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Feature-rich electronic excitations of silicene in external fields
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We develop a generalized tight-binding model to investigate the Coulomb excitations in monolayer silicene.
The atomic interactions, spin-orbit coupling, magnetic and electric fields, as well as the Coulomb interactions
are simultaneously included in our calculations. The magnetic field induces interband plasmons with discrete
frequency dispersions restricted to quantized energy states. An intraband plasmon, with a higher intensity and
continuous dispersion relation, exists in the presence of free carriers. This mode is dramatically transformed into
an interband plasma excitation when the magnetic field is increased, leading to abrupt changes in the value of the
plasma frequency and its intensity. Specifically, an electric field may separate the spin and valley polarizations
and create additional plasmon modes, a unique feature arising from the buckled structure and the existence of
noteworthy spin-orbit coupling.
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I. INTRODUCTION

Following the epitaxial synthesis of silicene in 2010
[1–4], a buckled structure in which the silicon atoms are
displaced perpendicularly to the basal plane, there have been
considerable efforts by researchers to understand its atomic
and electronic properties [5–7]. Silicene displays significant
spin-orbit coupling (SOC) and electrically tunable electronic
properties. A crucial consequence due to an applied electric
field ( �E = Ezẑ) is that it can open and close the energy band
gap, which is a desired functionality for digital electronics
applications. It was recently reported that a single silicene
layer field-effect transistor has been successfully fabricated
and operates at room temperature [8,9]. This moves the
material closer to its potential to create more powerful devices.
Also, a wealth of fascinating features of silicene have been
investigated theoretically, including the quantum spin Hall
effect [10,11], the quantum anomalous Hall effect and valley-
polarized quantum Hall effect in the presence of an external
electric field [12,13], anomalous Hall insulators and single-
valley semimetals [14], potential giant magnetoresistance [15],
and topologically protected helical edge states [14,16].

The Coulomb excitations, dominated by electron-electron
(e-e) interactions, are important for gaining an understanding
of the many-particle properties of the carriers in a material. In
intrinsic monolayer silicene, low-frequency plasmons hardly
exist, mainly because of the vanishing density of states at
zero Fermi energy (EF = 0). Such collective modes may
be excited by doping or a gate bias to increase the charge
carrier-density [17–20], i.e., by raising or lowering the Fermi
level to increase the density of states. Alternatively, for an
intrinsic sample, free carriers may be generated by increasing
the number of thermally excited electrons and holes in the
conduction and valence bands, respectively. The intrinsic band
gap in silicene is predicted to lead to an interplay between the
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intraband and interband transitions and create an undamped
plasmon at low frequency [21].

A perpendicular magnetic field ( �B = B0ẑ) would create
cyclotron motion of electrons and form dispersionless Landau
levels (LLs), which may largely enhance the low-energy
density of states. Unlike graphene, where the nc,v = 0 Landau
level is pinned at EF = 0, the larger SOC in silicene causes
the nc,v = 0 level to split into ±λSOC/2 (λSOC is the strength
of SOC) [22,23]. In the presence of an electric field, the
single-valley Landau levels are no longer spin degenerate, and
the spin-down and spin-up states generate separate energy
gaps. The external fields are expected to largely enrich the
excitation spectrum.

In this paper we investigate the behavior of magnetoplas-
mons in silicene in the presence of an applied electric field
and a tunable Fermi level taken into account. The calculation
is performed with the use of the generalized tight-binding
(TB) model that we developed, and which simultaneously
incorporates all meaningful interactions, including atomic
interaction, spin-orbit coupling, the Coulomb interactions,
and the interactions between the charge carriers and the
external fields. Since all low-energy states are included, the
calculated results are reliable over a wide range of excitation
frequencies, field strength, and Fermi energies. The dispersion
relation for the magnetoplasmons may be characterized in two
categories. One is a propagating mode, while the other is a
localized mode. The former is mainly driven by the Coulomb
interaction, while the latter is mainly governed by magnetic
field effects. The Ez field in the buckled structure induces
localized plasmon modes due to the lifting of spin and valley
degeneracy. We pay attention to the B0-dependent plasmon
spectrum and observe rich changes in the plasmon features
when crossing each critical field strength (Bc). The modulation
of the plasmon excitations by the electric and magnetic fields
constitutes a possible way to design an active plasmon device
in low-buckled materials.

II. METHODS

Similar to graphene, silicene consists of a honeycomb
lattice with A and B sublattices. However, silicene has a
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FIG. 1. The lattice geometry of low-buckled silicene in (a) and
(b). The two sublattices are separated by a perpendicular distance
of 2l. The staggered sublattice potential energy is produced by an
external electric field Ez. The enlarged unit cell in the presence of
magnetic field is plotted in (c). The various SOC-related hopping
phases are illustrated in (d).

buckled structure, in which the two sublattice planes are
separated by a distance of 2� (� = 0.23 Å), as illustrated
in Figs. 1(a) and 1(b). In the TB approximation, the
Hamiltonian for silicene in the presence of SOC is given
by [12,24]

H = −γ0

∑
〈I,J 〉,α

c
†
IαcJα + i

λSOC

3
√

3

∑
〈〈I,J 〉〉,α,β

vIJ c
†
Iασ z

αβcJβ

−i
2

3
λR2

∑
〈〈I,J 〉〉,α,β

uIJ c
†
Iα(�σ × d̂IJ )zαβcJβ

+�
∑
I,α

μIEzc
†
IαcIα. (1)

In this notation, c
†
Iα (c†Jβ) and cIα (cJβ) create and destruct

an electronic state with spin polarization α (β) at lattice
site I (J ), when acting on a chosen wave function. The
sums are carried out for nearest-neighbors 〈I,J 〉 or next-
nearest-neighbor lattice site pairs 〈〈I,J 〉〉. The first term
(I) in Eq. (1) accounts for nearest-neighbor hopping with
energy transfer γ0 = 1.6 eV. The second term (II) describes
the effective SOC for parameter λSOC = 3.9 meV, and �σ =
(σx,σy,σz) is the vector of Pauli spin matrices. Additionally,
we chose vIJ = ±1 if the next-nearest-neighbor hopping is
anticlockwise/clockwise with respect to the positive z axis.
In the third term (III), the intrinsic Bychkov-Rashba SOC
is included in the next-nearest-neighbor hopping through
λR2 = 0.7 meV, in which uIJ = ±1 are for the A/B lattice
sites, respectively. d̂IJ = �dIJ /|dIJ | is a unit vector joining two

sites I and J on the same sublattice as shown in Fig. 1(a). The
staggered sublattice potential energy produced by the external
electric field is characterized by the fourth term (IV), where
μI = ±1 for the A/B sublattice sites and � = 0.23 Å, referring
to Fig. 1(b).

Monolayer silicene is assumed to be in a uniform perpendic-
ular magnetic field. The magnetic flux, the product of the field
strength, and the hexagonal area is � = [3

√
3b2B0/2]/φ0,

where φ0 (= h/e = 4.1 × 10−15 T m2) is the magnetic flux
quantum and b (= 2.23 Å) is the Si-Si bond length. The vector
potential �A = (B0x)ŷ leads to a new period along the armchair
direction, since it can create an extra magnetic Peierls phase,
i.e., exp{i[ 2π

φ0

∫ �A · d�r]}. The unit cell is thus enlarged and
its dimension is determined by RB0 = 1/�. The reduced first
Brillouin zone has an area of 1/(3

√
3b2RB0 ). The enlarged

unit cell contains 4RB0 Si atoms and the Hamiltonian matrix
is a 8RB0 × 8RB0 Hermitian matrix with the spin degree of
freedom, as illustrated in Fig. 1(c). Corresponding to B0 = 4 T,
where RB0 = 8000, the Hamiltonian has a dimension of
64 000 × 64 000. Only the nearest- and next-nearest-neighbor
hopping integrals contribute to the nonzero matrix elements.
Furthermore, the Landau wave functions are strongly localized
at the 1/6, 2/6, 4/6, and 5/6 positions of the enlarged unit
cell. The localization centers are determined by the effective
momentum due to the magnetic field and the ky component of
the two valleys [25]. As a result, the numerical calculation
time related to the Hamiltonian matrix could be largely
reduced. The independent Hamiltonian matrix elements are
summarized in the Appendix. An illustration of the SOC-
related hopping phases are given in Fig. 1(d). Diagonalizing
the large Hamiltonian matrix, the eigenenergy Ec,v and the
wave functions �c,v are obtained, where c and v refer to the
conduction and valence bands, respectively.

Whenever a uniform perpendicular magnetic field B0 is
applied to silicene, the electronic states are characterized
by dispersionless Landau levels (LLs) whose behavior is
governed by the zero-field energy dispersion. The successive
LL spacing decreases with increasing energy. Each LL is
eightfold degenerate except the nc,v = 0 LLs. The eightfold
degenerate Landau level is due to the presence of two valleys,
two spins, and the relations �B = B0ẑ and −B0ẑ obtained by
considering the complete period of the Peierls phases. The
number of nodes from an occupied (unoccupied) LL wave
function is equal to the quantum number nv (nc). Electrons may
be excited from valence LLs to conduction LLs in undoped
silicene through electron energy loss spectroscopy (EELS) or
when light is absorbed, for example. However, in addition to
single-particle excitations between LLs, there are collective
magnetoplasmon modes whose frequencies are depolarization
shifted due to the Coulomb interaction and are dispersive
functions of the momentum transfer q. In our notation, we
label each interband inter-LL excitation channel by (nv , nc) and
the order of the transition by �n = |nv − nc|. The intraband
inter-LL transitions occur in the doped condition and are
labeled by (nc, nc).

The dispersion relation for the spectrum of collective
plasmon modes may be determined from the energy-loss
function to be evaluated from the imaginary part of the
inverse dielectric function Im[−1/ε(q,ω)], where, in the
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random-phase approximation (RPA), we have

ε(q,ω) = ε1(q,ω) + iε2(q,ω) = ε0 − vqχ
0(q,ω), (2)

with vq = 2πe2/q being the in-plane Fourier transformation
of the bare Coulomb potential energy and ε0 = 2.4 (taken
from graphite [26]) is the background dielectric constant due
to the deep-energy electronic states. We note that changing ε0

would lead to a vertical shift of the real part of the dielectric
function and thus change the peak intensity and position in
the energy loss function. However, the plasmon behavior is
qualitatively the same. Such a form of dielectric function is
utilized in many research studies on two-dimensional (2D)
systems, theoretically [27–29] and experimentally [30–32].
The 2D bare response function [26,33–36] is given in Eq. (3).
The bra and ket represent the initial and final Landau state wave
functions with the respective quantum numbers n and m, where
the respective wave vectors are �k and �k + �q. In the presence of
magnetic field, the system becomes fully quantized. Therefore,
the summation becomes a sum over all possible single-particle
transitions between bra and ket states. We obtain

χ0(q,ω) = 1

3
√

3b2RB0

∑
n,m

|〈n; �k + �q|ei �q·�r |m; �k〉|2

× f (En) − f (Em)

En − Em − (ω + i�)
. (3)

The prefactor 1/(3
√

3b2RB0 ) is a normalization constant,
meaning that the contribution from each k state in the reduced
first Brillouin zone is the same. The equilibrium Fermi-Dirac
distribution function is f (E) = 1/[1 + exp(E − μ/kBT )],
where kB is Boltzmann constant. � is an energy broadening
parameter arising from various de-excitation mechanisms, e.g.,
the optical transitions between the valence- and conduction-
band states. μ is the chemical potential whose temperature
dependence may be neglected over the range we investigated.
The value of the bare response function only relies on the
magnitude of the momentum transfer because of the isotropic
Landau level spectrum. The energy broadening of the LLs due
to the lattice structure is negligible at low temperatures; we set
T = 0 here.

Details for the calculated results for the Coulomb matrix
elements are shown below with

|〈n; �k + �q|ei �q·�r |m; �k〉
=

∑
s=α,β

∑
I=1−8RB0

〈φz(�r − �RI )

× |e−i �q·(�r− �RI )|φz(�r − �RI )〉[unsI (�k + �q)u∗
msI (�k)]. (4)

Here �RI defines the positions of atoms in a unit cell. umsI (�k)
[unsI (�k + �q)] are the coefficients for the TB wave functions
derived from Eq. (1). 〈φz(�r − �RI )|e−i �q·(�r− �RI )|φz(�r − �RI )〉 =
C(q) = [1 + [ qa0

Z
]2]−3 was calculated by using hydrogenic

wave function [26], where a0 is the Bohr radius and Z is
an effective core charge [37]. We note that the overlapping
integrals between neighboring atoms are neglected, an ap-
proximation made originally in the 2D model by Blinowski
et al. [38,39]. For small q, C(q) is very close to 1. The
coefficients of the tight-binding functions umsI (�k) are obtained
from the diagonalization of the Hamiltonian matrix. They

are named as the subenvelope functions, being similar to the
Hermite polynomial functions under a magnetic field. Each
tight-binding function is a superposition of the product of the
amplitudes (coefficients) and the position-dependent 2pz or-
bital functions (approximated as hydrogenic functions). Since
all the π -electronic states are included in our calculations, the
strength and frequency of the resonances in Im[−1/ε(q,ω)]
can be correctly defined. Moreover, the calculations would be
reliable in a wide range of the field strength and the chemical
potential.

III. RESULTS AND DISCUSSION

A. Landau level spectra

The main difference in the LL spectrum for silicene and
graphene is that the former has the nc = 0 and nv = 0 LLs
split by the significant SOC. Additionally, the low-lying LL
degeneracy and energy are sensitive to a perpendicular electric
field, since an on-site potential difference between the A and
B sublattices is created. This is revealed in the Ez-dependent
LL spectrum shown in Fig. 2(a). From the nodal structure
of the wave functions, the quantum number nc (nv) for each
conduction (valence) LL could be determined from the number
of its zeros [40,41]. The quantum number of the dominant
sublattice for the highest (lowest) occupied (unoccupied) LL

FIG. 2. (a) The Landau level energies as a function of the E-field
strength Ez (in unit of Ec ≈ 17 meV/Å). (b) At Ez = 0, the blue solid
and dashed lines, respectively, indicate the interband and intraband
inter-LL transition channels.
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is regarded as the effective quantum number. The highest
occupied LL is denoted by nF , e.g., nF = 1 for two occupied
LLs of nc = 0 and 1. Except for the nc,v = 0 ones, each LL
is eightfold degenerate for every (kx,ky) state, and this is
attributed to the K and K ′ valleys, the mirror symmetry of
z = 0 plane, and the spin degree of freedom. Furthermore,
the carrier density for each nv � 1 LL is 8( 1

3
√

3b2RB0

), where

the second factor in this expression is the area of the reduced
first Brillouin zone and we refer to Sec. II. The degeneracy
of the nc,v = 0 LLs is only half that for the others, and the
intrinsic band gap determined by the former is about 7.9 meV.
A finite Ez field could still split the nc,v = 0 LLs. However, the
splittings of nc,v � 1 LLs only take place at larger Ez values.
This creates two energy gaps with different Ez dependence, as
indicated by green and orange arrows in Fig. 2(a). One of these
gaps increases with Ez and the other decreases for Ez < Ec, a
critical electric field. The smaller gap is closed at the critical
field Ec ≈ λSOC/� = 17 meV/Å, where the energy difference
between the two gaps reaches a maximum. For Ez > Ec, both
gaps monotonously increase as Ez is increased. The crossing of
the nc,v = 0 LLs at Ez = Ec is a signature of band inversion
associated with the transition from topological insulator to
band insulator [42].

Through the Coulomb interactions, electrons may be
excited from the valence to conduction LLs for intrinsic
silicene for which nF = nv = 0. A single-particle mode has
excitation energy �ωex = Enc (�k + �q) − Env (�k) by energy and
momentum conservation. A pair of numbers (nc,v,nc,v) is
employed to label an inter-LL transition channel. This is
illustrated in Fig. 2(b) for two types of transition channels.
The pair (0v,1c) illustrated by the blue solid arrow denotes
an interband inter-LL transition from nv = 0 to nc = 1 LL.
It has the same excitation energy as (1v,0c) because of the
symmetry between the conduction and valence LLs separated
by EF = 0 as shown by the purple dashed arrow. As for (0c,2c),
the blue dashed arrow, it represents the intraband inter-LL
transition from nc = 0 to nc = 2 LL. The transition order is
denoted as �n = |nv − nc|, which is useful for categorizing
the single-particle excitation (SPE) channels. The number pair
is also used to labels a plasmon branch, meaning that the
collective excitations are closely related to the SPE channel.
This is shown in the plasmon frequency that approaches the
SPE energy in the large or small limit of q, as discussed below.

B. Single-particle excitations

The SPE spectrum, determined by the imaginary part ε2 of
the dielectric function, is sensitive to changes in EF and Ez as
shown in Figs. 3(a)–3(d). Each peak in ε2 represents a major
inter-LL transition channel. The peak intensity is proportional
to the Coulomb-matrix elements |〈n; �k + �q|ei �q·�r |m; �k〉|2, as-
sociated with the wave function overlap between the initial
and final states. Based on the characteristics of the Hermite
polynomials, a SPE channel with a lower transition order
�n = |n − m| has larger Coulomb-matrix elements for a
smaller wave vector q. The converse is true for a SPE channel
with larger �n. For example, for intrinsic silicene and small
q = 1 (in units of 105/cm), the three lowest frequency peaks
are labeled by (0v,1c), (1v,2c), and (2v,3c) from low to high

FIG. 3. The imaginary part of the dielectric function ε(q,ω) for
chosen q = 1 (in unit of 105/cm) and different Fermi energies.
The black and red curves correspond to Ez = 0 and Ez = 0.5 Ec,
respectively.

energy states as illustrated by the black curve in Fig. 3(a). They
belong to the interband channels of �n = 1.

The channels for SPEs are drastically altered under extrinsic
condition, as we have shown for various Fermi energies
in Fig. 3. If the nc = 0 LL is occupied with nF = nc = 0
and EF = 8 meV in Fig. 3(b), the intensity of the (0v,1c)
interband excitation is reduced by a factor of 2 as half the
spectral weight is shifted to a lower-energy intraband peak
for the (0c,1c) mode. The two channels (0c,1c) and (0v,1c)
are Pauli blocked when EF crosses the nc = 1 LL for nF = 1
and EF = 70 meV in Fig. 3(c). The replacement is a more
prominent and lower-frequency peak due to the intraband
channel (1c,2c). The significant changes in peak intensity and
frequency arise from the in-phase inter-LL transition and the
reduced LL spacing at higher energy. This is even more evident
for a larger nF , e.g., nF = 2 and EF = 100 meV in Fig. 3(d).

A finite Ez generates spin- and valley-polarized LLs
[Fig. 2(a)] and enriches the SPE spectra. At EF = 0, peak
(0v,1c) is split into two according to different valley transitions
for a single spin [red curve in Fig. 3(a)]. The two interband
peaks respectively exhibit the red and blue shifts when Ez

is increased from zero to Ec, and their frequency difference
reaches a maximum as the lower band gap completely closes
at Ez = Ec. But for Ez > Ec, both split peaks move to
higher frequencies due to the reopening of the lower gap (not
shown). If both nc = 0 LLs are occupied [Fig. 3(b)], there
exist four robust spin- and valley-polarized peaks. They result
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FIG. 4. The real part of the dielectric functions ε(q,ω) for the
same conditions of Fig. 3. The black and red curves correspond to
Ez = 0 and Ez = 0.5 Ec, respectively.

from two-spin and two-valley transitions. This phenomenon is
absent at nF � 1 [Figs. 3(c) and 3(d)], because with more
occupied conduction LLs, the transitions from and to the
nc,v = 0 LLs own a larger �n and are faint at a small q.

C. Real part of the dielectric function

The real part ε1 of the dielectric function is related to its
imaginary part ε2 through the Kramers-Kronig relations and
our results are presented in Figs. 4(a) through 4(d). A pair of
asymmetric peaks in ε1 correspond to a symmetric peak in
ε2, and ε1 could vanish at some frequencies. If a zero point
for ε1 occurs where ε2 is small, then this corresponds to weak
damping of a plasmon mode. For example, there are zeros
for ε1 between the (0v,1c) and (1v,2c) peaks, indicated by
purple arrows in Figs. 4(a) and 4(b). At these zeros, there is
not much Landau damping by the SPEs. On the other hand,
the intraband peak (0c,1c) presents a zero point denoted by
a blue arrow in Fig. 4(b), at a finite ε2 that comes from
the adjacent interband channel (0v,1c). This ε1 = 0 leads to
a strongly damped plasmon. Specifically, for nF � 1, the
intraband channels collectively contribute to one zero point,
as illustrated by the green arrows in Figs. 4(c) and 4(d). This
means that at a very high EF , all low-frequency transition
states make contributions to one solution of ε1 = 0, as for a
classical zero-B0 condition [43].

FIG. 5. The energy-loss functions for q = 1 and different Fermi
energies. The vertical blue (green) dashed lines indicate the intraband
(interband) SPE energies. Also shown in the inset of (c) is a
comparison between two values for the broadening parameter �.

D. The loss function

The energy-loss function, defined as Im[−1/ε(q,ω)], is
useful for understanding the collective excitation spectra
measured by either inelastic light scattering [44–46] or EELS
[31,32,47–49]. Each spectral peak in Im[−1/ε(q,ω)] may be
interpreted as corresponding to the excitation of a plasmon
mode having different degrees of Landau damping. For
example, the most intense interband plasmon mode is located
between the SPE energies for (0v,1c) and (1v,2c) as shown
by the green vertical dashed lines in Fig. 5(a). This peak
corresponds to a ε1 = 0 solution and small ε2 [purple arrow
in Fig. 4(a)]. However, the second and third peaks, which are
close to the SPE energies of (1v,2c) and (2v,3c), respectively,
are relatively weak due to considerable Landau damping.

The characteristics of the intensity and frequency of
plasmon modes change noticeably as EF crosses a specific LL.
The spectral weight of the lowest-frequency interband plasmon
(0v,1c) is partially transferred to a lower-frequency intraband
mode (0c,1c) when the nc = 0 LL is occupied and which is
shown as the black curve in Fig. 5(b). The latter has significant
Landau damping and is weaker than the former. More free
conduction electrons produce an enhanced intraband plasmon,
as illustrated in Fig. 5(c) for nF = 1. The intraband peak grows
in intensity obviously with the increment of nF , e.g., nF = 2
in Fig. 5(d). This is due to the increased (decreased) number
of intraband (interband) channels plotted in the blue (green)
vertical dashed lines. Changing the broadening parameter �
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FIG. 6. The q-dependent plasmon spectrum at Ez = 0 for (a) EF = 0, (b) EF = 70 meV, and (c) EF = 100 meV. That at Ez = 0.5 Ec and
EF = 70 meV is plotted in (d) for comparison. The color scale represents the intensity of the energy-loss function.

does not alter the magnetoplasmon frequencies, but it does
affect the spectral widths and intensities. The smaller the
chosen value for �, the narrower spectral width and the
stronger intensities are obtained, as illustrated in the inset of
Fig. 5(c). A quite strong plasmon peak indicates that this mode
is due to the collective excitations of all free carriers in the
conduction LLs.

An electric field provides a tool for a tuning the dispersion
relation of the collective excitations. It creates new peaks and
reduces the threshold frequency due to the separated spin
and valley polarizations corresponding to the red curves in
Figs. 5(a) and 5(b). The extra plasmon modes experience
rather strong Landau damping, since the splitting energies
between any two LLs are small compared to other LL spacings.
However, the splitting energies may be increased by making
Ez larger, which results in higher weights of the newly created
peaks (not shown here). We note that with nF � 1 [see
Figs. 5(c) and 5(d)], the Ez-field effects will be evident only
for larger wave vector q, as demonstrated below.

E. The magnetoplasmon excitations

The magnetoplasmon spectrum possesses an intriguing q

dependence. Intrinsic silicene possesses interband plasmon
modes which are strongly confined to lie between two
neighboring SPE channels in a limited q range. For example,
the lowest-frequency plasmon branch (0v,1c) lies between the
SPE energies of (0v,1c) and (0v,2c), as illustrated by the two
horizontal blue-dashed lines in Fig. 6(a). This plasmon is
strongly damped in both the short and long wavelength limits,
with its frequency close to the SPE energy of (0v,1c). All the
q-dependent magnetoplasmon frequencies possess humplike
features, indicating that charge oscillations behave quite
differently below and above a critical momentum indicated
by a purple arrow. In our notation, qB corresponds to zero

group velocity and is determined by comparable characteristic
lengths in the charge oscillations and cyclotron motion. If q <

qB , the group velocity is positive and the plasmon intensity
grows with increasing momentum. However, the opposite is
true for q > qB . The value of qB is increased by stronger
B0. For a plasmon-excitation channel, the larger the transition
order �n, a higher rate of increase in qB as a function of B0 is
obtained [27]. The peculiar dependence of qB on B0 may result
in a rich B0-dependent plasmon spectrum, as demonstrated in
Figs. 7 through 9.

The properties of intraband magnetoplasmons are in sharp
contrast with those arising from interband transitions in (q,ω)
space. For nF = 1 and EF = 70 meV, we show in Fig. 6(b)
that the lowest-frequency interband plasmon branch (0v,1c)
no longer exists and is replaced by a combination of three
intraband modes, i.e., (1c,2c), (1c,3c), and (1c,4c). The three
intraband modes form a continuous branch which exhibits a
longer range of positive group velocity and higher intensity.
Additionally, the disappearance of the interband plasmon
(1v,1c), marked in Fig. 6(a), helps to enhance the other
interband modes, such as (0v,3c) and (0v,4c). Although these
interband plasmons are close to each other, they disperse
independently because they experience a strong transverse
restoring force coming from the magnetic field. With larger
nF = 2 when EF = 100 meV in Fig. 6(c), the intraband
magnetoplasmon has a more obvious continuous branch, due to
the increased number of intraband channels. The gap between
the intraband plasmon and the lowest-frequency interband
mode is reduced, as shown by the purple rectangle. An
electric field induces additional discrete subbranches mainly
as a result of the LL splitting, as shown in Fig. 6(d) for
EF = 70 meV and Ez = 0.5 Ec. The newly created modes
in the range of 75 � ω � 100 meV are weakly dispersive due
to the combined effects of the buckled structure and magnetic
field. Their momentum range, frequency, and number can be
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FIG. 7. The B0-dependent plasmon spectrum for EF = 0 for
various chosen q in (a)–(c).

easily modulated by varying Ez and EF . These subbranches,
coming from the spin- and valley-polarized LLs, may play an
important role in fine-tuning details of the magnetoplasmon
spectrum.

The intensity and frequency of plasmon modes exhibit
unusual B0 dependence for various momentum transfer values
and Fermi energies. The interband plasmon frequencies for
intrinsic silicene, shown in Fig. 7, increase monotonically
with B0 due to the enlarged LL spacings. Specially, the
plasmon intensities are drastically changed as B0 is increased,
depending on LL degeneracy, momentum transfer, and qB . At
long wavelength [q 
 1 in Fig. 7(a)], the interband plasmons
are dominated by the SPE channels with �n = 1, determined
by the characteristics of Hermite polynomial functions. Their
intensities are enhanced by B0, since there are more states
in each LL. When q is increased and becomes comparable

with the qB for the (0v,2c) mode [q = 5 in Fig. 7(b)],
�n = 1 and 2 (purple arrow) plasmon branches can exist
simultaneously, and their intensities are strengthened and
weakened by the increase of B0, respectively. The different
B0 dependence mainly comes from the competition between q

and qB . The latter is augmented on account of the enlarged
ratio of carrier oscillation wavelength to magnetic length.
For �n = 1, magnetoplasmon modes with q = 5 > qB , an
increasing B0 causes qB to move closer to q, enhancing the
collective oscillations, e.g., the (0v,1c) mode. However, the
opposite holds true for the (0v,2c) mode with q = 5 < qB .
This means that the increasing B0 will cause the value of q

to deviate from qB and weaken the plasmon intensity. The
above-mentioned plasmons can be enhanced simultaneously
when q is larger than qB of all modes, e.g., q = 10 in Fig. 7(c).

The plasmon spectrum for nF = 1 experiences an abrupt
change in intensity, frequency, and bandwidth at a critical
field, e.g., Bc 
 5.5 T for EF = 70 meV; see Figs. 8(a)
through 8(c). Above Bc, all free conduction electrons are
accommodated in the nc = 0 LL, so that the threshold plasmon
mode is dramatically changed from the intraband (1c,2c) to
the interband (0v,1c) at small q in Fig. 8(a). In contrast, the
other interband channels pass the critical field continuously.
This unusual behavior for the intraband and interband modes
is a feature which distinguishes them. As q is increased
in Fig. 8(b), obvious changes in the plasmon spectrum
after crossing Bc include the discontinuous transformation
from the lowest-frequency intraband mode (1c,4c) to the
interband one (0v,1c) and the newly created interband branch
(1v,1c). For large q in Fig. 8(c), there are more modes
involving the nc = 1 LL, like (1c,5c) and (1c,8c). These modes
disappear at B0 > Bc and thus create more discontinuities in
the plasmon spectrum. Apparently, the momentum transfer
is a critical factor for tuning the B0-dependent plasmon
spectrum.

Starting with nF = 2, there are two critical Bc fields for
which nF may be decreased to nF − 1, as shown in Figs. 9(a)
through 9(c). For EF = 100 meV, the first critical magnetic
field occurs at Bc1 
 5.5 T (the same as in Fig. 8), and the sec-
ond one is at Bc2 
 10.8 T. For small momentum in Fig. 9(a),
the lowest-frequency plasmon mode is intraband (2c,3c) before
Bc1 is achieved, while between Bc1 and Bc2 is (1c,2c). Beyond
Bc2, the threshold mode is replaced by the interband excitation
(0v,1c). The redistributions of strong plasmon modes are
obtained for various values of q, referring to Figs. 9(b) and
9(c). In general, the plasmon spectra are different in the three
B0-field ranges defined by 0 < B0 < Bc1, Bc1 < B0 < Bc2,
and Bc2 < B0. These clearly reflect the characteristic features
of nF = 2, nF = 1, and nF = 0. The discontinuous structure
in the plasmon spectrum at B ′

cs should be verified by EELS
reflection [31,32,47,48] and reflection [49] as well as inelastic
light scattering [44–46]. The magnetically tunable plasmon
spectrum, with strong dependence on the momentum transfer
as well as the intraband and interband modes, may be useful
for the design of magnetoplasmonic components for various
applications.

The physical reasons of the qualitative difference between
the intraband and interband plasmons are summarized below.
The inter-LL magnetoelectronic excitations come to exist
when electrons are excited from the occupied LLs to the
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Ez=0
EF=70 meV
q=1

q=5

q=10

(0v,1c)

(1v,2c)

(2v,3c)(3v,4c)

(1c,2c)

(0v,1c)
(1c,4c)

(0v,2c)

(1v,1c)

(a)

(b)

(c)

(1c,4c)

(1c,8c)

(1c,5c)

B0 (T)

FIG. 8. Same plot as Fig. 7, except that EF = 70 meV.

unoccupied ones. They could be further categorized into
the intraband (c to c) and the interband (v to c) inter-
LL transitions. The important differences between them
include the intensity, energy and number of SPEs, and plasmon
modes. The former have stronger SPE spectra [Figs. 4(c) and
4(d)], since the Coulomb matrix elements [Eq. (4)] are due to
linearly symmetric superposition of the tight-binding functions
of two different sublattices. However, the weaker spectra in
the latter come from linearly antisymmetric superposition.
The first few intraband SPE channels present the close
frequencies so that they could induce collective excitations
together. This intraband plasmon, which arises from all free
carriers in conduction band, exhibits a continuous dispersion
relation [Figs. 6(b) and 6(c)]. Its strong intensity will be
suppressed by the interband SPEs at large q’s. There exist
several interband plasmons corresponding to interband inter-
LL transitions. Such modes possess weaker intensities because

Ez=0
EF=100 meV
q=1

q=5

q=10

(2c,3c)

(1c,2c)

(0v,1c)

(a)

(b)

(c)

B0 (T)

FIG. 9. Same plot as Fig. 7, but for EF = 100 meV.

of the serious Landau damping of the higher-energy inter-LL
transitions.

The definition and further explanation on the propagating
mode and a localized mode are presented. Plasmons are quanta
of the electron density oscillations. The derivative of frequency
versus momentum represents the group velocity of oscillation
wave. A strong dispersion relation in intraband plasmon
[Figs. 6(b) and 6(c)] clearly indicates that the collective
excitations behave as a propagating wave with a continuous
wavelength of 2π/q. Compared with the magnetic field, the e-e
interactions dominate the main features of intraband plasmons.
On the other hand, there are strongly competitive relations
between the transverse magnetic quantization and the longitu-
dinal Coulomb interactions in interband plasmons. Such plas-
mons exhibit very weak dispersion relations, being strongly
confined between two SPE frequencies [Fig. 6(a)]. They have
rather small group velocity; therefore they could be categorized
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as the localized modes. From a classical point of view, the
localized modes show that the charge density oscillations
experience a strong restoring force arising from the magnetic
field.

IV. SUMMARY AND CONCLUSIONS

A generalized TB model has been developed to investigate
the Coulomb excitations of monolayer silicene. The atomic
interactions, spin-orbit coupling, magnetic and electric field
effects, as well as the electron-electron interactions are
simultaneously taken into account. The excitation spectrum
is efficiently solved by using an exact diagonalization method.
This makes our procedure very suitable to deal with the
quantized electronic excitations. The calculated results are
reliable over a wide range of excitation frequencies, field
strength, and chemical potential. The presented methodology
may be extended to other 2D materials. It may become a tool
in the search for better nanoplasmonic materials and attract
further research in this area.

Monolayer silicene, with the buckled structure and signifi-
cant SOC, exhibits unique electronic excitations. The special
relation between the Coulomb interactions and the external
electric and magnetic fields determines the characteristics of
the excitation spectra. There are two types of low-frequency
plasmons, namely the interband and intraband ones. They
could coexist at low doping. The important differences
between them are clearly exhibited in the (q,ω) plots. The
interband plasmons have discrete peaks in the energy-loss

function for which their frequencies are confined by the mag-
netically quantized energy states. Their frequency dispersion
relations are marked by a critical momentum qB . The group
velocity is positive and negative for q < qB and q > qB ,
respectively, a consequence of the competition between the
transverse cyclotron force and the longitudinal Coulomb
interaction. The intraband plasmon involves multiple intraband
transition channels which collectively contribute to a strong
peak in the loss spectrum. Such a mode appears as a continuous
branch in the (q,ω)-phase diagram with positive group
velocity, which is strongly driven by the Coulomb interaction.
Moreover, the B0-dependent plasmon spectra are mainly
determined by the wavelength of charge carrier oscillations,
the magnetic length, and the LL degeneracy. As the B0 field is
increased, the intraband plasmon is considerably transformed
into an interband mode, as indicated by an abrupt change of
the spectral width, frequency, and intensity. An electric field
can make independent spin and valley polarizations and induce
more localized plasmon modes. In other words, a combination
of spin valleytronics and magnetoplasmonics may be fulfilled
in monolayer silicene.
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APPENDIX

Only the fourth interaction in Eq. (1) is a diagonal matrix independent of the Peierls phase. Through detailed calculations,
the independent Hamiltonian matrix elements, associated with the additional position-dependent Peierls phases, are given in
Eqs. (A1)–(A9) which now follow. That is,

(I)
〈
Bα

J

∣∣H ∣∣Aβ

I

〉 = γ0

∑
〈I,J 〉

1

N
exp

[
i�k · ( �R

A
β

I
− �RBα

J

)]
exp

⎧⎨
⎩i

⎡
⎣2π

φ0

∫ �RBα
J

�R
A

β
I

�A · d�r
⎤
⎦

⎫⎬
⎭ = γ0t1,I δI,J+1δα,β + γ0sδI,J δα,β, (A1)

where �R
A

β

I
and �RBα

J
denote lattice sites for the A and B sublattices, respectively, with spin polarizations β and α. Also, “I”

indicates the starting sublattice site. For the kinetic energy, the nearest-neighbor matrix element includes the phase-related
term of t1,I = exp{i[−kx

b
2 − ky

√
3b
2 + π �

φ0
(I − 1 + 1

6 )]} + exp{i[−kx
b
2 + ky

√
3b
2 − π �

φ0
(I − 1 + 1

6 )]} and a specific term of s =
exp[i(−kxb)]. The vector potential can generate more complicated hopping phases in the SOC-related interactions, as presented
in Eqs. (A2)– (A9). For example, t2,1 (t8,1) denotes the phase term for next-nearest-neighbor hopping from A

β

1 to Aα
1 (Aβ

1 to
Aα

2 ), corresponding to the effective SOC (intrinsic Rashba SOC). An illustration of the SOC-related hopping phases are given in
Fig. 1(d). Next,

(II)
〈
Aα

J

∣∣H ∣∣Aβ

I

〉 = λSOC

3
√

3

∑
〈〈I,J 〉〉

1

N
exp

[
i�k · ( �R

A
β

I
− �RAα

J

)]
exp

⎧⎨
⎩i

⎡
⎣2π

φ0

∫ �RAα
J

�R
A

β
I

�A · d�r
⎤
⎦

⎫⎬
⎭ + Ez� = λSOC

3
√

3
t2,I δI,J δα,β + Ez�,

(A2)

where t2,I = exp i[kya + 2π �
φ0

(I − 1)] − exp i[−kya − 2π �
φ0

(I − 1)]. Also,

〈
Bα

J

∣∣H ∣∣Bβ

I

〉 = λSOC

3
√

3

∑
〈〈I,J 〉〉

1

N
exp

[
i�k · ( �R

B
β

I
− �RBα

J

)]
exp

⎧⎨
⎩i

⎡
⎣2π

φ0

∫ �RBα
J

�R
B

β
I

�A · d�r
⎤
⎦

⎫⎬
⎭ − Ez� = λSOC

3
√

3
t3,I δI,J δα,β − Ez�, (A3)
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where t3,I = exp i{−kya − 2π �
φ0

[(I − 1) + 1
3 ]} − exp i{kya + 2π �

φ0
[(I − 1) + 1

3 ]}.

〈
Aα

J

∣∣H ∣∣Aβ

I

〉 = λSOC

3
√

3

∑
〈〈I,J 〉〉

1

N
exp

[
i�k · ( �R

A
β

I
− �RAα

J

)]
exp

⎧⎨
⎩i

⎡
⎣2π

φ0

∫ �RAα
J

�R
A

β
I

�A · d�r
⎤
⎦

⎫⎬
⎭ = λSOC

3
√

3
t4,I δI,J−1δα,β, (A4)

where t4,I = exp i{kx
3
2b − ky

a
2 − π �

φ0
[(I − 1) + 1

2 ]} − exp i{kx
3
2b + ky

a
2 + π �

φ0
[(I − 1) + 1

2 ]}. Additionally,

〈
Bα

J

∣∣H ∣∣Bβ

I

〉 = λSOC

3
√

3

∑
〈〈I,J 〉〉

1

N
exp

[
i�k · ( �R

B
β

I
− �RBα

J

)]
exp

⎧⎨
⎩i

⎡
⎣2π

φ0

∫ �RBα
J

�R
B

β
I

�A · d�r
⎤
⎦

⎫⎬
⎭ = λSOC

3
√

3
t5,I δI,J−1δα,β, (A5)

where t5,I = exp i{kx
3
2b − ky

a
2 − π �

φ0
[(I − 1) + 5

6 ]} − exp i{kx
3
2b + ky

a
2 + π �

φ0
[(I − 1) + 5

6 ]}.

(III)
〈
Aα

J

∣∣H ∣∣Aβ

I

〉
α �=β

= 2

3
λR2

∑
〈〈I,J 〉〉

1

N
exp

[
i�k · ( �R

A
β

I
− �RAα

J

)]
exp

⎧⎨
⎩i

⎡
⎣2π

φ0

∫ �RAα
J

�R
A

β
I

�A · d�r
⎤
⎦

⎫⎬
⎭ = 2

3
λR2t6,I δI,J , (A6)

where t6,I = exp i[kya + 2π �
φ0

(I − 1) − π
2 ] + exp i[−kya − 2π �

φ0
(I − 1) + π

2 ]. We also introduce

〈
Bα

J

∣∣H ∣∣Bβ

I

〉
α �=β

= 2

3
λR2

∑
〈〈I,J 〉〉

1

N
exp

[
i�k · ( �R

B
β
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J
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⎣2π
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J
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I

�A · d�r
⎤
⎦
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3
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where t7,I = exp i{kya + 2π �
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[(I − 1) + 1
3 ] − π

2 } + exp i{−kya − 2π �
φ0

[(I − 1) + 1
3 ] + π

2 }.

〈
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J

∣∣H ∣∣Aβ

I

〉
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= 2

3
λR2

∑
〈〈I,J 〉〉

1

N
exp

[
i�k · ( �R

A
β

I
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J

)]
exp

⎧⎨
⎩i

⎡
⎣2π

φ0

∫ �RAα
J

�R
A

β
I

�A · d�r
⎤
⎦

⎫⎬
⎭ = 2

3
λR2t8,I δI,J−1, (A8)

where t8,I = exp i{kx
3
2b + ky

a
2 + π �

φ0
[(I − 1) + 1

2 ] − π
6 } + exp i{kx

3
2b − ky

a
2 − π �

φ0
[(I − 1) + 1

2 ] + π
6 }. Finally, we have

〈
Bα

J

∣∣H ∣∣Bβ

I

〉
α �=β

= 2

3
λR2

∑
〈〈I,J 〉〉

1

N
exp

[
i�k · ( �R

B
β

I
− �RBα

J

)]
exp

⎧⎨
⎩i

⎡
⎣2π

φ0
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J

�R
B

β
I

�A · d�r
⎤
⎦

⎫⎬
⎭ = 2

3
λR2t9,I δI,J−1, (A9)

where t9,I = exp i{kx
3
2b + ky

a
2 + π �

φ0
[(I − 1) + 5

6 ] − π
6 } + exp i{kx
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6 ] + π
6 }.
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