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Ground state properties of electron-hole bilayer: Mass-asymmetric effect
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We study the effects of mass asymmetry on the ground state properties of an electron-hole bilayer (EHBL)
system at T = 0 by using the quantum Monte Carlo method. Particularly, we use the variational Monte Carlo
method to calculate the pair-correlation function g(r) and the condensation fraction c at a fixed density for
different values of interplaner distance d and extract the phases of the EHBL system. We use a single trial wave
function that can describe fluid, excitonic, and biexcitonic phases. We find that the excitonic fluid phase is stable
in the region of d � 0.25 a.u. and a transition from the excitonic fluid phase to the biexcitonic fluid phase at
d = 0.24 a.u.
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I. INTRODUCTION

An electron-hole bilayer (EHBL) system, consisting of
two spatially separated layers where electrons are confined
to one layer and holes are in another, have attracted a
lot of interest over the years in both theoretical [1–5] and
experimental [6–10] levels. Such a system can be realized
in double quantum well structures, e.g., GaAs/AlGaAs het-
erostructures and bilayer graphene with negligible tunneling
between the two wells. The attractive Coulomb interaction
between electrons and holes, confined in a different layer,
starts to play an important role yielding a variety of interesting
phenomena. In particular, the presence of excitonic and
biexcitonic condensate phases [10–12], the charge-density
wave phase [13–15], and enhanced critical density for the
onset of Wigner crystals [16–18]. In the presence of strong
perpendicular magnetic fields, fractional quantum Hall states
[19,20] appear due to interlayer correlation effects. Coulom-
bic interlayer friction (Coulomb drag) [2,8] influences the
transport properties of double-layer systems. Due to these
phases and promising applications in semiconductor devices,
over the years, EHBL systems have considerable interest.
Recently, Efimkin and Galitski [2] theoretically investigated
the temperature dependence anomalous Coulomb effect in the
GaAs/GaAlAs-based EHBL due to the formation of excitonic
molecules. Berman et al. [3] used a BCS-like mean-field
approximation to find the phase diagram of an e-h bilayer.
Gamucci et al. [6] has experimentally shown a new class of
heterostructure comprising single-layer graphene in proximity
to a quantum well created in GaAs to study the Coulomb drag
transport measurements. Matveeva and Giorgini [21] studied
the BCS-BEC crossover in an EHBL system of fermionic
dipoles and compared the results with mean-field theories.

The majorities of theoretical studies have considered the
symmetric EHBL system where electrons and holes have equal
masses to study the electronic correlation effects. Moreover,
most of these theoretical studies were based on methods,
such as dielectric formulations [13,22] and Bardeen-Cooper-
Schrieffer theory [3,23], whereas very few groups have used
the quantum Monte Carlo (QMC) method [16,24]. On the
other hand, there are some studies on the mass-asymmetric
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EHBL that use the quantum Singwi-Tosi-Land-Sjölander [25]
approach [15,26] and the path-integral Monte Carlo (PIMC)
method [27,28], but here we use the variational quantum Monte
Carlo (VMC) method. In literature, Ludwing et al. [28] have
studied the effect of mass asymmetry on the Wigner crystal-
lization. Later, Schleede et al. [27] have extended the work and
completed the phase diagram of the mass-asymmetric EHBL
for d = 1–100 a.u. using the PIMC method. In contrast to
these works, we used the VMC method. In the present paper,
we have considered the more realistic EHBL system with
unequal masses of electrons and holes for the density range
of rs < 10 a.u. We have used a single trial wave function
[24] that can describe the fluid phase, the excitonic phase,
and the biexcitonic phase. The Wigner crystal phase, which
is favorable at the very low-density (high-rs) regime, is not
considered in the present paper. In this paper, we found the
biexcitonic phase at rs = 5 a.u. for a hole-to-electron mass
asymmetry of 7 (for the GaAs/GaAlAs-based system) which
is stable against the excitonic fluid phase for d � 0.24 a.u.

This biexcitonic fluid phase could not observed by Schleede
et al. [27] as they have not considered d < 1 a.u.

II. MODEL

We consider an EHBL system consisting of two parallel
two-dimensional layers separated by a distance d having
electrons as carriers in one layer and holes in another. We
also consider that the effective masses of electrons m∗

e and
holes m∗

h are unequal, i.e., m∗
e �= m∗

h. Hence, the layers are
identical in each respect except for the charge and mass of the
carriers. In the absence of the magnetic field, the Hamiltonian
of the infinite EHBL system is given by

Ĥ = −1

2

∑
i

∇2
ei

− 1

2σ

∑
i

∇2
hi

+
∑
i<j

1

|ei − ej |

+
∑
i<j

1

|hi − hj | −
∑
i,j

1√|ei − hj |2 + d2
, (1)

where ei and hj represent the coordinates of the ith electron
and the j th hole, respectively, σ = m∗

h/m∗
e , and ε is the

dielectric constant of the medium. Here, 1 Ha∗ = e2/εa∗
B , and

the Bohr radius is a∗
B = ε�

2/m∗
ee

2 where ε is the dielectric
constant of the medium. Since we have taken m∗

e = 1 and
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ε = 1, the modified units are the same as the atomic unit in
the present calculations. To simulate an infinite system we
use a finite square simulation cell with periodic boundary
conditions and have used two-dimensional Ewald sums [29,30]
to evaluate the Coulomb sums.

III. COMPUTATIONAL METHOD

We use the variational Monte Carlo (VMC) method as
implemented in the CASINO code [31] in order to calculate
various ground state properties of the EHBL system. In
this method, the expectation value of the Hamiltonian Ĥ

with respect to a trial wave-function �T is calculated using
importance-sampled Monte Carlo integration. The trial wave
function contains a number of variable parameters whose
values are obtained by an optimization procedure. The VMC
provides an upper bound for the exact ground state. The
variational energy expectation value of Ĥ with trial wave-
function �T is given by

〈ET 〉 =
∫

�∗
T (R)Ĥ�T (R)dR∫
�∗

T (R)�T (R)dR

=
∫ |�T (R)|2∫ |�T (R)|2dR

EL(R)dR, (2)

where R = (r1,r2, . . . ,rN ) is all particle positions and
EL(R) = �−1

T (R)Ĥ�T (R) is the local energy.
We use a trial wave function of the standard Slater-Jastrow

type,

�T = D[φ(e↑
i − h↓

j )]D[φ(e↓
i − h↑

j )] exp[J (R)], (3)

where Ds are Slater determinants of opposite-spin electron-
hole pairing orbitals and exp[J (R)] is a Jastrow factor,
introducing the correlation between the charge carriers. We
have used the pairing orbitals from Ref. [24],

φ(r) =
np∑
l=1

pl cos(kl · r) + f (r; M)
nc∑

m=0

cmrm, (4)

where np is the plane-wave expansion order, kl is the lth
shortest reciprocal-space vector, nc is the polynomial expan-
sion order, f (r; M) is a cutoff function given by f (r; M) =
(1 − r/M)3�(r − M), � is the Heaviside step function, and
{pl}, {cm}, and M are optimizable parameters. The pairing
orbitals implicitly bind the antiparallel spin electron-hole pairs,
hence it is capable of describing a pure Fermi fluid and an
excitonic superfluid but cannot describe the biexcitons. The
biexciton correlations are introduced by the Jastrow factor.

We have used a CASINO’s Jastrow factor [32] consisting of
a two-body polynomial u term to which the electron-electron,
hole-hole, and electron-hole Kato cusp conditions are applied
[33]. Also, we have used a “quasicusp” Jastrow factor term [24]
Q to include the electron-hole cusp condition as d → 0 except
for d = 0. The Q term has a single optimizable cutoff length.
We have optimized the parameters of a trial wave function
using minimization of the mean absolute deviation of the local
energies from the median [31] followed by linear least-squares
energy minimization [34].
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FIG. 1. VMC expectation values of c(r) for the EHBL bilayer at
d = 9, 5, 2, 0.3, 0.2, and 0.05 a.u. for rs = 5 a.u. and mh = 7 × me.

The translational-rotational average of the two-body den-
sity matrix for electron-hole pairs is

ρ
(2)
eh (r) =

N2
∫ |�(R)|2 �(e1+r′,h1+r′)

�(e1,h1) δ(|r′| − r)dR dr′

	22πr
∫ |�(R)|2dR

, (5)

where 	 is the area of the simulation cell. The condensate
fraction c is defined as [35]

c = 	2

N
lim

r→∞ ρ
(2)
eh (r). (6)

The condensate fraction is evaluated by using the improved
estimator of Ref. [36], which is denoted as c(r) in Fig. 1. Within
the QMC calculations, we have evaluated the condensate
fraction c by fitting the c(r) over the plateau region [16]
with c + A/r2, r � 10 for large r . The condensate fraction is
zero for pure one-component and biexcitonic fluid phases. We

TABLE I. Extrapolated condensate fraction c and ground state
energy per particle of the EHBL system within the VMC calculation
at a density of rs = 5 a.u. and different layer separations d .

d (a.u.) c Energy (a.u./particle)

9.00 0.330(2) − 0.10668(4)
7.00 0.403(2) − 0.10914(4)
5.00 0.524(1) − 0.11528(4)
2.00 0.550(1) − 0.14321(5)
1.70 0.765(1) − 0.16770(3)
1.00 0.7955(6) − 0.21653(4)
0.50 0.745(1) − 0.2972(1)
0.40 0.741(1) − 0.3329(1)
0.30 0.7401(6) − 0.3828(1)
0.26 0.739(2) − 0.4084(1)
0.25 0.8394(3) − 0.42462(9)
0.24 0.0856(6) − 0.4258(1)
0.20 0.0290(9) − 0.4574(2)
0.10 0.0322(6) − 0.6054(1)
0.05 0.0318(5) − 0.7263(3)
0.04 0.007(1) − 0.7654(3)
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compute the pair-correlation function (PCF) to distinguish the
biexcitonic fluid phase from the one-component fluid phase.

The spherically averaged real-space PCF [24] is given by

gαβ(r) = 	
∫ |�(R)|2δ(rα − rβ − r′)δ(|r′| − r)dR dr′

2πr
∫ |�(R)|2dR

, (7)

where α and β are indices that distinguish the four particle
types in the system, i.e., up- and down-spin electrons and

holes. The PCF gives the probability of finding a particle at
distance r away from a particle situated at the origin.

IV. RESULTS AND DISCUSSION

In this section, we present the numerical results for the
ground state properties of the EHBL system with mass
asymmetry. The results were obtained by the VMC simulation
method as implemented in the CASINO code [31]. The ground
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FIG. 2. Intralayer PCF, (a) ge↑e↓ , (b) gh↑h↓ , (c) ge↑e↑ , and (d) gh↑h↑ and interlayer PCF, (e) ge↑h↑ and (f) ge↑h↓ for d = 5, 0.5, 0.3, 0.2, and
0.05 a.u. at rs = 5 a.u. Up- (↑) and down- (↓) arrows represent up-spin and down-spin charge carriers, respectively. The legends are displayed
in (c). The inset shows the zoomed view of the same data near the origin.
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state properties of the EHBL system depend on the following
parameters: (i) The hole-to-electron effective mass ratio σ =
m∗

h/m∗
e , (ii) the interlayer separation d measures the interlayer

coupling, and (iii) the density parameter rs controls the in-layer
coupling. In the simulations, we consider a bilayer system with
N = 5 up- and down-spin electrons and holes, i.e., a total of
20 particles. Our results have been obtained at a fixed density
parameter of rs = L/

√
2πN = 5 a.u., where L is the side of

the square simulation cell and mass ratio σ = 7 for different
layer separations d.

Figure 1 displays the VMC computed values of c(r) for
the EHBL system with a density of rs = 5 a.u. at interlayer
separations d = 9.0, 5.0, 2.0, 0.3, 0.2, and 0.05 a.u. In the VMC
simulation, c(r)’s were obtained by subtracting the one-body
density matrix from the two-body density matrix [36]. It is
noticed in Fig. 1 that c(r) shows the plateau region at large
r . The symmetric EHBL system studied by Maezono et al.
[24] found c(r) = 0 at rs = 5 and d = 4 a.u. indicates the
system is in the fluid phase whereas in our case c(r) is nonzero
for d = 5 a.u. and increases with d. This difference can be
interpreted as due to unequal masses of electrons and holes,
residing in different layers, the mass-asymmetric EHBL is in
the excitonic phase.

In Table I, we show the condensate fraction c and ground
state energy per particle at different layer separations d.
The condensate fraction c calculated by extrapolating [16]
the c(r) over the plateau region for large values of r with
c + A/r2, r � 10 [almost for all d’s, c(r) shows a plateau
from r = 10 a.u.] at different values of d. The condensate
fraction c is nonzero, and buildup as the separation between the
layers decreases from d = 9 a.u. and achieves its maximum
value of 0.8394(3) at d = 0.25 a.u. The nonzero values of the
condensate fraction indicate that the EHBL system is in the
excitonic fluid phase. By further diminishing the separation by
0.01 a.u., the condensate fraction suddenly falls to 0.0856(6),
which is one order small and goes down by a further reduction
in d. This can be interpreted as a phase transition from
excitonic fluid to biexciton formation or the one-component
fluid phase. So, in order to distinguish the biexcitonic
phase from the one-component fluid, we have calculated
the spin-resolved pair-correlation functions which are shown
in Fig. 2.

The intralayer and the interlayer PCFs are shown in
Figs. 2(a)–2(f), at layer separations d = 5, 0.5, 0.3, 0.2, and
0.05 a.u. The insets are shown in Figs. 2(a), 2(b), 2(e), and
2(f) that provide a zoomed view near the origin. It is evident,
from an inspection of Figs. 2(a) and 2(b) (see the insets)
and Figs. 2(c) and 2(d), that parallel spin (antiparallel spin)
e-e/h-h PCF creates a Fermi hole (correlation hole) when
layer separation is large, particularly at d = 5, 0.5, and 0.3 a.u.
The Fermi hole for parallel spin e-e/h-h pairs is wider than
the correlation hole for antiparallel e-e/h-h pairs. Whereas
at the same values of d, the parallel and antiparallel spin
e-h PCFs [Figs. 2(e) and 2(f)] at r = 0 show enhancement.
This enhancement in the same- and opposite-spin e-h PCFs
at r = 0 where the intralayer PCF is zero can be interpreted
as a formation for excitons. By further diminishing the layer
separation, the Fermi hole (correlation hole) for parallel
(antiparallel) spin disappears and develops a peak near r = 1,
see Figs. 2(a)–2(d). It is also evident that the peak height for
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FIG. 3. The same- and opposite-spin e-h PCFs are shown as
black-thick lines and green-thin lines (overlapped on the black-thick
lines), respectively. The PCFs corresponding to the lower value
at r = 0 a.u. is for d = 0.2 and that for the higher value is for
d = 0.05 a.u. The inset shows the zoomed view of the same data
near the origin.

h-h pair PCFs (for both parallel and antiparallel) is larger than
the e-e pair PCFs that means the holes are comparatively more
strongly correlated than the electrons. This can be interpreted
as an effect of unequal masses of electrons and holes since the
in-layer coupling parameter (the ratio of potential energy to
kinetic energy) for the layer of holes is m∗

h/m∗
e times larger

than the layer of electrons.
We also noticed from an inspection of Figs. 2(e) and 2(f)

that, at d = 5–0.3 a.u. where the system is in an excitonic
fluid, the same-spin e-h PCF at r = 0 remains close to zero
whereas the opposite-spin e-h PCF builds up with d. This
difference between two PCFs is due to the fact that our wave
function explicitly binds opposite-spin electron-hole pairs. By
further diminishing d to 0.2 a.u., the PCF shows a strong peak
at r = 0 for both same- and opposite-spin e-h pairs, whereas
opposite-spin e-e/h-h pairs show a fairly strong peak around
r = 1 a.u. and same-spin e-e/h-h pairs show a small peak at
r ≈ 2 a.u. By further diminishing d to 0.05 a.u., peaks in the
PCF enhanced more and also shifts towards the origin. For
clarity, we compare the opposite- and same-spin e-h PCFs for
d = 0.2 and 0.05 a.u. in Fig. 3. It is clear from an inspection
of Fig. 3 that the same- and opposite-spin e-h PCFs at r = 0
are equally enhanced. This strong equal enhancement in the
same- and opposite-spin e-h PCFs along with enhancement
in the opposite-spin e-e/h-h PCF can be interpreted as a
formation of a biexciton. The inset image shows the zoomed
view around the origin, which shows that the PCF becomes
zero around r = 4 a.u. for d = 0.05 a.u. and shows the weak
oscillatory behavior at large r which can be interpreted
as a biexcitonic fluid phase. The very small values of the
condensate fraction, given in Table I, at d � 0.24 a.u. and the
characteristics of the PCFs indicate that the mass-asymmetric
EHBL system is in the biexcitonic fluid phase. We did not
find the one-component fluid phase over the studied range
which was reported in the study of the symmetric EHBL

205435-4



GROUND STATE PROPERTIES OF ELECTRON-HOLE . . . PHYSICAL REVIEW B 94, 205435 (2016)

by Maezone et al. [24] In contrast, we found an excitonic
fluid phase at d = 0.25–9 a.u. for the mass-asymmetric e-h
bilayer. In Ref. [24] the biexcitonic phase is observed for
d < 0.38 a.u. whereas in the present case it is observed for
d � 0.24 a.u. In our paper we found the biexcitonic phase at
rs = 5 a.u. for a hole-to-electron mass asymmetry of 7 (for
the GaAs/GaAlAs-based system) which is stable against the
excitonic fluid phase for d < 0.25 a.u. This biexcitonic fluid
phase could not be observed by Schleede et al. [27] as they
have not considered d < 1 a.u.

V. CONCLUSION

In conclusion, we have studied the effect of the unequal
masses of electrons and holes on the ground state properties
of the EHBL system. For this purpose, we have employed
the VMC method over a wide range of layer parameters. The
different phases of mass-asymmetric EHBL are identified from
the behavior of the condensate fraction and pair-correlation

functions at different layer separations. We find the excitonic
fluid phase by a nonzero condensate fraction. We compute
the PCF to identify the biexcitonic fluid phase from the
one-component fluid phase. We found that the EHBL system
is in the excitonic fluid phase when d = 9–0.25 a.u. and in
the biexcitonic phase for d < 0.25 a.u. Here, we have not
considered the low-density regime where the Wigner crystal
phase is favorable nor the finite layer width effects. In the
future, we will try to explore the phase diagram of the
mass-asymmetric EHBL system for other values of rs and
will also include the finite width effect.
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[22] J. Szymański, L. Świerkowski, and D. Neilson, Phys. Rev. B 50,

11002 (1994).
[23] D. Neilson, A. Perali, and A. R. Hamilton, Phys. Rev. B 89,

060502 (2014).
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J. Phys.: Condens. Matter 22, 023201 (2010).
[32] N. D. Drummond, M. D. Towler, and R. J. Needs, Phys. Rev. B

70, 235119 (2004).
[33] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
[34] C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G.

Hennig, Phys. Rev. Lett. 98, 110201 (2007).
[35] C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
[36] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,

Phys. Rev. Lett. 95, 230405 (2005).

205435-5

https://doi.org/10.1155/2011/727958
https://doi.org/10.1155/2011/727958
https://doi.org/10.1155/2011/727958
https://doi.org/10.1103/PhysRevLett.116.046801
https://doi.org/10.1103/PhysRevLett.116.046801
https://doi.org/10.1103/PhysRevLett.116.046801
https://doi.org/10.1103/PhysRevLett.116.046801
https://doi.org/10.1016/j.physe.2015.03.016
https://doi.org/10.1016/j.physe.2015.03.016
https://doi.org/10.1016/j.physe.2015.03.016
https://doi.org/10.1016/j.physe.2015.03.016
https://doi.org/10.1103/PhysRevB.86.045429
https://doi.org/10.1103/PhysRevB.86.045429
https://doi.org/10.1103/PhysRevB.86.045429
https://doi.org/10.1103/PhysRevB.86.045429
https://doi.org/10.1038/ncomms6824
https://doi.org/10.1038/ncomms6824
https://doi.org/10.1038/ncomms6824
https://doi.org/10.1038/ncomms6824
https://doi.org/10.1103/PhysRevLett.104.166804
https://doi.org/10.1103/PhysRevLett.104.166804
https://doi.org/10.1103/PhysRevLett.104.166804
https://doi.org/10.1103/PhysRevLett.104.166804
https://doi.org/10.1016/j.physe.2009.11.093
https://doi.org/10.1016/j.physe.2009.11.093
https://doi.org/10.1016/j.physe.2009.11.093
https://doi.org/10.1016/j.physe.2009.11.093
https://doi.org/10.1134/1.1354683
https://doi.org/10.1134/1.1354683
https://doi.org/10.1134/1.1354683
https://doi.org/10.1134/1.1354683
https://doi.org/10.1103/PhysRevLett.74.450
https://doi.org/10.1103/PhysRevLett.74.450
https://doi.org/10.1103/PhysRevLett.74.450
https://doi.org/10.1103/PhysRevLett.74.450
https://doi.org/10.1103/PhysRevB.61.8420
https://doi.org/10.1103/PhysRevB.61.8420
https://doi.org/10.1103/PhysRevB.61.8420
https://doi.org/10.1103/PhysRevB.61.8420
https://doi.org/10.1103/PhysRevB.79.125308
https://doi.org/10.1103/PhysRevB.79.125308
https://doi.org/10.1103/PhysRevB.79.125308
https://doi.org/10.1103/PhysRevB.79.125308
https://doi.org/10.1103/PhysRevB.53.7923
https://doi.org/10.1103/PhysRevB.53.7923
https://doi.org/10.1103/PhysRevB.53.7923
https://doi.org/10.1103/PhysRevB.53.7923
https://doi.org/10.1016/S0921-4526(98)00228-2
https://doi.org/10.1016/S0921-4526(98)00228-2
https://doi.org/10.1016/S0921-4526(98)00228-2
https://doi.org/10.1016/S0921-4526(98)00228-2
https://doi.org/10.1088/0953-8984/18/4/014
https://doi.org/10.1088/0953-8984/18/4/014
https://doi.org/10.1088/0953-8984/18/4/014
https://doi.org/10.1088/0953-8984/18/4/014
https://doi.org/10.1103/PhysRevLett.88.206401
https://doi.org/10.1103/PhysRevLett.88.206401
https://doi.org/10.1103/PhysRevLett.88.206401
https://doi.org/10.1103/PhysRevLett.88.206401
https://doi.org/10.1103/PhysRevB.66.205316
https://doi.org/10.1103/PhysRevB.66.205316
https://doi.org/10.1103/PhysRevB.66.205316
https://doi.org/10.1103/PhysRevB.66.205316
https://doi.org/10.1103/PhysRevB.63.165328
https://doi.org/10.1103/PhysRevB.63.165328
https://doi.org/10.1103/PhysRevB.63.165328
https://doi.org/10.1103/PhysRevB.63.165328
https://doi.org/10.1016/j.physe.2003.11.215
https://doi.org/10.1016/j.physe.2003.11.215
https://doi.org/10.1016/j.physe.2003.11.215
https://doi.org/10.1016/j.physe.2003.11.215
https://doi.org/10.1103/PhysRevLett.68.1379
https://doi.org/10.1103/PhysRevLett.68.1379
https://doi.org/10.1103/PhysRevLett.68.1379
https://doi.org/10.1103/PhysRevLett.68.1379
https://doi.org/10.1103/PhysRevA.90.053620
https://doi.org/10.1103/PhysRevA.90.053620
https://doi.org/10.1103/PhysRevA.90.053620
https://doi.org/10.1103/PhysRevA.90.053620
https://doi.org/10.1103/PhysRevB.50.11002
https://doi.org/10.1103/PhysRevB.50.11002
https://doi.org/10.1103/PhysRevB.50.11002
https://doi.org/10.1103/PhysRevB.50.11002
https://doi.org/10.1103/PhysRevB.89.060502
https://doi.org/10.1103/PhysRevB.89.060502
https://doi.org/10.1103/PhysRevB.89.060502
https://doi.org/10.1103/PhysRevB.89.060502
https://doi.org/10.1103/PhysRevLett.110.216407
https://doi.org/10.1103/PhysRevLett.110.216407
https://doi.org/10.1103/PhysRevLett.110.216407
https://doi.org/10.1103/PhysRevLett.110.216407
https://doi.org/10.1143/JPSJ.38.965
https://doi.org/10.1143/JPSJ.38.965
https://doi.org/10.1143/JPSJ.38.965
https://doi.org/10.1143/JPSJ.38.965
https://doi.org/10.1002/ctpp.201100045
https://doi.org/10.1002/ctpp.201100045
https://doi.org/10.1002/ctpp.201100045
https://doi.org/10.1002/ctpp.201100045
https://doi.org/10.1002/ctpp.201200045
https://doi.org/10.1002/ctpp.201200045
https://doi.org/10.1002/ctpp.201200045
https://doi.org/10.1002/ctpp.201200045
https://doi.org/10.1002/ctpp.200710045
https://doi.org/10.1002/ctpp.200710045
https://doi.org/10.1002/ctpp.200710045
https://doi.org/10.1002/ctpp.200710045
https://doi.org/10.1016/0039-6028(75)90362-3
https://doi.org/10.1016/0039-6028(75)90362-3
https://doi.org/10.1016/0039-6028(75)90362-3
https://doi.org/10.1016/0039-6028(75)90362-3
https://doi.org/10.1016/0039-6028(76)90102-3
https://doi.org/10.1016/0039-6028(76)90102-3
https://doi.org/10.1016/0039-6028(76)90102-3
https://doi.org/10.1016/0039-6028(76)90102-3
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1088/0953-8984/22/2/023201
https://doi.org/10.1103/PhysRevB.70.235119
https://doi.org/10.1103/PhysRevB.70.235119
https://doi.org/10.1103/PhysRevB.70.235119
https://doi.org/10.1103/PhysRevB.70.235119
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1103/PhysRevLett.98.110201
https://doi.org/10.1103/PhysRevLett.98.110201
https://doi.org/10.1103/PhysRevLett.98.110201
https://doi.org/10.1103/PhysRevLett.98.110201
https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/PhysRevLett.95.230405
https://doi.org/10.1103/PhysRevLett.95.230405
https://doi.org/10.1103/PhysRevLett.95.230405
https://doi.org/10.1103/PhysRevLett.95.230405



