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Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles
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The application of Cartesian multipoles in irreducible representations provides the possibility to get explicit
contributions of the toroidal multipole terms in the extinction and scattering power without the introduction
of special form factors. In the framework of the Cartesian multipoles, we obtained multipole decomposition
(up to the third order) of the induced polarization (current) inside an arbitrarily shaped scatterer (nanoparticle).
The third-order decomposition includes the toroidal dipole, magnetic quadrupole, electric octupole terms, and
also nonradiating terms. The corresponding multipole decomposition of the scattering cross section, taking into
account the electric octupole term, is derived and compared with the multipole decomposition of the extinction
cross section obtained using the optical theorem. We show that the role of multipoles in the optical theorem
(light extinction) and scattering by arbitrarily shaped nanoparticles can be different. This can result in seemingly
paradoxical conclusions with respect to the appearance of multipole contributions in the scattering and extinction
cross sections. This fact is especially important for absorptionless nanoparticles, for which the scattering cross
section can be calculated using the optical theorem, because in this case extinction is solely determined by
scattering. Demonstrative results concerning the role of third-order multipoles in the resonant optical response
of high-refractive-index dielectric nanodisks, with and without a through hole at the center, are presented. It is
shown that the optical theorem results in a negligible role of the third-order multipoles in the extinction cross
sections, whereas these multipoles provide the main contribution in the scattering cross sections.
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I. INTRODUCTION

The well-known optical theorem relates the light extinction
power, including absorption and scattering, to the imaginary
part of the light scattering amplitude in the forward direc-
tion [1]. This theorem provides a simple algorithm for calcula-
tions of the extinction cross sections σext by nanoparticles and
nanostructures [2],

σext = 4π

kd |E0|2 Im
{
E∗

0 · Esca
0 (ninc)

}
, (1)

where kd is the wave number in the surrounding medium,
E0 is the incident wave amplitude, Esca

0 (ninc) is the scattering
amplitude in the forward (incident) direction, ninc is the unit
vector directed along the incidence, and the asterisk denotes
complex conjugation. For absorptionless scatterers the scatter-
ing cross section σsca also can be calculated using the optical
theorem [3]. In general, a combination of σext and the scattering
cross section σsca with the multipole decomposition method,
as it was first realized in the Mie theory, provides an extremely
useful approach to analyze and understand light scattering
processes [4]. This approach is especially important for
investigations of resonant optical properties of nanoparticles,
where their response (scattered field phase and directivity)
is determined by certain multipole modes resonantly excited
by incident light. In the Mie theory, derived for spherical
scatterers, the multipole decompositions of σext and σsca are
obtained from the field expansion including only spherical
electric aE and magnetic aM multipole coefficients which are
associated with the scattered field structure. Another approach
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is based on the Cartesian multipole expansion of current
induced in scatterers by incident light. In this case, depending
on the definition of the multipoles, the multipole expansion
can include contributions from the electric, magnetic, and
toroidal terms [5]. A general approach taking into account
all types of multipoles is based on the application of three
families of electric, magnetic, and toroidal multipole form
factors [6,7]. Recently, the electromagnetic excitation of
dynamical toroidal multipoles (especially toroidal dipoles) has
attracted significant attention due to their unusual electromag-
netic properties [8]. In particular, the excitation of the toroidal
dipole in a scatterer is a key condition for the realization of
the anapole (nonradiating) mode, which can provide unique
possibilities for the development of nonscattering (transparent)
metamaterials [9,10]. The anapole mode can be viewed as a
combination of electric and toroidal dipole moments, resulting
in the destructive interference of radiation fields due to the
similarity of their scattering patterns [9,11–14]. The scattered
field patterns of other toroidal multipoles are also similar
to corresponding electric and magnetic multipoles. This is
the reason why in the Mie theory no explicit contributions
of toroidal multipoles are present. Note that the toroidal
dipole moment appears in the third-order multipole expansion
and is associated with particular current configurations [5].
The multipole decomposition method involving the toroidal
multipole terms provides important information about the
influence of different current configurations on the spectral
features in the scattering and extinction cross sections.

In this paper, we show how the optical theorem can
be combined with multipole decomposition for arbitrarily
shaped (nonspherical) nanoparticles and discuss the differ-
ences between multipole contributions in the extinction and
scattering cross sections. For this aim, we perform multipole
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decompositions of σsca and σext up to the third order using
irreducible multipole representations in the Cartesian coordi-
nate system [15]. It will be shown that the role of multipoles
in the optical theorem (light extinction) and scattering by
arbitrarily shaped nanoparticles can be different. This can
result in seemingly paradoxical conclusions with respect to
the appearance of multipole contributions in the scattering
and extinction cross sections. This conclusion is especially
important for absorptionless nanoparticles, for which the
scattering cross section can be calculated by using the optical
theorem, because in this case extinction is solely determined
by scattering. Demonstrative results concerning the role of
third-order multipoles in the resonant optical response of
high-refractive-index dielectric nanodisks, with and without
a through hole at the center, are presented.

II. MULTIPOLE APPROACH

We start from the multipole decomposition of polarization
P = ε0(εp − εd )E, induced by the incident light wave in an
arbitrarily shaped nanoparticle, where ε0, εp, and εd are the
vacuum dielectric constant, relative dielectric permittivity of
the nanoparticle, and relative dielectric permittivity of the
surrounding medium, respectively, E is the total electric
field inside the nanoparticle. We consider incident plane
monochromatic waves with the time dependence defined by
exp(−iωt), where ω is the angular frequency, and multipoles
located at the origin of the Cartesian coordinate system
coinciding with the nanoparticle center of mass.

A. Two multipole decompositions of induced polarization

To get multipole decomposition of the light-induced polar-
ization,

P(r) =
∫

P(r′)δ(r − r′)dr′, (2)

the Dirac delta function δ(r − r′) in (2) is expanded in a Taylor
series [16] with respect to r′ around the origin, and then, using
the definitions of the corresponding multipole moments, one
can write (see Ref. [17])

P(r) � pδ(r) − 1

6
Q̂′∇δ(r) + i

ω
[∇ × mδ(r)]

+ 1

6
Ô ′[∇∇δ(r)] − i

2ω
[∇ × M̂ ′∇δ(r)], (3)

where

p =
∫

P(r′)dr′ (4)

is the electric dipole moment, and

Q̂′ = 3
∫

[r′P(r′) + P(r′)r′]dr′, (5)

m = − iω

2

∫
[r′ × P(r′)]dr′, (6)

Ô ′ = −
∫

r′r′r′[∇ · P(r′)]dr′

≡
∫

{P(r′)r′r′ + r′P(r′)r′ + r′r′P(r′)}dr′, (7)

M̂ ′ = −2iω

3

∫
[r′ × P(r′)]r′dr′ (8)

are the electric quadrupole tensor, the magnetic dipole mo-
ment, the tensor of the electric octupole moment, and the tensor
of the magnetic quadrupole moment, respectively, at the origin
of the coordinate system. Here ∇∇, r′P, and r′r′r′ represent
the tensor products between corresponding vectors. Note
that the electric quadrupole tensor Q̂′ and electric octupole
tensor Ô ′ are totally symmetric and not traceless, whereas the
magnetic quadrupole tensor M̂ ′ is traceless and not symmetric.
Integration in the multipole definitions is performed over the
scatterer volume.

Another approach is connected with using the multipole
moments in the irreducible representations. It means that
they have to satisfy both symmetric and traceless properties.
Applying the traceless procedure to Q̂′ and Ô ′, and the
symmetrization procedure to M̂ ′, as it has been described in
Ref. [5], one can write the following:

(1)

Q̂′ = Q̂ + Q̂′′, (9)

where

Q̂ = 3
∫ [

r′P(r′) + P(r′)r′ − 2

3
[r′ · P(r′)]Û

]
dr′ (10)

is the irreducible tensor of the electric quadrupole moment
(Û is the 3×3 unit tensor), and

Q̂′′ = 2
∫

[r′ · P(r′)]Ûdr′. (11)

(2)

Ô ′ = Ô + Ô ′′, (12)

where Ô is the irreducible tensor of the electric octupole
moment with the components

Oβγτ = O ′
βγ τ − (δβγ Vτ + δβτVγ + δγ τVβ), (13)

and the vector V is determined by the expression

V = 1

5

∫
{2[r′ · P(r′)]r′ + r′2P(r′)}dr′. (14)

Thus the components of the tensor Ô ′′ are determined by

O ′′
βγ τ = δβγ Vτ + δβτVγ + δγ τVβ. (15)

Here, β = x,y,z, γ = x,y,z, and τ = x,y,z, δτβ is the
Kronecker delta.

(3)

M̂ ′ = M̂ + M̂ ′′, (16)

where M̂ is the irreducible tensor of the magnetic quadrupole
moment

M̂ = ω

3i

∫
{[r′ × P(r′)]r′ + r′[r′ × P(r′)]}dr′, (17)

and the components of the asymmetric tensor

M̂ ′′ = ω

3i

∫
{[r′ × P(r′)]r′ − r′[r′ × P(r′)]}dr′ (18)
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can be presented as

M ′′
βγ = 1

2

∑
τ

εβγ τWτ , (19)

with the vector

W = 2ω

3i

∫
{r′2P(r′) − [r′ · P(r′)]r′}dr′, (20)

where ε̂ is the Levi-Civita tensor.
Finally, the induced polarization (or the induced current

j = −iωP) can be written in the irreducible multipole repre-
sentation as

P(r) � pδ(r) − 1

6
Q̂∇δ(r) + i

ω
[∇ × mδ(r)]

+ 1

6
Ô[∇∇δ(r)] − i

2ω
[∇ × M̂∇δ(r)]

− i

ω
T�δ(r) − q

6
∇δ(r) + [∇∇δ(r)]L, (21)

where � ≡ ∇ · ∇ is the Laplace operator, and

T = iω

6
V − 1

4
W ≡ iω

10

∫
{2r′2P(r′) − [r′ · P(r′)]r′}dr′ (22)

is the toroidal dipole moment [5,12]. The vector

L = 1

3
V − i

4ω
W ≡ 1

10

∫
{3[r′ · P(r′)]r′ − r′2P(r′)}dr′ (23)

and the scalar value

q = 2
∫

[r′ · P(r′)]dr′.

Note that the structure of Eq. (21) differs from that of Eq. (3)
due to the last three terms. The vectors T and L appear from
the third-order multipoles, whereas the q term is the multipole
of the second order.

Importantly, the contribution of the toroidal dipole term
into the multipole decomposition of the induced polarization
(current) and into the scattered field (see below) naturally
appears in the framework of the irreducible representation for
the Cartesian multipole moments [5] without the introduction
of toroidal multipole form factors [7].

B. Electric fields generated by multipoles

The scattered electric field Esca, generated in the far-wave
zone by the induced polarization, can be presented as

Esca(r) = k2
0

ε0

∫
Vs

ĜFF(r,r′)P(r′)dr′, (24)

where ĜFF(r,r′) is the far-field approximation of the Green’s
tensor for a system without a scatterer [17], and Vs is the
scatterer volume where P(r) �= 0. When ĜFF(r,r′) is replaced
by the total Green’s tensor Ĝ(r,r′), Eq. (24) determines the
electric field in all wave zones around the scatterer. In this
case, using the multipole decomposition (21), one can get
electric fields generated by different multipoles. For example,
the electric field ETD, generated by the toroidal dipole T (21),
is given by

ETD(r) = − ik2
0

ε0ω

∫
Vs

Ĝ(r,r′)T�δ(r′)dr′. (25)

After integration, assuming that the toroidal dipole is located
at rT , one obtains

ETD(r) = ik2
0k

2
d

ε0ω
Ĝ(r,rT )T, (26)

where k0 and kd are the wave numbers in vacuum and in the
surrounding medium;

Ĝ(r,r′) =
[(

1

R
+ i

kdR2
− 1

k2
dR

3

)
Û

+
(

− 1

R
− 3i

kdR2
+ 3

k2
dR

3

)
eReR

]
eikdR

4π
.

Here, R = |R| = |r − r′|, and eReR is the dyadic product of the
unit vector eR = R/R. As can be seen from (25), the toroidal
dipole generates the electric field in all wave zones similar to
the electric dipole.

Note that the last two multipole terms containing q and L
in expression (21) do not generate electromagnetic fields in all
wave zones. This can be shown using a property of the Green’s
tensor Ĝ(r,r′):

∇′ · Gi = ∂Gi1

∂x ′ + ∂Gi2

∂y ′ + ∂Gi3

∂z′ = 0, if r �= r′. (27)

III. SCATTERING AND EXTINCTION

A. Scattering cross section

Applying the method described in Ref. [17] for the calcula-
tion of the scattered electric field Esca and using the multipole
decomposition (21), one can obtain the following expression,

Esca(r) � eikd r

r
Esca

0 (n), (28)

where

Esca
0 (n) � k2

0

4πε0

(
[n × [D × n]] + 1

vd

[m × n]

+ ikd

6
[n × [n × Q̂n]] + ikd

2vd

[n × (M̂n)]

+ k2
d

6
[n × [n × Ô(nn)]]

)
(29)

is the scattering amplitude into the direction n (n is the unit
vector directed along r). Here, we combined the electric
dipole p and the toroidal dipole T as

D = p + ikd

vd

T ≡ p + ik0

c
εdT, (30)

where vd = c/
√

εd is the speed of light in the surrounding
medium. The vector D can be called the total electric dipole
(TED) moment because the field propagators of p and T differ
from each other by the only scalar factor ikd/vd . Since the
contribution of T in the TED moment increases with growing
dielectric permittivity εd , this can be used for the manipulation
of the TED moment by changing the surrounding conditions.

The far-field scattered power dPsca into the solid an-
gle d = sin θ dϕdθ is determined by the time-averaged
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Poynting vector [1] so that

dPsca = 1

2

√
ε0εd

μ0
|Esca|2r2d. (31)

Inserting (29) in (31), after integration over the total solid
angle [18], the total scattering power can be obtained,
including the third-order multipoles: magnetic quadrupole
(MQ), electric octupole (EOC), and toroidal dipole (TD),

Psca � k4
0

12πε2
0vdμ0

∣∣∣∣p + ikd

vd

T

∣∣∣∣
2

+ k4
0εd

12πε0vd

|m|2

+ k6
0εd

1440πε2
0vdμ0

∑
αβ

|Qαβ |2 + k6
0ε

2
d

160πε0vd

∑
αβ

|Mαβ |2

+ k8
0ε

2
d

3780πε2
0vdμ0

∑
αβγ

|Oαβγ |2. (32)

The first term in (32) that is determined by the superposition
of the electrical and toroidal dipoles includes the interference
between them, which at certain conditions can result in the
realization of a nonradiating anapole mode [9,12]. Due to the
irreducible properties of the Q̂, M̂ , and Ô tensors, there is no
interference between them.

Integrating (31) we used the following useful relations,

nαnβ = 1
3δαβ, (33)

nαnβnγ nη = 1
15 (δαβδγη + δαγ δβη + δαηδβγ ), (34)

nαnβnγ nηnτnε = 1
105 (δαβδγηδτε + δαβδγ τ δηε + δαβδγ εδτη

+ δαγ δβηδτε + δαγ δβτ δηε + δαγ δβεδτη

+ δαηδβγ δτε + δαηδβτ δγ ε + δαηδβεδτγ

+ δατ δγ ηδβε + δατ δβηδεγ + δατ δεηδβγ

+ δαεδγ ηδβτ + δαεδβηδγ τ + δαεδτηδβγ ),

(35)

where averaging over all space directions of the unit vector n
component product is performed (see Ref. [19]).

The scattering cross sections σsca are defined from Psca

by normalization to the energy flux of the incident wave
Iinc = (ε0εd/μ0)1/2|Einc|2/2:

σsca � k4
0

6πε2
0|Einc|2

∣∣∣∣p + ikd

vd

T

∣∣∣∣
2

+ k4
0εdμ0

6πε0|Einc|2 |m|2

+ k6
0εd

720πε2
0|Einc|2

∑
αβ

|Qαβ |2+ k6
0ε

2
dμ0

80πε0|Einc|2
∑
αβ

|Mαβ |2

+ k8
0ε

2
d

1890πε2
0|Einc|2

∑
αβγ

|Oαβγ |2. (36)

Note that in contrast to the previously developed expressions
for the scattered power and scattering cross section in
terms of electric dipole, magnetic dipole, and toroidal dipole
terms [7,9], here we explicitly included the contribution from
the electric octupole term. That should be done because the
electric octupole, toroidal dipole, and the magnetic quadrupole
moments are multipoles of the same order.

B. Extinction cross section

Now we turn to the consideration of the extinction power
Pext determined by the expression

Pext = ω

2
Im

∫
E∗

inc(r) · P(r)dr, (37)

where Einc(r) is the electric field of the incident wave [17].
Inserting the multipole decomposition (21) and considering

the incident plane wave Einc(r) = E0 exp(ikdr), one can write

Pext � ω

2
Im

{
E∗

0 ·
(

p + ikd

vd

T + 1

vd

[m × ninc] − ikd

6
(Q̂ninc)

+ ikd

2vd

[ninc × (M̂ninc)] − k2
d

6
Ô(nincninc)

)}
, (38)

where ninc = kd/kd is the unit vector along the incident
direction. Equation (38) gives the multipole representation of
the optical theorem. This follows from the comparison of (38)
with the scattering amplitude (29) in the forward direction,
when n = ninc. Similar to the scattering cross section, the
extinction cross section is defined Pext by normalization to the
energy flux of the incident wave Iinc = (ε0εd/μ0)1/2|Einc|2/2.
The absorption cross section σabs = σext − σsca.

In case of an incident plane wave linear polarized along the
x axis and propagated along the z-axis direction, the extinction
cross section of an arbitrarily shaped scatterer can be written as

σext � kd

ε0εd |E0x |2 Im

{
E∗

0x

(
px + ikd

vd

Tx − ikd

6
Qxz

+ 1

vd

my − ikd

2vd

Myz − k2
d

6
Oxzz

)}
. (39)

Another approach to multipole decomposition of the optical
theorem (37) is the Taylor expansion of the exponential factor
in the incident electric field Einc(r) = E0x exp(ikdz), so that
one can write

σext � kd

ε0εd |E0x |2 Im

{
E∗

0x

(∫
Px(r)dr − ikd

∫
zPx(r)dr

− k2
d

2

∫
z2Px(r)dr

)}
, (40)

where the first integral is px , the second integral term
combines the my and Qxz contributions, and the third term is
represented by the third-order multipoles Tx , Myz, and Oxzz.
For example, it can be directly verified that

ikd

2vd

Myz + k2
d

6
Oxzz − ikd

vd

Tx = k2
d

2

∫
z2Px(r)dr. (41)

From expression (40), one can see that the product L‖kd

of the scatterer length L‖ in the z direction (chosen along
the incident wave vector kd ) and wave number kd can be
considered as the expansion parameter. If L‖kd < 1, the role
of high-order multipoles in the extinction cross section will
be negligibly weak even for scatterers with L⊥kd � 1, where
L⊥ is the scatterer size in the perpendicular direction with
respect to the wave vector kd .

According to the optical theorem, the extinction cross
section is determined by the imaginary part of the interference
term between the incident and the only forward scattered
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FIG. 1. (a), (b) Extinction cross-section spectra for a disk shaped
dielectric nanoparticle, with a radius of 150 nm and height of
60 nm, located in air. (a) The multipole decomposition corresponds
to expression (39). (b) The multipole decomposition corresponds
to expression (40). (c) Scattering cross-section spectra for the
same nanoparticle. The multipole decomposition corresponds to
expression (36). Incident light is a linearly polarized plane wave
propagating perpendicular to the disk surface. The graphs also show
contributions from different multipoles.

light amplitudes. As a result, the extinction cross section is
determined by the polarization component parallel to the inci-
dent electric field amplitude E0 (40). Equations (39) and (40)
are equivalent, but one should be careful with their physical
interpretation. In Eq. (39), only certain parts of the multipole
components are presented in explicit form. As it will be shown
below, the contribution of multipole terms in Eq. (39) can be
both positive and negative. Therefore, a physical interpretation
of the extinction cross section Eq. (39) in terms of multipoles
can be problematic. However, terms in Eq. (40), providing
information about total contributions of the multipoles of a
certain order, are justified.

IV. NUMERICAL RESULTS

Expressions (32)–(40) are applicable for arbitrarily shaped
nanoparticles. In addition to the well-known textbooks
[19–21], they present the multipole decomposition of the
scattering and extinction powers (cross sections) including the
contribution of the third-order multipole moments: electric
octupole, magnetic quadrupole, and toroidal dipole. These
expressions can be used for investigations of the role of
different multipole moments in light scattering. It could be
expected that multipole decompositions of σext and σsca will
provide the same information about multipole contributions
in light extinction and scattering. However, this statement
is not generally valid for arbitrarily shaped scatterers. In
contrast to extinction calculated from the optical theorem, the
scattering power is determined by the integrated scattered light
intensity. For arbitrarily shaped scatterers, their multipoles
depend on the particle geometry and irradiation conditions
and their contributions to (36) and (39) can be significantly
different. Even for scatterers with small sizes in the light
incident direction, the total scattering can be determined
by high-order multipoles. Thus the multipole decomposition
obtained from the optical theorem cannot be in general used
for estimation of which multipoles give the main contributions
in the scattered fields. Note that the main difference between
the calculations of the extinction and scattering powers is in the
different information about the scattering. The optical theorem
considers only scattering in the forward direction, whereas the
total scattering is determined by integrated scattered light in
all spatial directions. As a result, the forward scattering can be
basically determined by the electric dipole moment, because
of weak contributions from high-order multipoles (40). In
contrast, the total scattering cross section can contain strong
contributions from side scattering generated by high multipole
moments appearing without interference with other multi-
poles (36). For an illustration of the above discussion, we
consider below several numerical examples. In our calcula-
tions, the discrete dipole approximation with the multipole
decomposition procedure described in Ref. [17] is used.

Figure 1 demonstrates the multipole contributions into
the extinction and scattering cross sections for a dielectric
nanodisk with the dielectric constant εp = 16. Note that
in this (absorptionless) case, σext = σsca. From the optical
theorem (39) it follows that the extinction is determined
solely by the electric dipole (ED) contribution, whereas the
contributions from the magnetic quadrupole (MQ) and toroidal
dipole (TD) terms nearly compensate each other (see Fig. 1(a)].
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FIG. 2. Scattering directivity (arbitrary units) for the same disk
nanoparticle and irradiation conditions (see Fig. 1) at 674 nm
wavelength in the spherical coordinates. The diagram center (θ = 0)
corresponds to forward scattering; the diagram edges (θ = π )
correspond to backward scattering. (a) Total scattering and (b) MQ
scattering diagrams.

Moreover, at the extinction minimum [black arrow in Fig. 1(a)]
the separate contributions of the MQ and TD terms are close
to zero. The multipole decomposition in Fig. 1(b) calculated
using (40) confirms the negligible role of the second-, third-,
and higher-order multipoles in the extinction.

For the scattering cross section shown in Fig. 1(c) the
multipole contributions are different. At the cross-section
minimum shown by the black arrow, the main contribution is
provided by the MQ term and contributions of other multipoles
are close to zero, including the magnetic dipole (MD), electric
quadrupole (EQ), and electric octupole (EOC) terms. The
corresponding scattering diagrams, calculated at λ = 674 nm
wavelength and presented in Fig. 2, confirm the main role of
the MQ moment at the minimum of the scattering cross section
presented in Fig. 1(c). Note that the destructive interference
between the electric and toroidal dipoles suppresses the total
electric dipole (ED+TD) contribution in the scattering cross
section at its minimum [Fig. 1(c)]. This effect, which is not
visible in the extinction cross section, corresponds to the
excitation of the anapole mode [12].

Another example is devoted to the optical properties
of a silicon nanodisk having a through hole at the center
[see the inset in Fig. 3(a)]. In this case again, due to the
small imaginary part of dielectric permittivity of crystalline
silicon in the visible range [22,23], the total extinction is
basically determined by total scattering (Fig. 3). Multipole
decompositions (39) and (40), presented in Figs. 3(a) and 3(b),
respectively, show that the contribution of the third-order
multipoles is negligibly small and the extinction cross section
is mainly determined by the contribution of the ED term.
The contributions from MQ and TD terms nearly compensate
each other [see Fig. 3(a)]. For the scattering cross section
shown in Fig. 3(c) the multipole contributions are different.
Around the cross-section maximum, the main contribution is
provided by the multipoles of all considered orders, including
MQ resonance. Note that in this case the anapolelike mode
can be excited resonantly. This happens when the resonantly
excited ED moment is partially compensated by the resonantly
excited TD moment. The multipole decomposition presented
in Fig. 3(c) shows that the maximum of the ED contribution
into the scattering cross section at λ ≈ 500 nm coincides with
the maximum of the TD contribution [see the black arrow

FIG. 3. (a) Extinction cross-section spectra for the disk shaped
silicon [22] nanoparticle, with a radius of 150 nm and height
of 60 nm having a through hole at the center with a radius
of 75 nm, located in air. (a) The multipole decomposition cor-
responds to expression (39). (b) The multipole decomposition
corresponds to expression (40). (c) Scattering cross-section spectra
for the same nanoparticle. Irradiation conditions are the same
as in Fig. 1. The graphs also show contributions from different
multipoles.

205434-6



OPTICAL THEOREM AND MULTIPOLE SCATTERING OF . . . PHYSICAL REVIEW B 94, 205434 (2016)

in Fig. 3(c)]. However, the interference between the ED and
TD terms provides the minimum of the ED+TD contribution
into the scattering cross section at this spectral range [blue
curve in Fig. 3(c)]. Note that only the total electric dipole
D (30), which is a vector combination of the electric and
toroidal dipole moments ED+TD, explicitly appears in the
multipole decomposition of the scattering cross section (36)
and is presented by a blue-triangle curve in Fig. 3(c). Separate
contributions of the electric dipole ED and toroidal dipole TD
without interference between them [Fig. 3(c)] are shown only
for demonstrative purposes.

V. CONCLUSION

In conclusion, Cartesian multipoles in irreducible repre-
sentations have been used for the multipole decomposition
of the induced polarization (current) up to the third order
inside an arbitrarily shaped scatterer (nanoparticle). It has been
demonstrated that the third order of multipole decomposition
includes the toroidal dipole, magnetic quadrupole, electric
octupole terms, and also nonradiating terms. It has been
demonstrated that, in the developed approach, for arbitrarily

shaped scatterers, the multipole decompositions of σext and σsca

provide different information about multipole contributions.
In contrast to σsca, where the total values of all multipole
components are present, the multipole decomposition of σext

includes only certain parts of the multipole components.
Therefore, for absorptionless nanoparticles, a physical in-
terpretation of the scattering process in terms of multipole
decomposition of the extinction cross section (derived from the
optical theorem) can be problematic and cannot be justified.
The obtained results are of principal importance for a correct
analysis of light scattering by nanoparticles and nanoparticle
structures.
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