the nontrivial characteristics
of the butterfly. As shown in Fig. 2 (left), a very rich gap
structure is unveiled when considering the system on a torus.
We emphasize that all gaps visible are stable when increasing
the order of the approximant so that, up to the image resolution,
this butterfly should be considered as the one of the (infinite)
quasiperiodic isometric Rauzy tiling. As in most Hofstadter
butterflies, one observes the presence of Landau levels arising
from band edges separated by IQHE gaps. As usual, these
levels are broadened when the system is disordered [see
Fig. 2 (right)]. Nevertheless, phason-flip disorder is sufficiently
weak to preserve main IQHE gaps while destroying the fine
structure.

VI. WANNIER DIAGRAM AND GAP LABELING

To proceed further, we compute the so-called Wannier
diagram [33] obtained by plotting, for an energy E inside
a gap, the normalized integrated density of states N (E,f ),
i.e., the number of levels below E divided by the total number
of levels, as a function of f (see Fig. 3). In the quasiperiodic
limit, we conjecture that any gap can be labeled with four
integers (ν,u,v,w) according to

N (E,f ) = νf + uθ−2 + vθ−1 + w. (3)

Indeed, integrating the Widom-Středa formula [34,35] for
the Hall conductivity at energy E inside a gap,

σH = e
∂N (E,f )

∂f
= −e2

h
ν, (4)

one finds N (E,f ) = νf + N0, where ν is a topologically-
invariant integer [36,37] and N0 is a constant. This linear
dependence with f is directly observed in Fig. 3. Note that,
for open boundary conditions, ν counts the number of edge
states as recently discussed in Ref. [17] for the isometric
Rauzy tiling. Since (i) the normalized integrated density of
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FIG. 2. Hofstadter butterflies of the isometric Rauzy tiling on a torus with R15 = 5768 sites (left) and of a random tiling obtained after
2.107 flips (right). Arrows indicate some remarkable fluxes (see text for details).

states is a multiple of 1/Rk+1 for the order-k approximant,
and (ii) three consecutive Tribonacci numbers are coprime
integers, Bézout’s identity guarantees that there exists a triplet
of integers (uk,vk,wk) such that

N0 = uk

Rk−1

Rk+1
+ vk

Rk

Rk+1
+ wk. (5)

It turns out that for all the gaps we studied, we found that
this triplet does not depend on k so that, in the quasiperiodic

N
o
rm

a
li
ze

d
in

te
g
ra

te
d

d
en

si
ty

o
f
st

a
te

s

0 1
2

0

1
2

f

(0, −3, −2, 2)

(0, 2, 1, −1)

(0, −1, −1, 1)

(0, −4, −3, 3)

(0, −1, 1, 0)

(0, 1, 0, 0)

(0, −2, −2, 2)

(0, −2, 0, 1)

(0, 3, 1, −1)
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FIG. 3. Wannier diagram of the isometric Rauzy tiling on a torus
with R16 = 10 609 sites. Symmetries restrict the relevant range of f

and N to [0,1/2]. Only gaps larger than 2.10−2 are shown. Gaps
are labeled by four integers (ν,u,v,w). Red lines highlight the main
IQHE gaps (ν,0,0,0), magenta lines illustrate gaps (ν,1 − ν,0,0), and
green lines indicate some (0,u,v,w) gaps. Blue dots are data from
diagonalizations and other lines are simply guides for the eye. This
diagram and the gap labeling are unchanged for larger approximants.

limit, one gets Eq. (3). This result could certainly be derived
rigorously using the gap-labeling theorem [38].

Using this labeling, one can classify gaps in the Hofs-
tadter butterfly according to ν that gives the magnetic-field
dependence and to (u,v) that indicate their relationship with
quasiperiodicity. Indeed, as can be seen in Eq. (3) u and
v are the only integers related to θ that keep track of
the quasiperiodic order. The integer w simply ensures that
N (E,f ) ∈ [0,1]. Thus, one may, a priori, consider three
categories: (a) ν �= 0, (u,v) = (0,0); (b) ν �= 0, (u,v) �= (0,0);
(c) ν = 0,(u,v) �= (0,0). We do not consider the trivial case
ν = u = v = 0 that corresponds to N (E,f ) = 0 or 1, i.e., a
completely empty or a completely filled system.

Category (a) concerns the main IQHE gaps (see red lines in
Fig. 3). These gaps are robust against disorder [36] as can be
seen in Fig. 2 and, as such, should be considered as independent
of quasiperiodic order. All gaps recently identified in Ref. [17]
belong to this family.

By contrast, gaps from categories (b) and (c) (green and
magenta lines in Fig. 3) are destroyed by disorder (see
Fig. 2) and genuinely associated with quasiperiodic order.
Gaps belonging to category (b) originate as fans, separated
by Landau levels, in the vicinity of some fluxes that play a
role similar to rational fluxes in the Hofstadter butterflies of
periodic systems [18]. In the quasiperiodic limit, these fluxes
can be indexed by three integers as pθ−2 + qθ−1 + r [see
arrows in Fig. 2 (left) for examples]. We note that these fluxes
are also local minima of the ground-state energy as a function
of f as for rational fluxes in periodic systems (see Ref. [39] for
an experimental observation of this phenomenon in the square
lattice).

Finally, we emphasize that, for f = 1/2, time-reversal
symmetry implies ν = 0 for all gaps. Remarkably, these gaps
that form category (c) are also found for many other values
of f , which is rather unusual. Indeed, to our knowledge, such
gaps have only been observed in the Lieb [40] and in the dice
lattices [27]. Note that, in a bipartite tight-binding model, the
number of states below a gap at zero energy does not depend
on f (N = 1/2 for all f ) so that ν = 0.
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VII. LANDAU LEVELS AND EFFECTIVE MASS

To better characterize the main IQHE gaps, let us focus on
Landau levels that arise from band edges (see Fig. 2). In the
zero-flux limit, the excitation energy of the nth Landau level
	En can be well fitted by

	En = �
|eB|
m

(
n + 1

2

)
= 4πf√

3m

(
n + 1

2

)
, ∀ n ∈ N, (6)

where 1/m = 1.957(2) is the inverse effective mass of the elec-
tron. As expected, for the order-k approximant and a given flux
f , the degeneracy of each Landau level is given by Rk+1 × f .
However, when f increases, the degeneracy of these levels is
lifted since lattice effects lead to a broadening as discussed in
Ref. [41] for crystals.

There are several ways to understand the surprising
emergence of an effective mass in nonperiodic systems (see
Appendix B for discussions). One possibility is to consider
an infinite approximant structure with Rk+1 sites per unit cell
and to compute, for f = 0, the inverse effective mass tensor
α of the lowest-energy band. Practically, one diagonalizes the
Bloch Hamiltonian H (k) = e−ik·r̂Heik·r̂ , where k is a Bloch
wave vector and r̂ is the position operator. One then expands
the dispersion relation of the lowest-energy band in the vicinity
of k = (0,0),

ε(k) � ε(0) + 1
2αij kikj , (7)

where ε(0) = −4.115 008(1) is the ground-state energy and
α is the inverse effective mass tensor. Denoting α1 and α2

its eigenvalues, the average inverse effective mass is then
given by 1/mT = √

α1α2 = 1.957 35(1). Up to a numerical
factor, the latter is equal to the dimensionless Thouless
conductance [42,43] for the lowest-energy band. Actually,
it may appear fortuitous that mT matches m so well as it
is computed from the curvature of a single band whereas
Landau levels are built from Rk+1 × f bands. This result
is due to a finite stiffness of the ground-state energy with
respect to boundary conditions (Thouless energy [42]). This
nonvanishing stiffness stems from the extended nature of the
ground state that we have checked explicitly.

In the disordered case, the situation is different. As already
mentioned, Landau levels broaden so that, even in the zero-flux
limit, a precise determination of the effective mass is harder.
On the one hand, we get 1/m � 2 by a brute-force fit of
the Landau-level slope. On the other hand, for f = 0 and
since the system is disordered, one expects all states to be
localized [43] and we indeed find that 1/mT ∝ e−L/ξ when
increasing the linear system size L with a localization length
ξ ∼ 30a. A localization length much larger than the nearest-
neighbor distance indicates that phason disorder should be
considered as a weak disorder. When the cyclotron radius
is smaller than the localization length, i.e., f � ξ−2, energy
levels are insensitive to the magnetic field. In the opposite case,
broad Landau levels show up [see Fig. 2 (right)].

VIII. CONCLUSION AND PERSPECTIVES

In the present paper, we computed Hofstadter butterflies
for the quasiperiodic and the disordered Rauzy tiling. In the
quasiperiodic case, the butterfly displays a rich structure with

three different types of gaps that can be labeled by four integers
(instead of two for periodic systems as shown in Appendix D).
More generally, the number of integers needed to label gaps
depends on the irrational number used in the construction of the
quasicrystal. This paper provides an example of a gap labeling
involving both IQHE and quasiperiodicity. Large gaps seem
to be associated with small integers. In the random tiling for
which quasiperiodic order is destroyed, one has u = v = 0,
and the usual labeling of IQHE gaps in terms of two integers
(ν,w) is recovered.

For a periodic system, the Hofstadter butterfly is known
to be self-similar and made of a finite (infinite) number of
bands for rational (irrational) fluxes. These properties stem
from commensurability effects between the geometric and
the magnetic cells that are clearly absent for a quasicrystal.
However, we found that some irrational fluxes seem to play an
important role. This is likely due to the self-similar property
of the tiling itself but, at this stage, a complete understanding
of the interplay between quasiperiodicity and magnetic field
is still lacking. In particular, the nature of the spectrum as a
function of the field is certainly a topic of interest. We hope
that the present paper will stimulate further studies of other
two-dimensional quasiperiodic systems to shed light on these
issues.
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APPENDIX A: PERIODIC BOUNDARY CONDITIONS
AND MAGNETIC FIELD: MAGNETIC TRANSLATIONS

A difficulty in computing the energy spectrum of a
quasiperiodic (or random) tiling in the presence of a perpen-
dicular magnetic field is that one has to work with a finite-
size system. Indeed, one cannot use Bloch’s theorem as in
the case of a periodic lattice in order to directly work in the
thermodynamic limit. Working with a finite-size system, one
has to make a choice for boundary conditions. Open boundary
conditions are useful in the sense that any magnetic field
is possible. But one drawback is that bulk levels are mixed
with edge levels. In the present paper, we are interested in
bulk properties and, in particular, we want to clearly identify
bulk gaps. We therefore need to impose periodic boundary
conditions.

A standard approach is to make a gauge choice for the
vector potential (such as Landau’s gauge) and then to try to
impose that the Peierls phase matches the periodic boundary
conditions. This is actually very inefficient and it usually only
provides a small set of allowed values of magnetic fluxes [17].

However, there is a general result based on magnetic
translations that can help us [30,41]. Magnetic-translation
operators are generalizations of the usual translation operators
when a magnetic field is present. Indeed, when the hopping
amplitudes of a tight-binding Hamiltonian are dressed with
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Peierls phases, the resulting Hamiltonian H no longer com-
mutes with translation operators Taj

where a1 and a2 are two
vectors defining the open boundary system (the total area
of the sample being |a1 × a2|). This is due to the vector
potential A which is nonuniform although the magnetic field
is homogeneous. However, H still commutes with magnetic-
translation operators defined as

Taj
= exp[2iπχaj

(r̂)]Taj
, (A1)

with

χaj
(r) =

∫ r

0
d r ′ · [A(r ′ − aj ) − A(r ′)], (A2)

which are the product of a gauge transformation e2iπχaj
(r̂) and

of a translation operator Taj
, where r̂ denotes the position

operator with respect to a given origin 0. However, magnetic-
translation operators along the two directions a1 and a2 do not
commute in general. They only commute if the total magnetic
flux across the sample is a multiple of the flux quantum φ0 = 1.
For simplicity, we assume in the following that all tiles have
the same area.

To implement this “magnetic-translation trick,” one thus has
to proceed in several steps. First, one chooses a vector potential
A and an origin 0. Second, one defines the two vectors a1 and
a2 from the open boundary system (see Fig. 4). Then, the
hopping term between site i and site j is given by

tij = exp

[
2iπ

∫ rj +τ j

r i+τ i

d r · A(r)

]
e2iπγi,j , (A3)

with

γij = χεj,1 a1 (rj ) + χεj,2 a2 (rj + εj,1a1) − (j → i), (A4)

τ i = εi,1a1 + εi,2a2, (A5)

τ j = εj,1a1 + εj,2a2. (A6)

By convention, translation vectors τ k are defined with εk,l = 0
or 1 and obey |(rj + τ j ) − (r i + τ i)| = a = 1. Note that to
fulfill this latter condition, τ i and τ j vectors cannot be nonzero
simultaneously. When τ i = τ j = 0, γi,j vanishes and one
recovers the usual Peierls phase.

A possible check of the procedure consists of computing
the trace of H 4, which counts the number of closed paths of

0

a1

a2

FIG. 4. Unit cell of the k = 10 approximant with R11 = 504 sites.

length 4 in the tiling. When the total flux N × f is an integer,
one must find

Tr(H 4) = 8N cos(2πf ) + cst, (A7)

where N is the total number of plaquettes. Indeed, there are two
oriented closed paths encircling each plaquette, and each of
these paths can start from any of the four vertices belonging to
this plaquette, hence the factor 8N . The constant term simply
counts the number of self-retracing paths and, as such, does
not bring any dependence with f .

We emphasize that, contrary to the claim made in Ref. [44],
this trick can be implemented for any gauge choice. However,
for a finite-size system with periodic boundary conditions,
different choices lead to the same magnetic flux in each
plaquette but may give different fluxes through noncontractible
loops of the torus. Nevertheless, the closed paths associated
with these loops become larger and larger when the system
size increases, and the difference in the spectrum induced by
these contributions vanishes in the thermodynamic limit.

APPENDIX B: ZERO-FIELD DENSITY OF STATES
AND EFFECTIVE BAND-EDGE MASS

In this Appendix, we present an alternative way to define
an effective band-edge mass for a tiling. To this aim, we start
by briefly discussing the zero-field thermodynamic density of
states,

ρ(μ,T ) =
∑

α

1

4T
sech2 Eα − μ

2T
(B1)

plotted in Fig. 5, where T is the temperature, μ is the chemical
potential controlling the electronic filling, and {Eα} are the
energy eigenvalues. Here, we set the Boltzmann constant
kB = 1. Temperature is used to smoothen the density of states
and corresponds to a box width of 	E � 3.53T . In the
zero-temperature limit, ρ(μ,0) = ∑

α δ(Eα − μ).
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FIG. 5. Thermodynamic density of states per site ρ(μ,T )/N at
temperature T as a function of the chemical potential μ for (a)
the Rauzy tiling; (b) the random tiling. Results are shown here
for a system with R21 = 223 317 sites and should be considered as
converged with the system size. The maximum relative error with the
previous approximant with R20 = 121 415 sites being smaller than
1% for these temperatures.
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At high temperatures, quasiperiodic and disordered cases
coincide for all chemical potentials (see Fig. 5). At low tem-
peratures, the density of states remains similar (and smooth)
near the band edges, but they strongly differ near the band
center. In the disordered case, the density of states is smooth,
apart from a zero-energy δ peak corresponding to less than 1%
of very localized states around sixfold coordinated sites (see
Ref. [45] for a description of these states in the dice lattice).
By contrast, in the quasiperiodic case, the low-temperature
density of states displays many pseudogaps (see Refs. [31,32]
for the zero-temperature case).

In the main text, we have defined an effective (band-
edge) mass from the band structure of an infinite periodic
approximant. An alternative way consists of fitting the
smoothed normalized integrated density of states in zero-field
N (E,f = 0) near the band edge, assuming a parabolic band
edge. This amounts to write

N (E,f = 0) = mρ

2π

√
3

2
[E − ε(0)], (B2)

where the zero-field ground-state energy in the quasiperiodic
case is ε(0) = −4.115 008(1) whereas ε(0) = −4.08(1) in
the disordered case. Fitting the effective mass mρ with this
expression, one gets 1/mρ = 1.95(1) in the quasiperiodic case
and 1/mρ = 1.9(1) in the disordered case. However, mρ and m

discussed in the main text are identified through the Onsager
semiclassical quantization of closed cyclotron orbits [46],

N (En,f = 0) =
(

n + 1

2

)
f. (B3)

Using Eqs. (B2) and (B3), one indeed finds

En − ε(0) = 4πf√
3mρ

(
n + 1

2

)
, ∀ n ∈ N, (B4)

which is similar to Eq. (6) provided mρ = m. We thus have
two independent ways of computing this effective mass: a
direct fit of the Landau levels when f → 0 that gives m, and
a fit of N (E,f = 0) according to Eq. (B2) that gives mρ . If
both approaches are in good agreement for the quasiperiodic
case, results for the disordered case are less precise. A better
analysis would require an average over a large number of
disorder configurations, but this is beyond the scope of the
present paper.

A third approach to compute an effective mass is discussed
in the main text. It relies on a quadratic expansion of the
lowest-energy band near its minimum and gives an inverse
effective mass 1/mT equal (up to a numerical factor) to
the dimensionless Thouless conductance [42,43]. For the
isometric Rauzy tiling, the effective mass tensor α has two
different eigenvalues α1 = 2.381 73(1) and α2 = 1.608 57(1)
yielding 1/mT = √

α1α2 = 1.957 35(1) and an anisotropy
α1/α2 = 1.480 65(1) (see Appendix C for a heuristic argu-
ment).

In a periodic system, these various definitions for band-edge
masses are equivalent, namely, m = mρ = mT. Our results
suggest that it is also the case for the Rauzy tiling (up to
numerical accuracy). However, this equivalence clearly no
longer holds for the disordered case for which m � mρ � 2

but, as explained in the main text, mT diverges in the
thermodynamic limit.

APPENDIX C: ANISOTROPY OF THE EFFECTIVE
MASS TENSOR

The inverse effective mass tensor of the lowest-energy band
for the isometric Rauzy tiling features an anisotropy α1 �= α2

(see the previous Appendix and the main text). This anisotropy
stems from unequal distributions of link orientations as we will
now discuss.

Let |ψ〉 be the ground state and let us define

ε̃(k) = 〈ψ |H (k)|ψ〉, (C1)

as an effective low-energy and long-wavelength dispersion
relation (a sort of continuum limit). Note that this dispersion
relation is different from the lowest-energy band defined in
the main text. In particular, we expect it to approximately
describe a broader energy range above the ground state than
just the lowest-energy band. In the long-wavelength limit, the
above dispersion relation can be written as

ε̃(k) � ε̃(0) + 1
2 α̃ij kikj , (C2)

where ε̃(0) is the ground-state energy and α̃ is an inverse
effective mass tensor.

From the exact numerical ground state (extrapolated in the
thermodynamic limit), we find ε̃(0) = ε(0) = −4.115 01(1)
and an inverse effective mass tensor α̃ with eigenvalues
α̃1 = 2.455 15(1) and α̃2 = 1.659 85(1), corresponding to an
average inverse effective mass

√
α̃1α̃2 = 2.018 71(1) and an

anisotropy α̃1/α̃2 = 1.479 14(1). Eigenvalues (α̃1,α̃2) can be
seen as approximations to (α1,α2) obtained by neglecting the
interband contribution.

In order to gain some analytical understanding of the
anisotropy and since the ground state is an extended state, we
further approximate |ψ〉 by the flat state |ψ〉 � 1√

Rk+1

∑
i |i〉

(for the order-k approximant) and obtain

ε̃(k) = − 1

Rk+1

∑
〈i,j〉

eik·(rj −r i ) = −2
3∑

l=1

tl cos(k · δl), (C3)

where the hopping terms tl are given by twice the
density of links pointing in directions δ1,δ2,δ3, namely,
(t1,t2,t3) = (1 − θ−1,1 − θ−2,1 − θ−3) in the thermodynamic
limit. This dispersion relation is identical to that of an
anisotropic triangular lattice with hopping amplitudes tl
along the three directions. In the long-wavelength limit
|k| � 1/

√
Rk+1, it can be approximated by a parabola,

ε̃(k) �
3∑

l=1

tl[−2 + (k · δl)
2], (C4)

yielding ε̃(0) = −4 and an inverse effective mass tensor α̃ with
eigenvalues,

α̃1 = 2 +
√

1 − 3θ−2 and α̃2 = 2 −
√

1 − 3θ−2. (C5)

They correspond to an average inverse effective mass√
α̃1α̃2 � 1.97 and an anisotropy α̃1/α̃2 � 1.41. Both quan-

tities are in fair agreement with those derived from the
lowest-energy band described in the main text.
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APPENDIX D: GAP LABELING FOR THE HOFSTADTER
BUTTERFLY OF A PERIODIC SYSTEM

Consider a periodic crystal with Nu unit cells and Ns sites
per unit cell. We are interested in the thermodynamic limit
where the total number of sites N = NuNs goes to infinity
(at fixed Ns). We start again by integrating the Widom-Středa
formula [34,35] for the Hall conductivity to obtain the number
of states below a given gap 	 as

N	 = νNφ + N0, (D1)

where ν is an integer [36,37], Nφ = BA/φ0 is the number of
flux quanta in the system (A is the total area), and N0 is an

integration constant. On a torus, Nφ must be an integer [47].
For B = 0, the Hamiltonian is periodic and Bloch’s theorem
indicates that each energy band contains Nu states. Therefore,
the number of states below a gap N0 = wNu, where w is an
integer. The normalized integrated density of states in the gap
	 is N = N	/N so that

N = νf̄ + w

Ns

, (D2)

where f̄ = Nφ/N is the average number of flux quanta per
site. Any gap is therefore labeled by only two integers (ν,w)
(see Ref. [48] for the case Ns = 1). In particular, we note
that this labeling works for a periodic system with tiles of
commensurate or incommensurate areas.
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