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Spin pumping into two-dimensional electron systems
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We study the spin current injected by spin pumping into single layer graphene and the two-dimensional electron
gas (2DEG) with ferromagnetic contacts using scattering theory. The spin currents pumped into graphene are
very distinct from that into the 2DEG since they are affected by Klein tunneling.
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I. INTRODUCTION

Spintronics takes advantage of both the charge and spin
degrees of freedom of the electron to generate novel device
functionalities for information and communication technolo-
gies. Key concepts in spintronics are the spin current, i.e., net
flows of spin angular momentum, and the spin accumulation,
i.e., a nonequilibrium imbalance between the densities of
the two spin species. Both can be generated in nonmagnetic
conductors by several methods, such as electrical [1,2],
optical [3], and thermal spin injection [4] and the spin-orbit
interaction [5]. It is also possible to inject spins dynamically
into various nonmagnetic conductors by “pumping” via a
ferromagnetic contact with a time-dependent magnetization.
The effect can be understood in terms of adiabatic quantum
pumping, i.e., the generation of a current not by an applied
voltage but a time-periodic modulation of the scattering matrix
by external parameters. Spin pumping does not suffer from
the conductance mismatch problem that plagues electrical
spin injection [6,7] and is at the root of many physical
phenomena, e.g., the spin Seebeck effect [8]. Here we report
a theoretical study on spin pumping into two-dimensional
electronic systems, such as the two-dimensional electron gas
(2DEG) in layered semiconductors and graphene.

A 2DEG system may be formed at the interface between
two different semiconductors, such as modulation-doped
GaAs|AlGaAs heterojunctions or quantum wells that at low
temperatures support electron mobilities of >107 cm2 V−1 s−1

corresponding to transport mean-free paths of �100 μm [9].
While spin injection into thin semiconductor layers has been
reported [10], we are not aware of spin injection experiments
into high-mobility 2DEGs, presumably due to the conductance
mismatch problem.

Monatomic layers such as graphene and transition-metal
dichalcogenides also have two-dimensional electronic struc-
tures [11–15] and are interesting candidates for spintronic
applications [16–18]. For graphene high electronic mobilities
of 3.5 × 105 cm2 V−1 s−1 have been reported [19]. Elec-
tric spin injection has been achieved with long spin flip
diffusion lengths of 13/24 μm at room temperature/4 K,
respectively [20]. The low-energy excitations of graphene
close to the charge-neutral Fermi energy are well described by
the massless-Dirac equation [21] and to transport properties
very different from those of 2DEGs.

Recently, experiments on ferromagnetic resonance (FMR)
of Permalloy (Py) on graphene report enhancement of the

intrinsic resonance linewidths and nonlocal voltages
[13,22,23]. These experiments are interpreted as evidence for
spin currents pumped into graphene [24–27]. Spin pumping
can be formulated [24–26] as a spin-dependent generalization
of the Büttiker-Brouwer adiabatic quantum pumping formula
based on the scattering theory of transport [28]. Rahimi and
Moghaddam [29] computed spin pumping into graphene by
a magnetic insulator, which has the advantage that parallel
conductance channels that may exists for magnetic metals
are completely suppressed. Recently, transport experiments
of graphene on a magnetic insulator yttrium iron garnet
(YIG) substrate have been reported [30,31] that show an
induced proximity exchange splitting of ∼0.1 T in the
graphene electronic structure [31]. Much larger exchange
splittings have been predicted for graphene on EuO [32]
and observed for graphene| EuS [33]. Spin pumping into
two-dimensional (2D) systems by an electrically insulating
magnetic gate may efficiently emulate the spin pumping and
maser action predicted to occur by inhomogeneous Zeeman
fields [34,35].

Here we consider a ferromagnetic insulator (FI) on top
of a two-dimensional electron system (2DEG or graphene)
connected to electron reservoirs as in Fig. 1, where the latter
are kept at the same chemical potential. An additional metallic
gate on top of the FI tunes the electron density and Fermi
energy of the electrons relative to that in the reservoirs.
The exchange interaction of the conduction electrons with
the ferromagnet induces a proximity exchange potential that
weakly magnetizes the electron gas [30,31,36]. When the FI
magnetization moves sufficiently slowly, e.g., under FMR, the
induced magnetization follows adiabatically. The scattering
matrix connecting the reservoirs changes parametrically in
time, thereby pumping a spin current into the reservoirs.
The spin coherence length λ = π/|k↑

F − k
↓
F |, where kσ

F is the
Fermi wave number of the conduction electrons under the
ferromagnet with σ =↑ or ↓, is now much larger than that
of metallic ferromagnets, in which λ is of the order of a few
angstroms. Spin-dependent dc transport in such proximity-
magnetized graphene has been studied theoretically [37,38].
Here we consider the spin pumping of a weakly magnetized
ballistic electron gas (2DEG and graphene) with slightly
different Fermi circles for up and down spins and a λ that
should be larger than the length D of the scattering region.

In the absence of spin-orbit interaction, the scattering matrix
for a monodomain ferromagnetic element sandwiched by two
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FIG. 1. (a) Schematic of the spin-pumping device: a metallic gate
on a ferromagnetic insulator film on top of a 2D electronic system,
either a 2DEG or graphene. We calculate reflection and transmission
coefficients for electrons impinging on the gated region. (b) φ is the
angle of incidence and θ the refraction angle. Red arrows represent
the spin currents induced by spin pumping.

normal metals may be decomposed as

S = S↑û↑ + S↓û↓, (1)

where Sσ is the scattering matrix for spins up (down) along
m, the unit vector of magnetization of the ferromagnet. The
spin-projected scattering matrix

Sσ =
(

rσ tσ

tσ rσ

)
, (2)

where tσ /rσ are transmission/reflection coefficient matrices
for spin σ . ûσ is the projection operator

ûσ = 1
2 (1 ± ŝ · m), (3)

where ŝ = ∑
l=x,y,x ŝlel and ŝl are the Pauli matrices. The spin

current pumped into adjacent normal metals then reads

Ipump
s,R = �

4π

(
grm × dm

dt
− gi

dm
dt

)
, (4)

where g = ∑
nn′[δnn′ − r

↑
nn′(r

↓
nn′)∗] − t

↑
nn′ (t

↓
nn′)∗ is the complex

spin-mixing conductance with Re g = gr , Im g = gi . We focus
here on wide two-dimensional systems with widths W with
continuous transport channel index n → ky = kF sin φ, where
kF is the Fermi wave number in the leads and φ the angle of
incidence. In the following we assume a ballistic scattering
region; the wave numbers are conserved and all matrices
diagonal. Then

g = 2kF W

π

∫ π

0
dφ{1 − r↑(φ)[r↓(φ)]∗ − t↑(φ)[t↓(φ)]∗}. (5)

The proximity exchange potential of the (single-
domain) ferromagnet polarizes the conduction electrons.
Under ferromagnetic resonance conditions the magnetiza-
tion precesses around the z axis m(t) = (

√
1 − m2 cos ωt,√

1 − m2 sin ωt,m) where m is the cosine of the precession

cone angle. Then the instantaneous spin current pumped into
the adjacent leads reads

Ipump
s,R (t) = �ω

4π

⎛
⎝m

√
1 − m2gr cos ωt + √

1 − m2gi sin ωt

m
√

1 − m2gr sin ωt − √
1 − m2gi cos ωt

(1 − m2)gr

⎞
⎠,

(6)
while its time average becomes

Js = ω

2π

∫ 2π/ω

0
dt Ipump

s (t) = �ω

4π
(1 − m2)grez. (7)

When this spin current is dissipated in the conductor or
reservoirs, the loss of angular momentum and energy increases
the viscous damping of the magnetization dynamics that
is observable as an enhanced broadening of ferromagnetic
resonances [24,25,27]. The spin current may be converted into
a charge signal by metallic contacts that either have a large
spin Hall angle [39] or are ferromagnetic [6]. In the following
we focus on the principle of spin current generation, but leave
the modeling of the spin current detection for future study.

II. MODEL AND RESULTS

We consider Hamiltonians of the form

H 2D = H 2D
kin + U (r,t), (8)

where H 2D
kin is the kinetic energy of the electrons that experience

a spin-dependent potential below the FI-gated area:

U (r,t) = Vc − Jm(t) · s. (9)

Vc is the electric potential controlled by the metal gate
and −Jm(t) · s is the exchange potential that parametrically
depends on the FI magnetization direction m and electron spin
s. In the absence of more detailed information J is taken to
be not dependent on Vc. At equilibrium, the magnetization
direction m0‖ẑ is constant and the potential for up (down)
spin electrons along the spin quantization ẑ axis reduces to

Vσ ≡ Vc − σJ (10)

with σ = ±1 for spin up and down. The spin current per unit
width js = Js/W is a function of several parameters:

js = js(EF ,Vc,J,D). (11)

Outside the gated region the potential vanishes. Its shape in
the intermediate region depends on the device design. Here we
consider two limits. When the potential varies slowly on the
scale of the electron wavelength, an adiabatic approximation
is appropriate [40]. In this model the potential changes slowly
on the scale of the electron wavelength from V (slow)

σ (r) = 0
for x � 0 to V (slow)

σ (r) = Vσ for 0 � x � D and then back to
V (slow)

σ (r) = 0 for x  0. In the other limit the potential at the
boundaries of the scattering region changes abruptly (on the
scale of the electron wavelength):

V (abrupt)
σ (r) =

⎧⎨
⎩

0, x < 0
Vσ , 0 � x � D

0, D < x.

(12)

The scattering at the step potential can be treated by quantum
mechanical wave function matching. The reality is likely to
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be an intermediate between the two extremes and can be
understood qualitatively by interpolation.

A. 2DEG

First, we discuss a wide strip of a 2DEG. In the Hamiltonian

H 2DEG
kin = −�

2∇2

2m∗ , (13)

m∗ is the effective mass. Assuming sufficiently wide strips
we may use the periodic boundary condition in the lateral y

direction. We consider electrons that in the reservoirs are at
the Fermi energy EF = �

2k2
F /(2m∗) with kF =

√
k2
x + k2

y .
We first discuss the abrupt potential limit in which the

Hamiltonian can be written as

H 2DEG = −�
2∇2

2m∗ + V (abrupt)
σ (r). (14)

The electrons in region I (x < 0) are a linear combination of
incoming and reflected waves (see Fig. 1)

ψI,σ,k(r) = eikxx+ikyy + rσ e−ikxx+ikyy . (15)

In region II (0 < x < D)

ψII,σ,k(r) = aσ eiqσ
x,kx+iqσ

y y + bσ e−iqσ
x,kx+iqσ

y y, (16)

and in region III (x > D)

ψIII,σ,k(r) = tσ eikxx+ikyy, (17)

where the indices i = {I,II,III}, σ = ±, and k denote electrons
with spin σ in region i with wave vector k = (kx,ky).
kx = kF cos φ and ky = kF sin φ are the wave vector com-
ponents outside the scattering region and kinetic energy
E − Vσ = �

2(qσ2
x + qσ2

y )/(2m∗). The boundary conditions at
the potential steps are ψI,σ (0,y) = ψII,σ (0,y), ψII,σ (D,y) =
ψIII,σ (D,y), and ky = qσ

y . Except for the singular point Vσ =
E − �

2k2
y/(2m∗) (or qσ2

x = 0), the transmission and reflection
coefficients read

tσk = 2kxq
σ
x,ke

−ikxD

i
(
k2
x + qσ2

x

)
sin qσ

x,kD + 2kxq
σ
x,k cos qσ

x,kD
, (18)

rσ
k = i

(
qσ2

x − k2
x

)
sin qσ

x,kD

i
(
k2
x + qσ2

x

)
sin qσ

x,kD + 2kxq
σ
x,k cos qσ

x,kD
. (19)

When E  Vσ , i.e., when the potential steps are relatively
small,

qσ
x = ±

√
2m∗

�2
(E − Vσ ) − qσ2

y → ±
√

2m∗

�2
E − k2

y = ±kx.

Also qσ
x,k ≈ √−2m∗Vσ/�  √

2m∗E/� = k and we obtain
the simplified expressions

tσk
∼= 2kF e−ikD cos φ cos φ

iqσ
x,k sin qσ

x,kD + 2kF cos φ cos qσ
x,kD

∼=

⎧⎪⎨
⎪⎩

e−ikF D cos φ, qσ
x,kD = 2nπ

−e−ikF D cos φ, qσ
x,kD = (2n + 1)π

0, qσ
x,kD �= nπ,

(20)

rσ
k

∼= iqσ
x,k sin qσ

x,kD

iqσ
x,k sin qσ

x,kD + 2kF cos φ cos qσ
x,kD

∼=
{

0, qσ
x,kD = nπ

1, qσ
x,kD �= nπ.

(21)

For the special point V σ = E − �
2k2

y/(2m∗), the transmission
and reflection coefficients reduce to

tσk = −2ie−ikxD

ikxD − 2
, rσ

k = ikxD

ikxD − 2
. (22)

Next we consider the limit of a slowly varying potential
V (slow)

σ as defined before Eq. (12):

H 2DEG = −�
2∇2

2m∗ + V (slow)
σ (r). (23)

If Vσ is smaller than Ex,k(≡ EF − �
2k2

y/2m∗), the wave
function can be written as

ψσ,k(x,y) = (cσ e
i
∫ x

x0
qσ

x,k(x ′)dx ′ + dσ e
−i

∫ x

x0
qσ

x,k(x ′)dx ′
)eikyy, (24)

where qσ
x,k(x ′) =

√
2m∗[EF − Vσ (x ′) − �2k2

y/2m∗]/� and x0

is a reference point. In region III

ψIII,σ,k(x,y) = tσ eikxx+ikyy

= (ei
∫ x

0 qσ
x,k(x ′)dx ′ + rσ e−i

∫ x

0 qσ
x,k(x ′)dx ′

)eikyy

∼= (eikxx+i(qσ
x,k−kx )D + rσ e−ikxx−i(qσ

x,k−kx )D)eikyy .

(25)

In the semiclassical approximation electrons cannot pass the
scattering region when the potential energy is larger than
its kinetic energy Ex,k. This leads to the transmission and
reflection coefficients

tσk =
{

0, Ex,k < Vσ

ei(qσ
x,k−kx )D, Ex,k > Vσ,

(26)

rσ
k =

{
1, Ex,k < Vσ

0, Ex,k > Vσ ,
(27)

where we kept the phase of the transmitted electron waves.
Note that the phases accumulated by the adiabatic rise and
drop of the potential outside the gate cancel each other.

We display the computed spin current js pumped into a
2DEG for an abrupt potential in Fig. 2(a) and for a slowly
varying potential in Fig. 2(b) as a function of the Fermi energy
EF , the gate voltage Vc, exchange coupling J , and length
D. A larger exchange splitting J increases the spin current
pumped into the 2DEG, as expected in the limit of a weak
ferromagnet. When Vσ > EF , the wave function with spin
σ in the limit of an abrupt potential exponentially decays
under the FI. Vc  EF js vanishes since all electrons are
reflected by the high potential barrier. For the slowly varying
potentials, electrons are completely reflected when V↑,↓ > EF

and js vanishes abruptly at the same line as seen in Fig. 2(b).
When Vσ < EF , electron waves may interfere constructively
to maximize the spin current, forming the broad ridge of
enhanced spin currents that is observed for both potentials.

In general, we observe that at least for the considered
parameter regime, a WKB-like approximation of the spin
pumping into the 2DEG that is valid for slowly varying
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FIG. 2. Spin current per unit width pumped into a 2DEG by an
electrically insulating ferromagnetic top contact as a function of the
gate voltage Vc and the proximity exchange coupling constant J,

assuming that (a) the potential at the contact edges is abrupt and (b)
continuous. The chemical potential of the 2DEG EF = 0.1 eV. The
transverse length of the top contact is D = 10 nm.

potentials agrees well with the fully quantum mechanical result
for abrupt potentials.

B. Graphene

We now turn to spin pumping into graphene, focusing
on the K valley and multiply the result by 2, thereby
disregarding intervalley scattering. As before, the electrons in
graphene experience the proximity-exchange and electrostatic
potentials collected in U (r,t). We consider the parameter
regimes |EF |,|Vσ | < 1 eV, for which the standard envelope
wave function Hamiltonian with energy zero at the Dirac point
applies:

H
graphene
kin = −i�vF σ̂ · ∇, (28)

where σ̂ = ∑
l σ̂lel and σ̂l (l = x,y) are the Pauli matrices in

pseudospin space. The envelope wave function is the spinor

ψ(r) =
(

ψ1(r)
ψ2(r)

)
. (29)

We discuss again abrupt potentials first:

H graphene = −i�vF σ̂ · ∇ + V (abrupt)
σ (r). (30)

In region I (x < 0)

ψI,σ,k(r) =
(

1
χeiθk

)
eikxx+ikyy

+ rσ
k

(
1

−χe−iθk

)
e−ikxx+ikyy, (31)

while in region II (0 < x < D)

ψII,σ,k(r) = aσ
k

(
1

χσ eiθqσ

)
eiqσ

x,kx+iqy,σ y

+ bσ
k

(
1

−χσ e−iθqσ

)
e−iqσ

x,kx+iqy,σ y, (32)

where qσ
x,k =

√
(E − Vσ )2/�

2v2
F − k2

y . In region III (x > D)

ψIII,σ,k(r) = tσk

(
1

χeiθk

)
eikxx+ikyy, (33)

where χ = sgn(E), χσ = sgn(E − Vσ ), tan θk = ky/kx ,
tan θqσ

= qy,σ /qσ
x,k. The boundary conditions are ψI,σ (0,y) =

ψII,σ (0,y), ψII,σ (D,y) = ψIII,σ (D,y), and ky = qy,σ . When
|E − V σ | > �vF |ky | (propagating states in the gated region)
transmission and reflection coefficients read

tσk (φ) = e−ikxD cos θσ cos φ

Xσ
k

, (34)

rσ
k (φ) = ieiφ(χχσ sin φ − sin θσ ) sin qσ

x,kD

Xσ
k

, (35)

where Xσ
k ≡ cos θσ cos φ cos qσ

x,kD + i(sin θσ sin φ − χχσ )
sin qσ

x,kD.
When |E − V σ | < �vF |ky | (evanescent states in the gated

region), we substitute qσ
x,k = iκx,σ , eiθσ → (iκx,σ + iky)/

(|E − V |/�vF ), and −e−iθσ → (−iκx,σ + iky)(|E − V |/�vF )
for propagating states. Transmission and reflection coefficients
then become

tσk (φ) = iχ�vF κx,σ cos φe−ikF D cos φ

Y σ
k

, (36)

rσ
k (φ) = −iVσ eiφ sinh κx,σ D sin φ

Yσ
k

, (37)

where Y σ
k ≡ (E cos2 φ − Vσ ) sinh κx,σ D + iχ�vF κx,σ cos φ

cosh κx,σ D.
When E = Vσ , the wave function in region II can be written

as

ψII,σ,k(r) =
(

Aeqy (x+iy)

Beκy (−x+iy)

)
. (38)

With specular scattering boundary condition qy = κy = ky :

tσk (φ) = 2e−ikyD cos φ

eiφekyD + e−iφe−kyD
, (39)

rσ
k (φ) = −2eiφ sinh kyD

eiφekyD + e−iφe−kyD
. (40)

When |E| � |Vσ |, i.e., the Fermi circle under the gate is much
larger than that in the leads, cos θσ → 1, sin θσ → 0, and
qσ

x,k
∼= |Vσ |/�vF = |Vc ∓ J |/�vF , leading to the simplified

results

tσk (φ) → cos φe−ikF D cos φ

cos φ cos qσ
x,kD − iχχσ sin qσ

x,kD
, (41)

rσ
k (φ) → iχχσ eiφ sin φ sin qσ

x,kD

cos φ cos qσ
x,kD − iχχσ sin qσ

x,kD
. (42)

We now turn to a slowly varying potential with Hamiltonian

H graphene = −i�vF σ̂ · ∇ + V (slow)
σ (r). (43)
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If Vσ is smaller than Ex,k(≡ EF − �vF |ky |), the wave function
can be written as

ψσ,k(r) = cσ

(
G

−1/2
σ,k + iG

1/2
σ,kky/|ky |

G
−1/2
σ,k − iG

1/2
σ,kky/|ky |

)
e
i
∫ x

x0
qσ

x,k(x ′)dx ′+ikyy

+ dσ

(
G

1/2
σ,k + iG

−1/2
σ,k ky/|ky |

G
1/2
σ,k − iG

−1/2
σ,k ky/|ky |

)
e
−i

∫ x

x0
qσ

x,k(x ′)dx ′+ikyy,

(44)

where x0 is a reference point, qσ
x,k = |Ex,k − Vσ (x)|/�vF , and

with ν ≡ sgn[Vσ (x0) − E]

Gσ,k =
( |E − Vσ (x)|/�vF + kx(x)

|ky |
)ν

. (45)

In region III:

ψIII,σ,k(r) = tσ

(
G

−1/2
σ,k + iG

1/2
σ,kky/|ky |

G
−1/2
σ,k − iG

1/2
σ,kky/|ky |

)
eikxx+ikyy

=
(

G
−1/2
σ,k + iG

1/2
σ,kky/|ky |

G
−1/2
σ,k − iG

1/2
σ,kky/|ky |

)
e
i
∫ x

x0
qσ

x,k(x ′)dx ′+ikyy

+ rσ

(
G

1/2
σ,k + iG

−1/2
σ,k ky/|ky |

G
1/2
σ,k − iG

−1/2
σ,k ky/|ky |

)
e
−i

∫ x

x0
qσ

x,k(x ′)dx ′+ikyy

∼=
(

G
−1/2
σ,k + iG

1/2
σ,kky/|ky |

G
−1/2
σ,k − iG

1/2
σ,kky/|ky |

)
eikxx+i(qσ

x,k−kx )D+ikyy

+ rσ

(
G

1/2
σ,k + iG

−1/2
σ,k ky/|ky |

G
1/2
σ,k − iG

−1/2
σ,k ky/|ky |

)

× e−ikxx−i(qσ
x,k−kx )D+ikyy . (46)

In the semiclassical WKB approximation electrons cannot
transmit the scattering region when the potential energy
is larger than Ex,k. This corresponds to disregarding the
evanescent wave tunneling through the gate region. The
transport coefficients then read

tσk =
{

0, Ex,k < Vσ

ei(qσ
x,k−kx )D, Ex,k > Vσ ,

(47)

FIG. 3. (a) Spin current per unit width pumped into graphene by
a ferromagnetic top layer as a function of the gate voltage Vc and
the proximity exchange coupling constant J , assuming that (a) the
potential at the contact/gate edges is abrupt and (b) slowly varying.
The (zero-bias) chemical potential of the graphene μ = 100 meV.
The length of the ferromagnetic region is D = 10 nm. m = 0.9 is the
cosine of the magnetization precession cone angle.

FIG. 4. (a) Spin current per unit width as in Fig. 3 but for
μ = 1 meV, i.e., close to the Dirac electron neutrality point. (b)
Spin current density pumped into graphene as a function of the
(nonadiabatic) gate voltage Vc and Fermi energy of the reservoirs
EF . Other parameters are J = 50 meV, gate length D = 10 nm, and
cosine of the magnetization precession cone angle m = 0.9.

rσ
k =

{
1, Ex,k < Vσ

0, Ex,k > Vσ ,
(48)

where we again preserved the phase of the transmitted electron
waves.

We plot the dependence of the spin current density js

pumped into graphene on Vc and J for an abrupt potential
at the contact/gate edges in Fig. 3(a) and a slowly varying
potential in Fig. 3(b). These figures can be compared with
the 2DEG device for the same parameters. In the 2DEG js

vanishes when Vσ > EF because all electrons are reflected
by the potential barrier. On the other hand, in graphene
js does not vanish even when Vσ > EF , because electrons
can propagate through the potential by Klein tunneling via
the valence band states. In the abrupt potential limit, when
(EF − Vσ )/EF < −1 electrons are seen to tunnel efficiently
through the gate region. This renders the physics of transport
including spin pumping in graphene very different from that
of the 2DEG. For the adiabatic potential, however, electrons
waves are reflected and Klein tunneling [40] does not occur.
Therefore, when V↑ > EF , js vanishes.

In Fig. 4(a), we plot js for graphene close to electroneu-
trality (EF = 1 meV), while in Fig. 3(a) the Fermi energy is
substantial. Note that we do not address the complications
of transport at the Dirac point (see, e.g., [41]). Since the
electron density is very small, the spin pumping spectra in
Fig. 4(b) reflect the particle-hole symmetry of the graphene
band structure. The spin current in n|n(p)-F |n graphene is the
same as that in p|p(n)-F |p graphene junctions summarized
by the general symmetry relation

js(EF ,Vc) = js(−EF , − Vc). (49)

We observe in Fig. 4(b) that in the area between the lines
Vc ± EF the spin current is suppressed because the modes
under the gate are evanescent.

III. CONCLUSION

In conclusion, we report spin pumping into a 2DEG
and graphene by a planar contact consisting of a magnetic
insulator film with a metal gate. In both cases the spin current
can be controlled by the gate voltage that modulates the
electron density. The pumped spin currents in both systems
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are remarkably different in the abrupt potential limit, reflecting
the difference between the Schrödinger and Dirac equations.
Rahimi and Moghaddam [29] compute spin pumping into
graphene for the same configuration. They do not discuss the
2DEG and focus on different parameter regimes, however. The
present theory is valid when the scattering mean-free path is
smaller than the system size. We therefore chose a narrow
gate with D = 10 nm. In contrast to perturbation theory there
are no restrictions on the magnitude and cone angle of the
induced exchange potential. Even for a large J = 50 meV,
the coherence length is λ � 20 nm, which means that we
are in the limit of a weak ferromagnet. We predict typical
dependence of the spin current on all device parameters that
can be very different for graphene and the 2DEG, mainly by
Klein tunneling in the former. The effects can in principle
be observed by metallic contacts outside the gated region or

enhanced broadening of the ferromagnetic resonance, which
requires additional but straightforward modeling of the specific
sample.

Future work should take into account disorder scattering,
including spin flip scattering, that has been found to be
negligible when graphene has a large contact area with a
ferromagnet.
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