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Quantum interference effects in topological nanowires in a longitudinal magnetic field
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We study the magnetoconductance of topological insulator nanowires in a longitudinal magnetic field, including
Aharonov-Bohm, Altshuler-Aronov-Spivak, perfectly conducting channel, and universal conductance fluctuation
effects. Our focus is on predicting experimental behavior in single wires in the quantum limit where temperature
is reduced to zero. We show that changing the Fermi energy EF can tune a wire from from ballistic to diffusive
conduction and to localization. In both ballistic and diffusive single wires we find both Aharonov-Bohm and
Altshuler-Aronov-Spivak oscillations with similar strengths, accompanied by quite strong universal conductance
fluctuations, all with amplitudes between 0.3G0 and 1G0. This contrasts strongly with the average behavior
of many wires, which shows Aharonov-Bohm oscillations in the ballistic regime and Altshuler-Aronov-Spivak
oscillations in the diffusive regime, with both oscillations substantially larger than the conductance fluctuations.
In single wires the ballistic and diffusive regimes can be distinguished by varying EF and studying the sign of the
Aharonov-Bohm signal, which depends periodically on EF in ballistic wires and randomly on EF in diffusive
wires. We also show that in long wires the perfectly conducting channel is visible at a wide range of energies
within the bulk gap. We present typical conductance profiles at several wire lengths, showing that conductance
fluctuations can dominate the average signal. Similar behavior will be found in carbon nanotubes.
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I. INTRODUCTION

Strong topological insulators (TIs) possess a band gap
that can be used to eliminate electrical conduction through
their interior, but unlike standard insulators they robustly host
conducting surface states which completely wrap all of the
TI sample’s surfaces [1,2]. This unique circumstance allows
realization of the celebrated Aharonov-Bohm effect, where
electrons are sensitive to the total magnetic flux through a
specific loop [3,4]. If a TI wire has a strictly constant cross
section along the wire’s length, and the surface state has strictly
zero penetration into the interior, then the wire’s conductance
G will be a strictly periodic function of the magnetic flux
� through the wire’s cross section, i.e., G(�) = G(� + �0),
where �0 = h/e is the magnetic flux quantum. This periodic
dependence on the total magnetic flux threading the electron’s
path, and not on any local details of the path, is the hallmark
of the Aharonov-Bohm (AB) effect.

A long string of experiments has realized the AB effect
in TI wires, and has observed a zoo of periodic conductance
features. One may distinguish between Aharonov-Bohm os-
cillations with period �0 and Altshuler-Aronov-Spivak (AAS)
oscillations with period �0/2 [5–23]. In addition, universal
conductance fluctuations (UCFs) are observed—a noiselike
component of G(�) which depends sensitively on the Fermi
level and on disorder [5,9,24–30]. TIs also host a perfectly
conducting channel (PCC)—a conductance quantum which is
remarkable for its persistence in very long TI wires, its topo-
logical protection, and its status as a three-dimensional (3D)
analog of the quantum Hall effect [17,31–42]. These effects
are sensitive to the scattering length l, the localization length
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LLOC, the wire dimensions, Fermi level, and temperature. This
rather complex experimental situation is accompanied by a
vast theoretical literature [43–45] on mesoscopic conduction
which with very few exceptions [39,41,42,46–48] predates
topological insulators.

This paper offers an integrated view of these effects in
the extreme quantum limit of zero temperature T = 0, where
the AB effect is most visible and has the most remarkable
consequences. This paper predicts the surface signal that
experimentalists will see as they progressively implement
improved TI devices with stronger quantum interference.
If experiments eliminate bulk conduction, then only the
surface signal described here will be observed; otherwise
an additional bulk signal will be observed. We give special
attention to the magnetoconductance’s dependence on the
Fermi level EF because it can be controlled systematically via
gating [49,50]. We also focus on single wires rather than the
ensemble-averaged behavior of many wires, both because real
experiments measure individual wires, and because ensemble
averaging removes some of the most interesting aspects of
the magnetoconductance. This focus contrasts with previous
works using ensemble averages which showed that period �0

AB oscillations are dominant in ballistic wires smaller than
the scattering length l and period �0/2 AAS oscillations are
dominant in diffusive wires larger than l [46,47]. In contrast,
we show that single wires at T = 0 manifest significant AB and
AAS oscillations, as well as universal conduction fluctuations
of the same or larger amplitude, regardless of whether they are
ballistic or diffusive.

II. THE MODEL

We study TI nanowires fulfilling all the conditions nec-
essary to ensure that the conductance be perfectly periodic
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throughout most of the bulk gap. Briefly, these conditions are
the following: a uniform cross section, negligible penetration
of the surface state into the bulk, a perfectly parallel magnetic
field, and the absence of bulk conduction. Any nonperiodic
component of the conductance implies violation of one of these
conditions. In particular, violation of the first three conditions
generically has the same result: the periodic signal remains
unchanged at small magnetic fluxes, but is extinguished once
the flux exceeds a threshold N�0. The coefficient N is infinite
in an ideal TI wire and decreases as the wire quality worsens.
In Appendix B we give simple estimates of N . Based on these
estimates, we expect that as long as the penetration depth and
wire nonuniformity are less than a tenth of the wire radius,
and the magnetic field is aligned with the wire axis within a
tenth of a radian, N � 5 and the conductance should exhibit
at least five �0 periods on either side of B = 0 before being
extinguished. In particular, in the Bi2Se3 family of TIs which
display a penetration depth λ = 2–3 nm, the wire radius should
be of order 20 nm [51]. This is, in fact, the length scale chosen
in many previous experiments on TI wires [5].

Violation of the last condition, the absence of bulk conduc-
tion, has much different effects. Generically, bulk conduction
will cause additional features in the conductance which are
not periodic in the flux with period �0, so that the periodic
surface signal of interest can be studied only after filtering out
the nonperiodic signals. The most notable such feature is an
additional weak antilocalization conductance peak centered
at zero flux, which has been reported in most experimental
measurements of AB oscillations in TI wires. In addition, in
long wires bulk conduction will cause the topological surface
state to tunnel through the bulk and be destroyed [38]. Two
other frequently observed signatures of bulk conduction are
a noiselike dependence on � which is slower than �0, and
an overall parabolic trend seen over many multiples of �0.
Further discussion of these effects is outside the scope of this
paper.

We use a computationally efficient minimal tight-binding
model of a strong Z2 TI implemented on a cubic lattice. With
four orbitals per site, the model’s momentum representation is

H =
3∑

i=1

[(
i
t

2
αi − 1

2
β

)
e−ikia + H.c.

]
+ (m + 3)β. (1)

αi = σx ⊗ σi and β = σz ⊗ 1 are gamma matrices in the Dirac
representation, t = 2 is the hopping strength, m = −1 is the
mass parameter, and a = 1 is the lattice spacing [52–55]. The
large bulk band gap E = [−1,1] ensures that the surface state’s
penetration depth is very small, of order O(a). Our wires have
constant height and width h = w = 10, which is large enough
to ensure that the topological state does not decay via tunneling
through the bulk of the wire [38].

To model scattering effects we add uncorrelated white
noise disorder u(x) chosen randomly from the interval
[−W/2,W/2], where W = 2 is the disorder strength. The
disorder is located only on the TI sample’s outer surface, and
has a depth of one lattice unit. Our numerical studies have
shown that as long as the Fermi level is not near the edges
of bulk gap this disorder’s qualitative and quantitative effects
on the topological state are weak: the state remains tightly
pinned to the surface and exhibits a fairly uniform surface

FIG. 1. The Aharonov-Bohm effect in 10 × 10 wires. Pane (a)
shows the surface state’s spectrum in clean wires. Pane (b) shows
the ensemble average of the magnetoconductance G(EF ,�) in Lx =
67 wires, with the average over � subtracted out. The regime of
ballistic conduction is visible in the interval Egap < |EF | < El , where
a cross-hatched pattern matches pane (a). At larger energies El <

|EF | the vertical stripes show diffusive conduction. Near the Dirac
point |EF | < Egap a small gap induced by spin-momentum locking
causes localization. Egap = 0.07 is the maximal height of the gap
reached at integer values of the magnetic flux, and El = 0.35 is the
energy where the scattering length l becomes smaller than the wire
dimensions.

density similar to that of a plane wave [38,56]. Moreover
its density of states, Fermi velocity, etc., do not undergo
large changes. Our choice of weak surface disorder and no
bulk disorder eliminates bulk conduction and minimizes the
penetration depth so that the AB effect is optimally realized.
In real experiments with bulk disorder, as long as the Fermi
level is not near the edges of the band gap, and as long as the
disorder does not introduce carriers in the bulk of the wire,
the disorder’s main effect will be a mild renormalization of
the penetration depth. It will not cause qualitative differences
from the results presented here.

To calculate the conductance we use the Caroli formula
G = −G0 Tr[(�r

L − �a
L)Gr

LR(�r
R − �a

R)Ga
RL] [57,58]. G0 =

e2/h is the conductance quantum, η = 10−9 regularizes the
calculation, Ga,Gr = (EF − H − u ∓ ıε)−1 are the advanced
and retarded single-particle Green’s functions connecting the
left and right leads, and �L,R are the lead self-energies. For
leads we minimize the contact resistance by using perfectly
conducting one-dimensional (1D) wires connected to each site
on the sample’s ends, i.e., at the two ends of the wire each
orbital on each site is connected to a semi-infinite 1D chain.
The self-energy 
 is simply (2t)−1 exp(iφ), where t is the
hopping strength within the leads and φ encodes the Fermi
level [59,60].

III. CONTROL OF CONDUCTION BY CHANGING THE
FERMI ENERGY

In a 3D TI the scattering length l varies inversely with
the Fermi energy. Therefore a single TI wire can be ballistic,
i.e., smaller than the scattering length, at a small value of
EF , and at the same time diffusive, i.e., larger than the
scattering length, at a larger EF . Figure 1(b) highlights the
ballistic and the diffusive regimes in TI wires of length
L = 67. It shows the ensemble-averaged magnetoconductance
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G(EF ,�), which is known to be dominated by period �0

AB oscillations in the ballistic regime. The ballistic regime
is visible as a clear cross-hatched pattern in the energy range
Egap < |EF | < El , with Egap = 0.07, El = 0.35. This pattern
is caused directly by the cross-hatched energy dispersion
of the clean wire, shown in Fig. 1(a). At |EF | = El the
scattering length l becomes smaller than the wire dimensions,
and the wires become diffusive. We show in Appendix A
that l ∝ v3

F /W 2ξ 2EF , where vF = 2 is the Fermi velocity,
W is the disorder strength, and ξ is the disorder correlation
length. In individual wires the value of the energy El separating
the diffusive and ballistic regimes depends sensitively on the
scattering length l, which is determined by the impurity type
and concentration and requires experimental measurement on
a case by case basis. One way of determining l is by placing
leads at several distances along the wire length and measuring
several resistances, and another is by measuring the Hall
resistance [61]. In our wires l is equal to the perimeter P when
|EF | = El = 0.35. Above this energy our wires are diffusive,
so the ballistic cross-hatched pattern in Fig. 1(b) is replaced by
vertical stripes spaced at intervals of �0/2—the well known
AAS oscillations.

Figure 1(b) shows much different physics near the Dirac
point, at |EF | < Egap. Here the conductance is never more than
G = 1G0, putting the sample in the localized regime where
quantum-mechanical interference controls conduction. When
the flux has half-integer values � = (n + 1/2)�0 the perfectly
conducting channel is visible—a single conductance quantum
G = 1G0 which is topologically protected. At other values
of the flux the TI’s locking between spin and momentum,
combined with the wire’s finite size, opens a small gap
around the Dirac point, causing the conductance to decrease
exponentially with wire length. The gap reaches its maximum
height Egap = √

2 vF /P ≈ 0.07 at integer flux � = n�0,
where P = 40 is the wire’s perimeter. In a 50 nm × 50 nm
Bi2Se3 wire, Egap ≈ 14 meV, about one-twentieth of the bulk
band gap.

At energies EF outside the gap, i.e., |EF | > Egap in
our samples, the localization length LLOC ∝ l |EF |/Egap. In
individual wires LLOC will have to be determined on a case
by case basis. Because l varies inversely with the Fermi
energy EF , the localization length LLOC ∝ v2

F P /W 2ξ 2 is
independent of EF (see Appendix A for a derivation). The
only way to enter the localized regime, other than tuning EF

near the Dirac point, is to lengthen or narrow the wire, or
increase the disorder.

IV. SINGLE WIRES

Figure 2(a) presents the magnetoconductance G(EF ,�)
of a single L = 67 wire. The single-wire data manifests
the same localized, ballistic, and diffusive regimes that are
so clear in the ensemble-averaged L = 67 wires presented
earlier. It is, however, much more rich and detailed than
the ensemble average, so we present the Fourier transform
G(EF ,) of the conductance in Fig. 2(b), which affords a more
precise analysis. The Fourier transform is peaked at integer
frequencies  = 1/�0,2/�0,3/�0, . . . and zero elsewhere,
resulting in the vertical lines seen in pane (b). The vertical

FIG. 2. A single L = 67 wire showing ballistic conduction at
Egap < |EF | < El , diffusive conduction at El < |EF |, and localiza-
tion at |EF | < Egap. The left pane shows the magnetoconductance
G(EF ,�), and the right pane shows its Fourier transform G(EF ,).
The average over � has been removed. Egap = 0.07 is the height of
the gap, and El = 0.35 is the energy where the scattering length l

becomes smaller than the wire dimensions.

line at  = 1/�0 shows AB oscillations, while the line at
 = 2/�0 shows AAS oscillations.

Figure 2(b) shows that in single wires at T = 0, as opposed
to ensembles of wires, AB oscillations cannot be taken as a
sign of ballistic conduction, and AAS oscillations are not a sign
of diffusive conduction. We find AB and AAS signals both in
the ballistic regime at |EF | < El and in the diffusive regime at
|EF | > El . In the ballistic regime the AB amplitude oscillates
periodically as a function of EF in the range [−G0, + G0],
producing the cross-hatched pattern in Fig. 2(a). In the
diffusive regime the AB signal depends randomly on EF

and generally remains in the range [−0.4,0.4]G0. In both the
ballistic and diffusive regimes the AAS signal amplitude is a
random function of EF , and generally less than 0.4G0. We
conclude that in single wires at T = 0 the presence or absence
of AB and AAS signals cannot be used to determine whether
conduction is ballistic or diffusive. The only way to determine
this is to systematically vary the Fermi level EF and determine
whether the AB amplitude is a periodic function of EF as in the
ballistic regime or instead random as in the diffusive regime.

Our finding of AB oscillations in the diffusive regime
confirms and extends a recent experiment which found an
AB signal in quite long wires as long as the perimeter P < l

is less than than the scattering length l [18]. We find that if
P < l the AB signal depends periodically on EF , and if P > l

its amplitude is random. Our observation of AAS oscillations
verifies theoretical work showing that they occur in the ballistic
regime as a consequence of constructive quantum interference
between time-reversed circuits around the wire [62–65].

The Fourier transform in Fig. 2(b) also shows that the
AAS signal is predominantly positive across all values of
the Fermi energy. In Fig. 2(a) this means that the pattern
of vertical AAS stripes has its maxima at half integer
flux � = 0,�0/2,�0,3�0/2, . . . and minima at quarter flux.
These minima and maxima are interchanged, and the Fourier
transform’s AAS signal is negative, in materials displaying
weak localization. The positive AAS signal seen in TIs is a
direct indicator of weak antilocalization.

Comparison of the single-wire data in Fig. 2 to the averaged
data in Fig. 1(b) shows that universal conductance fluctuations,
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noiselike deviations of single wires from the ensemble average,
pervade both the ballistic and diffusive regimes. They occur at
the AB and AAS frequencies, and also at higher frequencies.
In our T = 0 single wires the UCF magnitude is 0.2–0.35G0,
so UCFs account for much of the total dependence on �

in single wires, including the entire AB signal seen in the
diffusive regime. It is particularly remarkable that we find
UCFs in the ballistic regime, where most (but not all) of the
electrons transiting the length of the wire do not scatter. A
single scattered electron is enough to change the conductance
by 1G0.

These results are expected to change with temperature.
Broadly speaking, the effect of temperature is to reduce
the total variation in G(�) and to remove frequencies in
G(), generally resulting in a smoother signal. Although
AB oscillations of order 1G0 have been observed in two
experiments [9,21], often a second scenario is observed where
the measured signal is a small fraction of G0 [17,19,22], and
very often only the AB signal is found. Finite temperatures
can cause this scenario, regardless of whether the sample is
ballistic or diffusive, by introducing a dephasing length Lφ

beyond which quantum effects are extinguished by inelastic
scattering. Lφ depends sensitively on both temperature and
scattering, and in TIs has been measured to have values from
100 nm to microns [9,28,61]. If the dephasing length Lφ

is smaller than the perimeter P the magnetoconductance is
exponentially suppressed, with the N th frequency  = N/�0

controlled by exp(−NLφ/P ) [4,9,17,22]. A small value of
Lφ/P < 1 can explain experiments where the total variation
in G(�), in units of conductance, is substantially less than 1G0,
and the AAS signal is weak or absent. In such experiments the
AB signal should decrease exponentially with temperature,
both in the ballistic and in the diffusive regime.

If, on the other hand, the inelastic dephasing length Lφ

exceeds the wire perimeter, then the principal effect of
temperature is via a second mechanism, smearing of the
Fermi energy EF over the thermal width kBT . This thermal
broadening can cause a substantial reduction in the AB signal,
whose sign is sensitive to EF , while leaving the AAS signal
relatively unscathed. In diffusive wires with weak inelastic
dephasing, thermal broadening is expected to cause the AB
signal to scale with 1/

√
T , which has been confirmed by

several experiments [5–7,10,11,20,66,67].

V. LONG WIRES AND THE PERFECTLY
CONDUCTING CHANNEL

Figure 3 shows a single long wire in the localized regime,
which hosts a PCC. The PCC manifests as spectacular very nar-
row vertical stripes with unit conductance extending through
the bulk gap and almost reaching the bulk band, so in long wires
there is no need to tune the Fermi energy to find the PCC.
The quantized conductance repeats at half-integer flux � =
(n + 1/2)�0. At other values of � the conductance decays
exponentially with wire length as is typical in localized wires,
so the PCC stripes are very narrow. This ensures that many
frequencies are present in the Fourier transform [Fig. 3(b)],
and that the even frequencies  = 0,2/�0,4/�0, . . . have
negative sign while the odd frequencies  = �0,3/�0, . . .

have positive sign. The peak sharpness, and also the number of

FIG. 3. A single long L = 403 wire in the localized
regime, showing the perfectly conducting channel at � =
�0/2,3�0/2,5�0/2, . . .. The left pane shows the magnetoconduc-
tance G(EF ,�), and the right pane shows its Fourier transform
G(EF ,). The average over � has been removed. The localization
length is LLOC ≈ 200.

frequencies in the Fourier transform, increases with the wire
length. The quantization of the PCC peaks is controlled by
their magnetic-flux-induced decay length, which far exceeds
the localization length and scales with the cube of the wire
width w3 [38].

As discussed earlier and shown in Fig. 2, the PCC can be
observed in short wires near the Dirac point. However, in this
case the PCC peaks are roughly sinusoidal and match well
with a basic AB signal.

To our knowledge, in 3D TIs the PCC’s sensitivity to
temperature has not yet been studied. Graphene ribbons with
zigzag edges exhibit a pair of PCCs, one for each of graphene’s
two valleys, resulting in a 2G0 conductance. These PCCs are
known to be unstable against dephasing via a mechanism
which mixes the two valleys [33,40]. We emphasize here
that the PCC in 3D TIs is not vulnerable to the same decay
mechanism, because there is an odd number of conducting
channels and a single PCC [41,42]. In particular, dephasing
per se, i.e., randomization of the wave function’s phase,
can affect only short wires where the conductance is larger
than 1G0. In these samples such dephasing will eliminate
weak antilocalization, which in the absence of dephasing
multiplies the conductance by ln L/l. Here L is the sample
size and l is the scattering length. In longer wires where
only the PCC remains and the conductance is quantized at
1G0, dephasing per se cannot produce any further effect on
the single remaining channel [37,40,68]. However, unlike a
truly one-channel topological wire, the surfaces of quasi-one-
dimensional 3D TI wires do host localized states. There is
some possibility that inelastic many-body processes might be
able to couple those states to the PCC and eventually destroy
the PCC. Further study of this possibility would require a
careful perturbative treatment of interactions similar to the
analysis applied to two-dimensional (2D) TI edge states in
Refs. [69,70], combined with careful numerical analysis of
both localized and PCC states in long TI wires. Such analysis
is outside the scope of the present paper.

Figure 4 summarizes typical magnetoconductance profiles
at fixed EF and zero temperature in ultrashort (yellow),
ballistic (red), diffusive (blue), and localized (purple) wires.
Single-wire results are shown in bold, and the ensemble
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FIG. 4. Magnetoconductance G(�) and its Fourier transform
G() at four wire lengths corresponding to ultrashort, ballistic,
diffusive, and localized wires. Thick lines show the conductance
of a single wire and thin lines show the ensemble average. The fast
Fourier transform lines have been shifted to allow comparison and the
 = 0 component has been removed. EF = 0.26 and the scattering
and localization lengths are l ≈ 50, LLOC ≈ 200.

average is shown with thin lines. The AB oscillations seen in
the ensemble average of the diffusive (blue) wires are caused
by the perimeter P being less than the scattering length l, and
will disappear in the opposite case of P > l. At each of the
four wire lengths the UCF strength, i.e., the standard deviation
of G(�), is 0.2–0.35G0. In ultrashort and ballistic wires the
max vs min of the ensemble average is 0.08G0 and 0.18G0,
respectively, which is small compared to the UCFs. Therefore
in single wires at fixed EF the amplitude of the AB and AAS
signals has a very strong random component. In diffusive and
localized wires the ensemble max vs min grows to 0.42G0 and
0.75G0, so that single-wire results get closer to the average
behavior, albeit with still strong randomness. In particular,
single localized wires should reliably manifest a picket fence
pattern of PCC peaks.

Lastly we point out that the longitudinal magnetoconduc-
tance of carbon nanotubes [71,72] is quite similar to that of
the TI wires studied here, with only three differences.

First, carbon nanotubes exhibit four species of Dirac par-
ticles, in two valleys and with two distinct spins, multiplying
the ballistic conductance and the PCC by four. Second,
the perfectly conducting channel occurs at integer flux, not
half-integer flux; no magnetic field is required to see the
PCC in carbon nanotubes. Third, if short range scattering
or interactions mix the two graphene valleys, then the valley
mixing will kill the PCC and reverse the sign of the AAS signal.
Aside from these details, the magnetoconductance should be
similar to that of TI wires, including the relative strength of
the various effects.
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APPENDIX A: THE SCATTERING AND LOCALIZATION
LENGTHS

The scattering length l can be obtained from the self-
consistent Born approximation �/τ = γρ, where τ is the
scattering time, γ is the scattering strength, and ρ is the
density of states. The topological surface state obeys a 2D
Dirac dispersion, resulting in a density of states ρ ∝ EF /v2

F

which is proportional to the Fermi energy EF , where vF is
the Fermi velocity. The scattering time τ is related to the
scattering length l by τ = l/vF . Using γ ∝ W 2ξ 2, where W is
the disorder strength and ξ is the disorder correlation length,
and setting � = 1, we obtain the scattering length formula
given in the text, l ∝ v3

F /W 2ξ 2EF .
The localization length LLOC can be estimated from LLOC ∝

l N , where N ∝ |EF |/Egap is the number of conducting
channels in a clean wire. In a 2D electron gas of width w the
number of conducting channels is N ∝ wρ vF . On the surface
of a TI wire w is equal to the wire perimeter P . Using again
ρ ∝ EF /v2

F , we obtain the localization length formula given
in the text, LLOC ∝ v2

F P/W 2ξ 2.

APPENDIX B: EFFECTS OF NONIDEAL NANOWIRES ON
THE AB EFFECT

We consider the effect of a nonuniform wire cross section,
penetration of the surface state into the bulk, and the presence
of a magnetic field component perpendicular to the axis of the
TI wire. Each of these three effects add an additional length
scale λ to the wire:

(1) Nonuniform cross section: For each cross section A we
can calculate an effective radius r = √

A/π . The new length
scale λ is the difference between r’s minimum and maximum
values, i.e., λ = rmax − rmin.

(2) Penetration into the bulk: Here λ is the penetration
depth [4].

(3) Perpendicular magnetic field: In this case λ is the
radius r of the wire multiplied by the sine of the angle of
the total magnetic field with respect to the wire axis, i.e.,
λ = r sin θ . [4]

In ideal wires λ is zero. Assuming that the wire is not too far
from perfection, i.e., λ is small compared to the wire radius, we
calculate the magnetic flux �λ through the portion of the wire
which is affected by the wire imperfection. The cross section
of this imperfect part is 2πrλ. Assuming that the wire’s total
cross section is πr2, and that a total flux � passes through
the cross section of the wire, we find that �λ = (2λ/r)� flux
units pass through the imperfect part of the wire.

It is the �λ flux which is sensitive to the wire’s imper-
fections, and which multiplies the signal by a random phase
exp(i�λ/�0). As long as the phase is small, i.e., �λ < �0 is
less than one flux quantum, the imperfection has little effect.
However, once �λ exceeds one flux quantum, the imperfection
is able to completely randomize the phase and destroy the
Aharonov-Bohm effect. Therefore we identify the threshold
value of the total magnetic flux as N�0, where N = r/2λ,
r is the wire radius, and λ is given above. In particular,
when the magnetic field is not perfectly parallel to the TI
wire, N = (2 sin θ )−1. The first N periodic oscillations of the
conductance will be easily visible in the experimental data,
while higher oscillations will be extinguished.
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