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Strain-induced quasi-one-dimensional rare-earth silicide structures on Si(111)
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After deposition of rare-earth elements (Dy, Tb) on Si(111) at elevated temperatures, a formerly unknown
(2

√
3 × √

3)R30◦ reconstruction is observed by low-energy electron diffraction, while scanning tunneling
microscopy measurements exhibit a (

√
3 × √

3)R30◦ reconstruction. On the basis of density-functional theory
calculations, the structure of the larger unit cell is explained by periodically arranged subsurface Si vacancies.
The vacancy network in the first subsurface layer has a (

√
3 × √

3)R30◦ periodicity, while strain is released
by a (2

√
3 × √

3)R30◦ Si vacancy network in the second subsurface layer. In addition, this vacancy network
forms quasi-one-dimensional structures (striped domains) separated by periodically arranged antiphase domain
boundaries. The diffraction spot profiles are explained in detail by kinematic diffraction theory calculations, and
average domain widths are deduced.
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I. INTRODUCTION

The growth of rare earths (REs) on Si surfaces leads
to the formation of silicide structures, which have been a
focus of research for more than 30 years due to their unique
properties [1–4].

On the (001) surface and its vicinal surfaces, the RE silicides
do not form planar films due to an anisotropic lattice mismatch,
and instead quasi-one-dimensional structures (nanowires) can
be grown [5,6]. Such nanowires might be applicable as
interconnects in future nanodevices [7] or as plasmonic
waveguides [8] due to their quasi-one-dimensional structure.

On the (111) surface, in contrast, the lateral lattice
mismatch between silicide and Si substrate is very small,
and planar RE silicide films can be grown epitaxially.
Most trivalent rare-earth elements (REEs) form silicide
layers with very similar structural and electronic properties.
Depending on the amount of REEs deposited and the
thermal formation conditions, a plethora of reconstructions
has been observed. In the submonolayer regime, the
quasi-one-dimensional (5 × 2) as well as the two-dimensional
(2

√
3 × 2

√
3)R30◦ reconstructed films can be observed on

the Si(111) surface [9–15]. The two-dimensional RESi2 film
with (1 × 1) periodicity is found at coverages around one
monolayer (ML), and at higher coverages the multilayer
(
√

3 × √
3)R30◦ reconstruction can be observed, consisting

of alternating layers of REEs and Si atoms with an RE3Si5
stoichiometry for the silicide bulk and a periodic arrangement
of Si vacancies [1,3,9,13–15]. Moreover, these monolayer
and multilayer films are characterized by an abrupt interface
as well as low Schottky-barrier heights on n-type Si(111),
making them interesting for Ohmic contacts on n-type Si or
photovoltaics and photodetectors on p-type Si [2,16].

Here, we report on the deposition of Dy and Tb on
Si(111) at elevated temperatures. Both RE silicides form a
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(2
√

3 × √
3)R30◦ reconstruction. This structure is observed

for REE coverages up to several ML and shows a rather smooth
surface, so that it can be related to the (

√
3 × √

3)R30◦ and
not to the submonolayer (2

√
3 × 2

√
3)R30◦ reconstruction.

The structure of the silicide films is characterized by means
of low-energy electron diffraction (LEED), including spot
profile analysis (SPA-LEED), scanning tunneling microscopy
(STM), and density-functional theory (DFT). Additionally, the
stoichiometry of the films and their growth mode is studied by
Auger electron spectroscopy (AES). It is demonstrated that this
superstructure forms quasi-one-dimensional structures, due to
the formation of striped antiphase domains, and a detailed
structure model will be presented.

II. METHODOLOGY

A. Experimental

The experiments are conducted in two different experi-
mental setups using two different REEs (Dy,Tb). One of the
setups is equipped with a SPA-LEED system and an AES
system, while the other one is equipped with an STM and a
conventional LEED system.

In both chambers, the Si(111) substrates are prepared
by degassing for 12 h at 600 ◦C until the base pressure is
smaller than 2 × 10−10 mbar. Subsequently, the substrates are
flash-annealed at 1150 ◦C several times, while maintaining
a pressure smaller than 2 × 10−9 mbar to remove the native
oxide and to obtain the well-known (7 × 7) reconstruction. The
pristine condition of the substrate is confirmed via SPA-LEED
and AES in the first chamber, while LEED and STM are used
for this purpose in the second chamber. The REEs are deposited
via molecular-beam epitaxy at 650 ◦C (p � 2 × 10−9 mbar),
and their exposure is controlled by a flux monitor calibrated via
AES in the first chamber and by a quartz crystal microbalance
in the second chamber. Coverages are given in monolayers,
where 1 ML corresponds to one RE atom per Si(111) unit cell,
i.e., an area density of 7.83 × 1014 cm−2. The temperatures are
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FIG. 1. (a)–(c) Observed (2
√

3 × √
3)R30◦ SPA-LEED patterns with three rotational domains after deposition of 2 ML Dy at 650 ◦C,

shown for different electron energies and corresponding scattering phases E = (65,95,130 eV) ≡ S = (5.45,6.63,7.72). The scattering phase
S = 2c

λel
is a measure for the interference condition between adjacent layers in a crystal. Here, λel and c denote the de Broglie wavelength of

the electrons and the layer spacing, respectively. Integer values of S indicate constructive interference, whereas values of S = n + 0.5 (n ∈ N)
indicate destructive interference. The layer distance equates to c = 4.15 Å for the silicide model that is derived in this work. Here, a scattering

phase of S = 1 corresponds to k⊥ = 1.51 Å
−1

. Some of the (2
√

3 × √
3)R30◦ diffraction spots are split, as indicated by the yellow boxes.

(d) Magnification of the yellow box in (b) showcasing the spot splitting of the third-order diffraction spot [(h,k) = (3/6,3/6)]. (e),(f) Schematic
description of the experimentally observed diffraction pattern. The diffraction pattern of a single domain is shown in (e), and the diffraction
pattern of all three rotational domains is shown in (f). Every diffraction spot of odd order in the direction of the 2

√
3 periodicity is split.

monitored with infrared pyrometers. To prevent contamination
effects after preparation, the samples were immediately cooled
down for ∼30 min and directly analyzed in situ by means of
(SPA-)LEED and STM.

B. Computational

Silicide thin films are modeled within the DFT, as
implemented in the Vienna ab initio simulation package
(VASP) [17,18]. Thereby, we perform total-energy calculations
within the generalized gradient approximation (GGA) in the
Perdew-Burke-Ernzerhof (PBE) formulation [19,20]. Projec-
tor augmented wave (PAW) potentials [21,22] with projectors
up to l = 1 for H, l = 2 for Si, and l = 3 for the RE atoms
are used. One (1s1), four (3s23p2), and nine (5d15p66s2)
valence electrons are employed for the simulation of H, Si,
and the RE atoms, respectively. As no valence state other
than RE3+ has been observed for the RE ions in the silicide
structures, we constrain the valence state of the investigated
REEs (frozen-core method). This approach allows for a proper
treatment of the lanthanides within DFT [23–25]. In our

models, we consider Tb and Dy (atomic numbers 65 and
66) as prototypical trivalent REEs. However, our experience
with other silicide structures [9] shows that the results may
be extended, at least qualitatively, to all trivalent REEs. The
electronic wave functions are expanded into plane waves up
to an energy cutoff of 400 eV. A 12 × 12 × 1 Monkhorst-
Pack [26] k-point mesh was used for the simulation of the
structure with 2

√
3 × √

3 periodicity. The silicide surfaces are
modeled with asymmetric slabs consisting of six Si bilayers
stacked along the [111] crystallographic direction modeling
the substrate, the silicide thin film, and a vacuum region of at
least 15 Å. Hydrogen atoms saturate the dangling bonds at the
lower face of the slabs. The supercells modeling the silicide
monolayer structure with 1 × 1 periodicity contain one Tb or
Dy atom and are described in detail in [9]. Supercells modeling
the silicide trilayer structure with 2

√
3 × √

3 periodicity
contain 18 rare-earth atoms and are illustrated in detail in
Sec. III B. The atomic positions are relaxed until the residual
Hellmann-Feynman forces are lower than 0.001 eV/Å. The
three lower Si bilayers and the hydrogen atoms are kept
constrained in order to model the substrate, while the silicide
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film and the upper three Si bilayers are free to relax. Dipole-
correction algorithms have been used to correct the spurious
interactions of the slabs with their periodic images [27,28].
Thus, our calculations are on the same footing as our previous
investigation of silicide thin films of different periodicity [9].

III. RESULTS AND DISCUSSION

A. Structure: Experimental results

After deposition of 2–3 ML Dy at 650 ◦C sample tempera-
ture, the SPA-LEED patterns presented in Figs. 1(a)–1(c) are
observed. At first glance, these patterns are reminiscent of
the well-known (2

√
3 × 2

√
3)R30◦ superstructure. However,

upon closer inspection, a splitting of certain diffraction spots
becomes visible [Fig. 1(d)]. The way the diffraction spots are
split is in stark contrast to the situation that would be expected
for a (2

√
3 × 2

√
3)R30◦ periodicity. It will be demonstrated

in the following that the surface is reconstructed with a
(2

√
3 × √

3)R30◦ periodicity and has regularly arranged
antiphase domain boundaries (APDBs).

In Fig. 1(e), the pattern of a single rotational domain is
displayed schematically. It is found that only those diffraction
spots are split that are described by k‖ = ha∗ + kb∗ with odd
values of h. Here, a∗ denotes the reciprocal base vector due
to the 2

√
3 periodicity, while b∗ denotes the reciprocal base

vector due to the
√

3 periodicity. The intensity ratio within a
pair of split spots as well as the intensity ratio of first-order
to third-order diffraction spots is a function of electron energy

and thus of out-of-plane momentum, as will be explained in
detail below. Additionally, the absolute intensity of diffraction
spots varies as a function of electron energy as well [compare
intensities of same order spots in Figs. 1(a)–1(c)]. This is
most likely due to interference effects, which could only be
explained in the context of the dynamical scattering theory (but
is not considered in this paper). In Fig. 1(f), the superposition
of the three rotational domains is shown, which is in nice
agreement with the SPA-LEED patterns in Figs. 1(a)–1(c).

Detailed STM studies with atomic resolution are per-
formed to shed light on the atomic structure of the
(2

√
3 × √

3)R30◦ structure. Besides small patches covered
with the (2

√
3 × 2

√
3)R30◦ submonolayer structure, most of

the surface appears as shown in Fig. 2 (here shown for the
case of Tb). However, no indication for a (2

√
3 × √

3)R30◦
periodicity can be observed by STM, although LEED patterns
very similar to those presented in Fig. 1 were observed (see
below). Instead, the structure appears analogous to the well-
known (

√
3 × √

3)R30◦ structure of the multilayer silicide
on Si(111) [15]. The latter is explained by a periodically
arranged Si vacancy network in the subsurface layer(s) leading
to stress reduction and an RE3Si5 stoichiometry in the silicide
bulk. However, for the samples prepared here, two different
types of domains of the (

√
3 × √

3)R30◦ are present, which
are composed of two different types of structure motifs
(indicated by green triangles and red hexagons; see Fig. 2).
These structure motifs correspond to different positions of the
buckled silicide surface layer with respect to the Si vacancies

FIG. 2. STM results for 2 ML Tb on Si(111) deposited at 650 ◦C. (a) Detailed STM image with atomic resolution, taken at a sample
voltage of +0.6 V and a tunneling current of 1 nA. Domains with two different types of structural motives can be distinguished. There is a
sixfold symmetry indicated by red hexagons and a threefold symmetry indicated by green triangles, as showcased in the bottom image. (b)
and (c) Magnification of the two different types of structural motives, with the position of the subsurface vacancy marked by filled circles; (b)
corresponds to the solid box and (c) to the dashed box in (a).
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FIG. 3. Side view of the rare-earth silicide trilayer with (2
√

3 ×√
3)R30◦ periodicity on the Si(111) surface. Si atoms are white, RE

atoms are red, and H atoms are blue. The silicide can be thought of as
a stacking of three silicide monolayers, labeled by top (Si1 and Si2),
middle (Si3), and bottom (Si4). Si vacancies are distributed in the
middle and bottom layers (not shown here). The topmost Si bilayer is
buckled, while the Si3 and Si4 layers are silicene-like, with a vacancy
superstructure.

in the first subsurface Si layer (see Fig. 3) [9,29–31]. Triangles
correspond to the case in which the vacancies in the subsurface
Si layer (Si3) are located underneath the bottom Si atoms of
the silicide surface layer (Si2), and hexagons mean that the
vacancies are located underneath the top Si atoms (Si1). The
positions of the subsurface vacancies are marked explicitly in
Figs. 2(b) and 2(c) by filled circles. As observed in Fig. 2(a),
these domain types alternate across the sample, and their
domain sizes agree well with those deduced from the spot
splitting in the SPA-LEED measurements, as will be demon-
strated further below. The transition from one type of domain
to the other must be accompanied by a breaking of translational
symmetry due to APDBs in order to explain the splitting of
diffraction spots observed in the SPA-LEED experiments.

The fact that no (2
√

3 × √
3)R30◦ but a (

√
3 × √

3)R30◦
periodicity can be observed in the STM images suggests that
the subsurface layer (Si3) has a (

√
3 × √

3)R30◦ structure,
while the (2

√
3 × √

3)R30◦ structure is located in a deeper
layer (Si4). Therefore, it is more difficult to observe the
(2

√
3 × √

3)R30◦ structure by STM experiments with
their very high surface sensitivity as compared to that of
(SPA-)LEED experiments, which also probe deeper atomic
layers.

Combining the STM and (SPA-)LEED data, we assume
a basic structure as shown in Fig. 3, where the topmost
surface layer is composed of a buckled Si layer (Si1,Si2)
and the first subsurface Si layer (Si3) shows the well-known
(
√

3 × √
3)R30◦ reconstruction with one Si vacancy per unit

cell explaining the STM images (see Fig. 2). The second
subsurface Si layer (Si4) is composed of the (2

√
3 × √

3)R30◦
reconstruction explaining the diffraction pattern. Compared to
the vacancy-induced (

√
3 × √

3)R30◦ superstructure of the
Si3 layer, the doubling of the periodicity in the Si4 layer in
one direction is achieved by doubling of the unit cell in that
direction by means of adding one Si atom in every second
vacancy. This model of the (2

√
3 × √

3)R30◦ reconstruction
formally results in an RE6Si11 stoichiometry due to the reduced
density of Si vacancies in the Si4 layer. This assumption
agrees well with our AES studies (not shown here). Such a
layer sequence with more rare-earth-rich silicides close to the
surface and more Si-rich silicides closer to the Si substrate
could be related to a diffusion-limited silicide formation.

B. Structure: Theoretical models

To verify the stability of the model proposed in the
previous section, we have performed DFT calculations of a
3-ML-thick silicide film on the Si(111) surface, as shown
in Fig. 3. The (2

√
3 × √

3)R30◦ superstructure has been
modeled introducing an additional Si atom in every second
(
√

3 × √
3)R30◦ surface unit cell, thus filling its vacancy.

According to the experimental observation, the topmost Si
bilayer does not host Si vacancies and is characterized by
an outer buckled Si double layer. DFT calculations show
that the Si bilayer—similarly to the silicide structure with
(
√

3 × √
3)R30◦ periodicity—is not rotated by 180◦ with

respect to the substrate [9,29,30,32], in contrast to the silicide
monolayers with (1 × 1) periodicity [9,33]. The Si vacancies
(VSi) are distributed in the middle (Si3) and bottom layer (Si4).
Thus a total of three VSi per (2

√
3 × √

3)R30◦ surface unit
cell is needed to account for the periodicity observed in the
diffraction experiments. Of the three VSi, either two are placed
in the middle layer and one in the bottom layer or a single
one is placed in the middle layer and two in the bottom layer.
Thus, the silicide film consists of three silicide monolayers of
different periodicity.

DFT calculations have been performed to optimize the
geometry of these structures. The vacancies in the silicene-like
layers labeled by Si3 and Si4 might occur either under atoms
of the Si1 layer or under atoms of the Si2 layer. The two
configurations have very similar formation energies in the
silicide structure with (

√
3 × √

3)R30◦ periodicity [9]. Thus,
many different vacancy distributions are conceivable. Let us
imagine there is a bottom monolayer of (2

√
3 × √

3)R30◦
periodicity, with a single vacancy under an Si1 atom, e.g.,
at the site labeled by A in Fig. 4. The two Si vacancies
in the middle layer must be placed in such a way that the
(
√

3 × √
3)R30◦ periodicity of the layer is preserved. This

rules out most of the possible different configurations. If
we consider vacancies in the middle layer under an Si1
atom, only vacancy pairs at the lattice sites A and �, or E

and B, or Z and � are possible. In the first case, vacancy
channels are formed. If we consider vacancies under an
Si2 atom instead, only pairs at the lattice sites α and δ,
or ε and β, or ζ and γ are possible. Thus a total of 24
different combinations are compatible with the given silicide
periodicity, which are summarized in Table I together with
their formation energies, given with respect to the most stable
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FIG. 4. Top view of the trilayer RE silicide with (2
√

3 ×√
3)R30◦ periodicity on the Si(111) surface. Atoms of the topmost Si

bilayer correspond to the layers Si1 (larger circles) and Si2 (smaller
circles). RE atoms in the center of the hexagons are not shown, and
the Si atoms in the deeper Si3 and Si4 layers are hidden below the Si1

and Si2 atoms. The surface unit cell is highlighted.

models (models e/f ). Symmetry reasons reduce the number
of nonequivalent configurations to 16. Some configurations,
labeled by Unstable, relax without any barrier into other
structural models. Our calculations reveal that the investi-
gated (2

√
3 × √

3)R30◦ silicide structures, similarly to the
observed silicide phases with (2

√
3 × 2

√
3)R30◦ or (5 × 2)

TABLE I. Relative formation energies Eform (in eV per (2
√

3 ×√
3)R30◦ unit cell) and average Si-Si distances (dSi in Å) in the

silicene-like layers Si3 and Si4 for the case of Tb. d% labels the
deviations (in %) from the Si-Si distance in bulk Si (2.352 Å).

Model VSi in Si3 VSi in Si4 Eform dSi in Si3,Si4 d%

a α α,δ 0.656 2.350, 2.439 1.81
b α ε,β 0.491 2.341, 2.428 1.40
c α ζ,γ 0.491 2.341, 2.428 1.40
d α,δ α 0.218 2.415, 2.434 1.38
e ε,β α 0.000 2.404, 2.349 1.04
f ζ,γ α 0.000 2.404, 2.349 1.04
g α A,� 0.343 2.344, 2.423 1.34
h α E,B 0.343 2.344, 2.423 1.34
i α Z,� 0.343 2.344, 2.423 1.34
j A,� α Unstable
k E,B α Unstable
l Z,� α Unstable
m A A,� 0.449 2.352, 2.426 1.58
n A E,B 0.287 2.347, 2.421 1.37
o A Z,� 0.287 2.347, 2.421 1.37
p A,� A 0.302 2.434, 2.353 1.77
q E,B A 0.094 2.425, 2.350 1.52
r Z,� A 0.094 2.425, 2.350 1.52
s A α,δ 0.547 2.352, 2.430 1.65
t A ε,β 0.547 2.352, 2.430 1.65
u A ζ,γ Unstable
v α,δ A Unstable
w ε,β A Unstable
x ζ,γ A Unstable

periodicity [9], are metastable. A common feature of the
investigated models is that the energetically favored position
for the layer with the (2

√
3 × √

3)R30◦ periodicity is always
the bottom layer, while the layer with the (

√
3 × √

3)R30◦
periodicity is always formed as the middle layer, independent
of the particular arrangement of the vacancies.

Another common feature is that the vacancies in the middle
layer are not formed on top of vacancies in the bottom layer.
In other words, vertical vacancy channels are energetically
unfavorable. In the energetically most stable configuration
(model e), the vacancies are formed in both layers under
the Si2 atoms. However, a model in which the vacancies
in both layers are formed below the Si1 atoms (model r)
is less stable by only 47 meV per (

√
3 × √

3)R30◦ unit
cell. On the one hand, this confirms the results of previous
theoretical studies [9,29,30,32,34], which pointed out that
in silicide layers with (

√
3 × √

3)R30◦ periodicity the Si
vacancies under Si1 and Si2 are characterized by very similar
formation energies (�E ∼ 50 meV). On the other hand, this
small energy difference, in the order of the thermal energies
during silicide formation of ∼80 meV, explains the coexistence
of different domains with (2

√
3 × √

3)R30◦ periodicity. These
can indeed be interpreted as silicide regions with vacancies
below Si1 and below Si2 atoms. The trilayer structure of the
film with (2

√
3 × √

3)R30◦ periodicity is very similar to the
bilayer structure of the film with (

√
3 × √

3)R30◦ periodicity,
with an additional monolayer in which every second Si vacancy
is missing. In this layer (Si4 in Fig. 3), the Si atoms do not relax
symmetrically toward the vacancy as in the case of the structure
with (

√
3 × √

3)R30◦ periodicity. Indeed, as the threefold rota-
tional symmetry is broken in the (2

√
3 × √

3)R30◦ structure,
a Si vacancy has (in the direction of the first Si neighbors)
one vacancy in a distance of 6.70 Å and two equivalent
vacancies at 13.39 Å. Thus, two atoms in the Si4 layer relax
by 0.681 Å, while the Si atom in the direction of the shorter
vacancy distance relaxes toward the vacancy by 0.379 Å.

Simulated constant-height STM images of the energetically
stable structure of the silicide are calculated within the
Tersoff-Hamann model [35,36]. The results of the calculations
performed for the model r with Si vacancies under Si1 atoms
are shown in Figs. 5(a) and 5(c) for filled and empty states,
respectively. The simulated STM images show a hexagonal
pattern consisting of darker and brighter spots with the sixfold
p6 symmetry. The darker spots are assigned to Si1 atoms
above an Si vacancy in the middle layer. Thus, the simulated
STM images are nearly identical with the corresponding
STM images simulated for the silicide with (

√
3 × √

3)R30◦
periodicity, which are shown for comparison in Figs. 5(b)
and 5(d). The calculations for model e with Si vacancies under
Si2 atoms are shown in Figs. 5(e) and 5(g) for filled and empty
states, respectively. The threefold p3 symmetry is reflected in
the small lateral undulation of the Si1 atoms highlighted by
the dashed green lines and arrows. Again, the simulated STM
images are nearly identical to the corresponding STM images
simulated for the silicide with (

√
3 × √

3)R30◦ periodicity, as
shown in Figs. 5(f) and 5(h).

All patterns are in very good agreement with previous calcu-
lations performed within the same approach [9,29,30,32,34].
In conclusion, Fig. 5 clearly shows that the silicide structures
with (2

√
3 × √

3)R30◦ and (
√

3 × √
3)R30◦ periodicity are
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FIG. 5. (a), (c), (e), and (g) Simulated STM images of the trilayer
Tb silicide with (2

√
3 × √

3)R30◦ periodicity (models r,e). Filled
states are shown in (a) and (e), while empty states are shown in
(c) and (g), respectively. The simulations for the bilayer RE silicide
with (

√
3 × √

3)R30◦ periodicity are shown for comparison in the
column on the right-hand side [(b), (d), (f), and (h)]. Calculations are
performed for tunneling voltages of ±0.3 V.

indistinguishable in STM investigations. This explains why
the silicide phase with (2

√
3 × √

3)R30◦ periodicity is only
visible in electron diffraction experiments, which are able
to collect information from deeper atomic layers below the
surface, while it is not visible in STM experiments, which are
dominated by the outmost surface layers.

The presence of vacancies in the silicide thin films with
(
√

3 × √
3)R30◦ periodicity has been explained as a mecha-

FIG. 6. (a) Overview STM image, taken at a sample voltage of
+2.0 V and a tunneling current of 50 pA. After the application of
a gradient filter, a striped structure can be observed on the terraces.
Red lines indicate domains of the same type. (b) Conventional LEED
image of the same sample taken at an electron energy of 100 eV
(≡S = 6.77) exhibiting the characteristic splitting of the third-order
(2

√
3 × √

3)R30◦ diffraction spots.

nism to release the compressive strain in the silicene-like layer
formed between the RE planes [33]. The same argument holds
true for the silicide phase with (2

√
3 × √

3)R30◦ periodicity.
The calculated next-neighbor distance dSi for free-standing
bulk Si is 2.352 Å. In an ideal, vacancy-free silicene layer, dSi

amounts to 2.232 Å (within DFT-PBE), resulting in a large
compressive strain of about 5.4%. Through the presence of Si
vacancies, this strain can be released. Indeed, the average dSi

value in the (2
√

3 × √
3)R30◦ phase is 2.378 Å (for model

e), very close to the bulk value. Interestingly, the most stable
models are the models for which the average dSi is very close
to the bulk value.

C. Antiphase domain boundaries

Large-scale STM images, as shown in Fig. 6(a), show a
striped quasi-one-dimensional structure. Due to the fact that
the diffraction pattern is split in 2

√
3 direction, as observed in

the experimental (SPA-)LEED patterns in Figs. 1 and 6(b), it
has to be concluded that the striped domains are oriented along
the

√
3 direction. Along the stripes, the growth is only limited

by step edges, whereas in the 2
√

3 direction the distance
between two similar domains is reflected in the magnitude of
the spot splitting observed in the SPA-LEED experiments. Re-
versely, this means that the transition from one type of domain
to the other must be accompanied by a breaking of translational
symmetry in the 2

√
3 direction causing the APDBs.

Unfortunately, the (atomic) structure of the APDBs could
not be resolved in our STM experiments. However, based
on our DFT calculations and STM images, we assume that
domains with Si3 vacancies under Si2 atoms (e or f domains)
alternate with domains with Si vacancies under Si1 atoms (q
or r). In addition, due to the splitting of odd-order diffraction
spots and no splitting of even-order diffraction spots, it is
mandatory that the sum of the widths of two adjacent APDBs is
an odd multiple of a0

√
3, with a0 = 3.840 Å being the Si(111)

surface lattice constant. Additionally, strain reduction seems
to play an integral role in the formation of this structure,
hence also in the formation of the APDBs. As already
mentioned before, the strain can be quantified by the mean
next-neighbor distance dSi in the silicene-like layers compared
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FIG. 7. (a)–(d) Schematic display of the four models discussed
in the text (RE atoms were omitted for the sake of clarity). The width
of one of the APDBs is 1/3 × a0

√
3 and the width of the other one

is 2/3 × a0

√
3, resulting in the mandatory sum of a0

√
3 for both

APDBs in the supercell. Note that the stripes displayed here are only
one unit cell wide, while they are wider in reality. The corresponding
diffraction patterns are shown in Fig. 8(a).

to the dSi in bulk Si. The most stable models (e,f ) and (r,q)
overcompensate the strain by 1.04% and 1.52%, respectively.
This suggests that the APDBs will contain no Si vacancies to
account for this overcompensation. Due to the small misfit, it
is also to be expected that the APDBs will be as narrow as
possible, with the sum of the widths amounting to a0

√
3.

Due to the inequalities of the domains, there are APDBs that
have a width of 1/3 × a0

√
3 (APDB1/3) and APDBs that have

a width of 2/3 × a0

√
3 (APDB2/3). Moreover, both types of

APDBs alternate. As shown schematically in Fig. 7, this leads
to the following structure of the supercell (only considering
the most energetically favorable models):

[γ1(e,f ) || APDB1/3 || γ2(q,r) || APDB2/3], (1)

describing the quasi-one-dimensional structure. γ1 and γ2 are
the number of (2

√
3 × √

3)R30◦ unit cells of the respective
domains (e,f ) and (q,r).

To test this assumption, we simulate line profiles of different
diffraction peaks employing the binary surfaces technique [37]
using a 4096 × 1 lattice with periodic boundary conditions.
The respective lattice periodicities are 1/3 × a0

√
3 in one

direction and a0

√
3 in the other direction in order to realize

the APDBs as well as the striped (2
√

3 × √
3)R30◦ domains.

The sequence of the different types of domains and APDBs
are chosen in accordance with the proposed structure models
(see Fig. 7). The domains and APDBs are described by their
sequence of Si atoms and vacancies in the Si3 and Si4 layers,
since the rest of the structure (RE layers and buckled Si layer
Si1,Si2) exhibits a 1×1 periodicity, and thus does not influence
the line shape of the split spots. Considering only the four most
stable models (e, f , q, and r), we assume that the fraction c

of each of the two different types of structural units (e,f and
q,r) is given by [38]

ci = Zi

Z
with Z =

∑
i

Zi and Zi = gi exp

[
−Eform,i

kBT

]
, (2)

where kB is the Boltzmann constant, T is the temperature, and
gi is the symmetry-dependent degeneracy factor. All models
exhibit an oblique Bravais lattice

a = a02
√

3 
= b = a0

√
3, � 
= 90◦, (3)

with the lattice vectors a,b, with no twofold rotational axes,
due to the involved four Si layers of the unit cell, resulting in
the plane crystallographic group p1. Therefore, the symmetry-
dependent degeneracy factor gi is equal for all models and can
be omitted in the case at hand. For the preparation temperature
of T = 923 K (650 ◦C) and taking into account the formation
energies Eform presented in Table I, this equates to ce,f = 0.77
and cq,r = 0.23, meaning that the mean domain size 〈γe,f 〉 of
models e,f should be thrice as high as the mean domain size
〈γq,r〉 of the models q,r . The size of both domains γi follows
the Gamma distribution [39]

Pi(γi) ∝
(

Miγi

〈γi〉
)Mi−1

exp

[
−Miγi

〈γi〉
]
. (4)

Here, 〈γi〉 denotes the average domain size of the Gamma
distribution, and the parameter Mi , which is assumed to be
identical for both types of models (e,f and q,r), depends on
its standard deviation σi via Mi = (〈γi〉/σi)2.

The width of the respective domain is determined by
Gamma-distributed random numbers following the Gamma
distribution described above. Subsequently, the absolute
square of the Fourier transform, which can be interpreted as the
diffraction pattern (kinematic approximation), is computed.
This process is repeated 2048 times in order to simulate
the incoherent superposition of different regions in LEED
experiments. The line profiles are averaged and thus the
simulated line profile Isim is obtained.

First, the four different models shown in Fig. 7 will be
discussed. Here, only one type of supercell is repeated [e.g.,
e and q for Fig. 7(a)]. The results of the simulations for the
four models (see Fig. 7) are shown in Fig. 8(a). For the models
(e ↔ q) and (f ↔ r) [see Figs. 7(a) and 7(d)], the splitting
of only odd-order diffraction spots is reproduced. Depending
on the out-of-plane momentum, the diffraction spots are split
asymmetrically [see Fig. 8(a)]. This is in good agreement with

205431-7



F. TIMMER et al. PHYSICAL REVIEW B 94, 205431 (2016)

FIG. 8. (a) Simulated diffraction patterns of the four different
APDB models [at in-phase conditions S ∈ N] shown in Fig. 7 and
simulated reciprocal space map of the third-order diffraction spot
showing an undulation of the intensity ratio of the split peaks as a
function of out-of-plane momentum. This very undulation can be
observed experimentally in Fig. 1, in which the split spots exhibit
intensity undulations when the electron energy is varied. The in-plane

momentum is given in %Bz, where 100%Bz ≡ 2π

a0 cos (30◦) = 1.89 Å
−1

,
and the out-of-plane momentum is given by the scattering phase
S. (b) Simulated split third-order diffraction spot (red) obtained by
minimization of the mean-squared error (see the text) compared with
the experimental data for Dy (black) showing very good agreement.
(c) Resulting domain-size distribution for the supercell in units of
a02

√
3.

the experimental data [see Figs. 1(a)–1(c) and 6(b)], which
also shows asymmetrically split spots at certain points of the
reciprocal space. Thus the simulated diffraction patterns of
both models agree very well with the experimental data.

In contrast, the models (e ↔ r) and (f ↔ q) [see
Figs. 7(b) and 7(c)] exhibit an additional splitting of even-order
diffraction spots, as shown in Fig. 8(a). Due to the fact that no
such splitting can be observed in the experimental diffraction
patterns, this means that the probability of formation of the
transitions (e ↔ q) and (f ↔ r) must be significantly higher
than the probability of formation of the transitions (e ↔ r)
and (f ↔ q). Unfortunately, this assumption cannot be tested
by means of DFT calculation due to the rather large supercells.

This difference in formation probability rules out a statis-
tical mixing of the four different types of supercells as well.
As a matter of fact, the simulated diffraction patterns of these
statistically mixed supercells (not shown here) all exhibit very

broad even-order diffraction spots (due to the merging of split
and nonsplit even order spots), which is in stark contrast to the
experimental data.

To be able to compare the simulated diffraction peak
profiles Isim quantitatively with the experimental diffraction
peak profiles Iexp and to determine the domain-size distri-
bution, the simulated profiles have to be convoluted with
the instrument function Iinst [40]. This instrument function
is deduced from the nonsplit even-order superstructure spots
of the experimental diffraction pattern, because these peaks are
insensitive to the influence of APDBs on the line shape. After
convolution, the mean-squared error describing the deviation
from the experimental data is computed varying both the
average domain size and the standard deviations (〈γe,f 〉,σe,f )
until the mean-squared error is minimized. The result is
shown in Fig. 8(b), and a domain-size distribution with the
average domain size 〈γe,f 〉 = 3.99 and a standard deviation
σe,f = 2.10 is derived for the models (e,f ), which equates to
an average domain size 〈γq,r〉 = 1.33 and a standard deviation
σq,r = 0.70 for the models (q,r). In addition, we would like
to mention that these numerical results agree well with results
obtained calculating diffraction spot profiles within the context
of the domain matrix method [41–43].

The magnitude of the splitting observed in the diffraction
pattern is caused by the average size of the supercell, for
which the domain-size distribution is shown in Fig. 8(c), i.e.,
the average distance between two domains of the same type,
resulting in a 〈γ 〉tot = 〈γe,f 〉 + 〈γq,r〉 + 1/6 + 2/6 = 5.82 and
a total standard deviation of σtot = √

σ 2
e,f +σ 2

q,r = 2.21. Because
of the unit-cell width of 2a0

√
3 = 1.33 nm, this corresponds

to a periodicity of 7.74 nm, in good agreement with the results
of the STM experiments yielding ∼8 nm.

IV. CONCLUSION

Using (SPA-)LEED, STM, DFT, and kinematic diffraction
calculations, we were able to detect and structurally resolve a
formerly unknown (2

√
3 × √

3)R30◦ reconstruction, which
is observed after evaporation of the REEs Dy and Tb on
Si(111) at elevated temperatures. The experimental data can
be explained by a structure model, which is derived from
the structure of the similar (

√
3 × √

3)R30◦ reconstruction.
The annihilation of vacancies due to the addition of Si atoms
in the deeper Si layer causes a lateral uniaxial strain, which
induces quasi-one-dimensional striped domains separated by
APDBs. The average width of the supercell (consisting of two
different domains) derived from the SPA-LEED spot splitting
amounts to 5.82 (2

√
3 × √

3)R30◦ unit cells. We assume that
the domain boundaries are formed to reduce the lateral strain.
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