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We present a method to extract accurate pseudopotentials for surface passivants, within the framework of the
atomic effective pseudopotential method. We retain the imaginary part of the pseudopotential in the construction
procedure. This imaginary component in reciprocal space translates into a nonspherical component in real space.
This asphericity allows to model surface dipoles and their ensuing band offsets. We show that these surface effects
need to be taken into account to model electronic properties of quantum dots accurately—which requires to go
beyond the spherical potential approximation for the passivant/surface atoms. The good level of transferability,
without additional computational costs, is demonstrated for Si, CdSe, and InP nanostructures. The results are
directly compared to large-scale density functional theory calculations.
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I. INTRODUCTION

The quantum mechanical atomistic calculation of the elec-
tronic properties of colloidal semiconductor nanostructures,
as they are encountered in experimental settings [1–5], is
still challenging due to the large number of atoms involved.
Structures with less than one thousand atoms are rarely
investigated experimentally and this reciprocally represents
the largest structures that can be treated by standard ab initio
density functional theory (DFT). The atomic effective pseu-
dopotentials (AEPs) [6,7], a further development of the
empirical and semiempirical pseudopotentials [8–15,33], have
been successfully used for large colloidal quantum dots (QDs)
with up to 100 000 atoms [7,15]. However, the treatment of
the surface remained at a quality well below a full fledged
self-consistent ab initio treatment. Either the surface atoms
were assumed to generate an electronic pseudopotential with
a Gaussian shape determined by two or three parameters
(depth, width and distance from the surface atom) that could
be adjusted to free the optical gap of surface states [16,17],
or the nanostructure was embedded in another artificial large
band gap material [18–20]. A recent procedure [33] to
extract passivant potentials based on DFT calculations and
the semiempirical approach [8,9] used a spherical real-space
description, required the adjustment of a passivant center
(somewhat shifted with respect to the passivant position—
already hinting at the nonspherical character of the passivant)
and the fit to an ad hoc Yukawa potential. These procedures
were justified, to a certain extent, for large nanocrystals
(NCs) [21,22] or nanowires (NWs) [23], where the electronic
states in proximity of the band gap region are well localized
inside the nanostructure and only remotely affected by surface
atoms. However, the influence of the surface on the electronic
and optical properties is known to be significant. Moreover,
the surface sensitivity represents one of the possible appli-
cations [1–5] of these nanostructures. Therefore an accurate
quantitative treatment of surface effects is desirable.
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In this work, we introduce a pseudopotential for surface
or passivant atoms. We extract the passivant pseudopotential
directly from ab initio DFT calculations without empirical
parameters (in a procedure similar to the construction of bulk
AEPs [6]). We thereby keep the imaginary part of the potential
in reciprocal space, which corresponds to a real-space potential
that has no inversion symmetry. This asphericity is shown to
improve the quality of the results based on calculations of
Si (group IV), InP (III-VI), and CdSe (II-VI) nanowires and
Si quantum dots with more than thousand atoms. The results
are directly compared to large-scale density functional theory
results. A good level of transferability is thereby demonstrated
with errors in the eigenvalues below 200 meV for challenging
small structures, to below 50 meV for larger quantum dots. The
nonspherical nature of the passivant AEP allows to reproduce
the surface dipoles which generate a band offset to vacuum.
The neglect of such effects is shown to lead to qualitatively
erroneous results in Si NCs, especially for the unoccupied
states. The new imaginary part allows us to simulate colloidal
structures including the important surface contributions and
comes at no additional computational cost, so that the AEP
method can still address systems of one hundred thousand
atoms [7]. A further positive feature of our approach is the
fact that the passivant pseudopotentials are extracted from
density functional theory by using a simple analytic connection
between the Kohn-Sham potential and the atomic effective
pseudopotential, which makes them parameter free and simple
to derive.

II. METHODOLOGY

We solve a single-particle Schrödinger equation within a
norm-conserving pseudopotential formalism [24,25]:(

− �
2

2m
� + V eff(r)

)
ψi(r) = εiψi(r),

V eff(r) = V ext(r) + V Hartree[n(r)] + V xc[n(r)]. (1)

The central quantity is thereby the effective Kohn-Sham
potential V eff . We use the frozen-core approximation [26]
and norm-conserving pseudopotential in the Kleinman and
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Bylander separable form [27]. The effective self-consistent
potential can be expressed as

V̂ eff = V psp,loc + V Hartree[n] + V xc[n]

+
∑
lm

∣∣χKB
lm

〉
EKB

l

〈
χKB

lm

∣∣ , (2)

where the last term in Eq. (2) is the nonlocal part of the
potential, EKB

l are the Kleinman-Bylander eigenvalue and
χKB

lm the normalized Kleinman-Bylander projectors. For details
see also Ref. [6]. During the self-consistent cycle of the
Kohn-Sham equations [Eq. (1)] the density is updated until
the ground-state density nscf is found. The starting point for
the derivation of our AEPs is the local part of the self-consistent
effective potential V eff(r):

V loc(r) = V psp,loc(r) + V Hartree[nscf] + V xc[nscf].

In this equation the V psp,loc are the norm-conserving pseu-
dopotentials constructed using the approach of Troullier and
Martins [28].

The potential belonging to a hermitian eigenvalue problem,
such as our real-space local effective potential V loc(r), is real.
Since we are using periodic boundary conditions, the potential
is a periodic function and can be expanded in a Fourier series,

V loc(r) =
∑

|G|�Gmax V

V loc(G)eiGr ,

leading to the so-called G-space potential,

V loc(G) = 1

�c

∫
�c

V loc(r)e−iGr d3r, (3)

where �c is the volume of the simulation cell. While the
real-space potential V loc(r) is real but arbitrary in terms of
its components, the G-space potential obeys the symmetry
V loc(G) = V loc∗(−G); explicitly for the real and imaginary
parts:

Re V loc(G) = Re V loc(−G),

Im V loc(G) = − Im V loc(−G),

and, of course, does not carry more information than the
real-space potential. From Eq.(3), it is easy to see that a
real-space potential with inversion symmetry V (r) = V (−r)
transforms into a real G-space potential. A special case
thereof being a spherically symmetric real-space potential
V (r) = V (|r|) leading to a vanishing imaginary part of the
G-space potential as well as a spherically symmetric G-space
potential V (G) = V (|G|). Reciprocally, any deviation from
an inversion symmetric real-space potential leads to a nonzero
imaginary part in the G-space potential.

In the AEP method [6], the total potential is defined as a
sum of atom centered pseudopotentials:

V loc(r) =
Nspecies∑

α

Nα∑
n

vα(r − τ αn), (4)

with Nα atoms of type α. Each atom is centered at the position
τ αn. The total G-space potential is defined as

V loc(G) =
Nspecies∑

α

Nα∑
n

e−iG·ταn ṽα(G) with

ṽα(G) = 1

�c

∫
∞

vα(r)e−iGr d3r, (5)

where we define vα(G) without volume normalisation �c, as

vα(G) =
∫

∞
vα(r)e−iGr d3r = �cṽα(G).

With this definition, Eq. (5) becomes

V loc(G) = 1

�c

Nspecies∑
α

Nα∑
n

e−iG·ταnvα(G), (6)

where vα(G) are the AEPs for the different atomic types.
The AEPs have been defined as spherically symmetric in
real space, which translates into a real G-space potential
vα(G) = vα(|G|). The spherical approximation applied to bulk
materials using AEPs [6,7], or traditional empirical pseudopo-
tentials [10–14], or semiempirical pseudopotentials [8,9] leads
to small errors in the eigenvalues resulting in a band gap
error of around 60 meV according to Ref. [8], and more
specifically of 87 meV for Si, 57 meV for InP, and 8 meV
for CdSe according to Ref. [6]. Also within the ab initio DFT
community, the muffin-tin approximation [29–31] relies on a
spherically symmetric total effective potential.

Now we introduce the passivant by rewriting the potential
from Eq. (6) explicitly for a binary cation-anion system with
two types of passivants denoted by vH1 and vH2:

�cV
loc(G) =

(
Ncat∑
n

e−iG·τ cat,n

)
vcat(G)

+
(

Nani∑
n

e−iG·τ ani,n

)
vani(G)

+
(

NH1∑
n

e−iG·τH1,n

)
vH1(G)

+
(

NH2∑
n

e−iG·τH2,n

)
vH2(G)

= Scvcat(G) + Savani(G)

+SH1vH1(G) + SH2vH2(G),

where Sc,a,H1,H2 are the structure factors of the cations, anions,
and of the passivants H1 and H2 that are bound to the cations
or anions, respectively. The structure factors depend only on
the atomic positions. Reordering the terms, we obtain,

SH1vH1(G)+SH2vH2(G)=�cV
loc(G)−Scvcat(G)−Savani(G),

where all is known but vH1,2(G), which we keep as complex
quantities. To solve the equation of two unknowns we
introduce a second system (in practice a second slab, see
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below) and denote both systems with A and B in

SA
H1vH1(G) + SA

H2vH2(G) = �cV
loc
A (G) − SA

c vcat(G)

−SA
a vani(G)

SB
H1vH1(G) + SB

H2vH2(G) = �cV
loc
B (G) − SB

c vcat(G)

−SB
a vani(G).

We take the sum and difference of both equations and obtain
the system of equations:

Ax = B with A =
(

SA
H1 + SB

H1 SA
H2 + SB

H2

SA
H1 − SB

H1 SA
H2 − SB

H2

)
,

x =
(

vH1(G)
vH2(G)

)
, (7)

B =
(

�c

(
V loc

A (G) + V loc
B (G)

) − (
SA

c + SB
c

)
vcat(G) − (

SA
a + SB

a

)
vani(G)

�c

(
V loc

A (G) − V loc
B (G)

) − (
SA

c − SB
c

)
vcat(G) − (

SA
a − SB

a

)
vani(G)

)
.

For the choice of the structures A and B used to derive
the passivant AEPs, we look at three target properties. First,
the supercell should be large in one dimension, in order to
lead to a dense grid of G-points along the extended supercell
direction. Second, the system should not be too large, i.e., to
still be manageable by standard DFT (from which we obtain
the V loc

A,B ). Third, the physical situation should be representative
of the situation encountered in the “real” calculation, i.e., for
the calculation of nanostructures (NWs, NCs, QDs). It turns
out, that a slab geometry as shown in Fig. 1(a) is the most
suitable. Both systems A and B differ only in the length of the
slabs used, while the size of the supercell and hence the FFT
grid of G vectors is kept constant. We use a small slab with 12
and one larger slab with 16 atoms [as depicted in Fig. 2(a)].
The atomic positions can be relaxed or not, which does not

Rp

r

Rp

V V

Re[V ]

G

V“Supercell”

“Slab”

(b)(a)

(c)

from Re [V ]

Im[V ]

from Im [V ]

FIG. 1. (a) Schematic representation of the “slab” geometry used
to calculate the passivant AEPs. (b) Real and imaginary components
of the hydrogen (passivant) pseudopotential in reciprocal space. The
imaginary part is odd and peaked towards G = 0 with Im[V (G =
0)] = 0. (c) Potential in real space for two passivants with vectors
pointing in opposite directions, corresponding to the situation in our
slab geometries. The real-space potential (a real quantity) is divided
into a part originating from the real G-space potential and a part
originating from the imaginary part of the G-space potential.

have an impact on the resulting passivant AEP; a feature that
has to be fulfilled since transferability is a required property
of the AEPs. From the full G-space potential obtained from
the self-consistent DFT calculations V loc

A,B(G) we only use the
grid points along the extended direction of the supercell (the
slab [111] direction), which is the z-direction in our case:

V loc
A,B(G) ≡ V loc

A,B(0,0,G). (8)

The solution of Eq. (7) gives us vH1,2(G), where G is the length
of the considered G vector.

For the real component of vH1,2(G), we make a
spherical approximation: Re vH1,2(G) = Re vH1,2(|G|). For
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FIG. 2. (a) Atomic positions for silicon (gray) and hydrogen
(blue) in slab A and slab B used in the extraction of the passivant
AEPs. The slabs have zinc blende structure and the passivant atoms
(blue) are pointing in the crystallographic [111] and [1̄1̄1̄] directions.
(b) AEPs for the Si passivant as a function of |G|, black stars represent
the real part and red squares the imaginary part of the potential. The
symbols (stars and squares) are the raw data points and the lines
reproduce the final AEPs.
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FIG. 3. Real-space potential of an isolated hydrogen passivant,
when only the imaginary part of the G-space AEP is considered. The
passivant is oriented by the vector Rp [see Eq. (9)].

the imaginary component we make a similar approxi-
mation Im vH1,2(G) = Im vH1,2(|G|), keeping in mind that
Im vH1,2(G) = − Im vH1,2(−G). When we extract the passi-
vant AEPs from Eq. (7) using a slab geometry Fig. 1(a) we
obtain AEPs for two passivants. If these passivants are identical

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

 0  100  200  300  400  500  600

Lo
ca

l p
ot

en
tia

l e
ne

rg
y 

(H
a)

Grid point (real space)

AEP Im+Re
AEP Re

DFT

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 10  20  30  40  50  60  70  80  90  100

E
ig

en
va

lu
es

 (
eV

)

Eigenstate index

AEP Im+Re
AEP Re

DFT

VBM
CBM

[111]-Slab Geometry

Effect of Imaginary
Part

(a)

(b)

FIG. 4. (a) Eigenvalues aligned at the VBM obtained for a slab
[111] geometry (24 Si and four H atoms) using AEPs including
the imaginary and the real components of the pseudopotential (blue
crosses), including only the real component (black star) and obtained
from DFT (red squares). (b) Local potentials obtained for AEPs using
real and imaginary parts (solid blue line), using the real part only
(dot-dashed black line), and DFT potential (dashed red line).

(in case of a passivants for a group IV semiconductor such
as C, Si, or Ge), then their real parts are identical and their
imaginary parts have same magnitudes but opposite signs. This
follows our expectation that the asymmetry in real space must
be reversed at both interfaces. The real and imaginary parts
of the passivant AEP are illustrated in Fig. 1(b) showing an
even real and odd imaginary potential. We store our passivant
AEP with the imaginary sign corresponding to the passivant
orientation [111] in the slab geometry (pointing upwards).

The contribution of the passivants in Eq. (6) to the total
G-space potential is written as

VH(G) = 1

�c

NH∑
n

e−iG·τHnvH(G)

≈ 1

�c

NH∑
n

e−iG·τHn

(
Re vH(G)+i

G · Rp

|G||Rp| Im vH(G)

)
,

(9)

where Rp is the real-space surface normal vector in Cartesian
coordinates, denoting the direction of the antisymmetric
component introduced by the imaginary part. Equation (9)
represents a generalization of the one dimensional case where
G and Rp are parallel or antiparallel to a situation where they
have arbitrary orientation. The only known solutions are for
the limiting cases of parallel/antiparallel vectors (prefactor to
imaginary part 1/−1) or perpendicular (prefactor to imaginary
part 0 as we want spherical (real) potentials in the plane). We
use a cosine function (dot product) connecting both cases as the
simplest possible assumption. Figure 1(c) shows the qualitative
situation with the AEP in real space originating from the real
and imaginary components of the G-space passivant AEP.
As will be demonstrated further, it is advantageous to apply a
weight factor w to the imaginary part in certain circumstances:

VH(G) = 1

�c

NH∑
n

e−iG·τHn

(
Re vH(G)

+ i
G · Rp

|G||Rp|w Im vH(G)

)
. (10)

III. CALCULATION OF AEPS FOR SILICON PASSIVANTS

The methodology section describes the procedure in a
general way. In practice, two different semiconductor slab

TABLE I. Structural parameters and band gap at the � point for
Si slabs with zinc-blende structure and with different crystallographic
orientations. The hydrogen density on the surface is given as ρ(H)
and the minimum distance between passivant hydrogens as Rmin.

slab direction [100] [110] [111]

NSi 16 28 24
NH 4 4 4
ρ(H )(1/nm2) 13.4 9.4 7.7
Rmin (H-H) (Å) 1.51 3.12 3.87
Egap (DFT) (eV) 0.896 0.906 1.004
Egap (AEP) (eV) 0.987 1.019 1.133
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geometries are used, denoted as slab A and slab B in the
previous section, and shown in Fig. 2(a). The slabs are
oriented along the [111] crystallographic direction and the
bonds to the passivant atoms point in this direction as well,
i.e., normal to the surface. We use elongated supercells of
around 11.4 nm length in order to obtain a dense grid of G

points. The DFT calculations are performed with the code
ABINIT [32], using an energy cutoff of 35 Hartree and a k-point
mesh of 12×12×1 points. The Si-H bond are structurally
relaxed in the [111] direction. We use Troullier-Martins
norm-conserving pseudopotentials for the DFT calculation
and for the nonlocal part of the pseudopotential in the AEP
method [7]. The hydrogen atoms for the III-V and the II-VI
materials are pseudohydrogens with fractional charges as
typically used in DFT calculations [33,34], which correspond
to an “ideal” passivation. One should keep in mind that some
experimental situations will differ from this artificial case.
The approach suggested, however, does not rely on the use
of pseudohydrogens with fractional charge, but allows to
introduce any atomic passivant.

The results for the passivant (hydrogen) AEP of silicon is
shown in Fig. 2(b). The real part is shown in black, while the
imaginary part of the potential is shown in red. The symbols
show the discrete data points we obtain directly from the
processing of the DFT calculations. The straight lines are
cubic spline interpolations through the data points. In the
region of |G| = n 2π

√
3/(a0) (for silicon |G| = n 1.042 in

units of 1/a.u.), where n is an integer and a0 the bulk lattice
constant, the data point extraction suffers from the error which

is intrinsically carried over from our bulk AEPs, i.e., the AEPs
for silicon in this case. Since the goal for our passivant AEP
is not to correct the deviations existing within the bulk AEPs,
we omit the data points in the vicinity of these |G| values.
By using these data points, one may indeed obtain better
agreement than by ignoring them for the specific structure, but
the transferability to structures with different dimensionality
(see later) would be less accurate. The passivant effective
potential shows a very steep imaginary part for small G values
and a rather smooth real part, comparable to bulk AEPs [6].

IV. QUALITATIVE EFFECTS INTRODUCED BY THE
IMAGINARY PART OF THE PASSIVANT AEP

Before assessing the quality of the derived pseudopotential
by comparing eigenvalues and eigenfunctions with DFT, we
consider a single passivant in an empty supercell. To estimate
the effect of the newly defined imaginary component of the
potential qualitatively, we plot in Fig. 3 the AEP for an isolated
passivant in real space, orientated via the vector Rp [see
Eq. (9)]. Only the imaginary part of the G-space potential is
shown. The corresponding spherical real part is significantly
deeper and spherical and not shown explicitly. The asymmetric
part exhibits two components: the short-ranged component
localized in the proximity of the core of the passivant and a
long-ranged component that introduce a clear band-offset type
potential. It is understandable that the surface dipole, which
is a consequence of charge transfer around the passivant, will
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205417-5



KARPULEVICH, BUI, ANTONOV, HAN, AND BESTER PHYSICAL REVIEW B 94, 205417 (2016)

TABLE II. Structural parameters and band gaps of different nanowires. The Si and InP NWs have zinc-blende crystal structure, while the
CdSe NW has wurtzite structure. NNW represent number of atoms in the NWs. For InP [CdSe], the atom numbers are given as (number of
In atoms, number of P atoms) [(number of Cd atoms, number of Se atoms)]. For InP, the number of passivants are given as (In-passivant,
P-passivant), for CdSe as (Cd-passivant, Se-passivant). The hydrogen densities on the surfaces are given as ρ(H) and the minimum distances
between passivant hydrogens as Rmin.

NW Si InP CdSe

Diameter (nm) 1.3 2.1 3.0 4.5 1.3 1.7 1.6 1.4

NNW 37 97 185 437 (16,21) (32,25) (26,26) (24,24)
NH 28 44 60 92 (4,24) (32,4) (16,16) (18,18)
ρ(H) (1/nm2) 12.47 12.37 12.33 11.99 11.50 11.14 10.76 11.69
Rmin (H-H) (Å) 1.73 1.63 1.60 1.77 2.40 2.24 2.08 1.31
Egap (DFT) (eV) 2.147 1.401 1.156 0.878 1.771 1.095 1.207 1.475
Egap (AEP) (eV) 2.165 1.472 1.233 0.965 1.911 1.082 1.273 1.628

lead to such a band offset. It is reassuring to observe that the
imaginary part of the potential is able to capture this effect.

V. ASSESSMENT OF THE QUALITY OF THE AEP
FOR DIFFERENT SURFACES

The slab [111] structure [Fig. 2(a)], which represents the
passivation of a (111) surface, is the geometry used to generate
the AEP. As a first step, we compare the DFT results with the
AEP results for a similar, although slightly longer (24 Si atoms
and four hydrogens) structure. This calculation represents the
simplest test since transferability is only marginally challenged
(slightly longer slab) by this comparison. In Fig. 4(a), we plot
the eigenvalues of the long [111] slab calculated via DFT (red),
AEP only taking the real part into account (black) and the full
AEP with real and imaginary components (blue). The band gap
is located around state index 50. It is obvious that the imaginary
part of the potential improves the quality of the states above
band gap significantly. This is a direct consequence of the
introduced band-offset discussed previously. In Fig. 4(b), we
plot the local potential in real space of the entire slab along
the [111] direction, again comparing DFT with real-only-AEP
and full-AEP. We see that only the full-AEP result agrees well
with the DFT results for the vacuum level.

Next, we want to challenge the transferability of the
derived AEPs by comparing different slab orientations. In
Table I, we summarize some relevant structural information. In
Fig. 5, we plot the atomic structures of the different surfaces,
the valence-band maximum (VBM) an the conduction-band
minimum (CBM) wave functions calculated with DFT (red)
and with AEPs (blue) along with error bars for the eigenvalue
differences for states around the band gap, aligned at the VBM
level. Our errors are within a range of 0.2 eV and occur mainly
for the conduction-band states. Here we have to stress that the
error of the AEP for the bulk band gap of Si is 87 meV [6]. So
all the conduction-band states suffer from the 87 meV error
coming from the bulk Si AEP and of the errors introduced by
the passivant AEP. Both errors seem to be of similar magnitude,
which substantiates the good quality of our approach.

VI. RESULTS FOR Si, InP AND CdSe NANOWIRES

The areas of application of our AEPs are nanostructures
and we therefore first assess the quality of our results for

nanowires. The structural information is given in Table II and
a graphical representation of the atomic positions are given in
Fig. 6(a) for a Si nanowire with 3 nm diameter. Each nanowire
is constructed along the [100] direction for Si and InP and
along the [0001] direction the wurtzite CdSe structure. The
surfaces of the nanowires are terminated in such a way that
each atom has only one or two passivants.
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FIG. 6. (a) The geometry of the Si nanowire with a diameter of
3 nm. The hydrogens carrying a weight parameter [w in Eq. (10)]
of w = 0.6 are shown as orange spheres, while the unweighted
hydrogens (w = 1) are shown in blue. (b) Corresponding local
potential.
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FIG. 7. First two hundred eigenvalues of the Si NW with 1.3 nm
diameter (see Table II for structural details). The introduction of the
weight factors (orange symbols) is shown to improve the quality of
the previous results (blue symbols) for states excited more than 2 eV
above the band gap. Red and orange symbols overlap nearly in the
entire region.

The real-space potential is given in Fig. 6(b) in a similar
way it was shown for the [111] slab in Fig. 4. The comparison
between DFT (red) and AEP (blue) shows that the AEP
reproduces the potential very well in general but significantly
overestimates the band offset (the blue line in the vacuum
region is significantly above the red line). This effect is related
to the density of hydrogen atoms on the surface. As seen
from Table II the hydrogen atom surface density is around 12
H-atoms/nm2 in Si NWs, while it is 7.7 H atoms/nm2 in the
[111] Si slab (Table I) used in the AEP construction. Hence,
we look for a way to systematically reduce the generated
offset based on a density argument. A closer look at the NW
geometry, shown in Fig. 6(a), reveals that it is composed of
facets belonging to {100} and {110} planes. From Table I, we
observe that the H density is quite different on both surfaces
(13.4 H atoms/nm2 and 9.4 H atoms/nm2, respectively). For

TABLE III. Structural parameters and band gaps of different Si
quantum dots. NSi gives the number of Si atoms in the quantum dot
and NH the number of hydrogen passivants. The hydrogen densities
on the surfaces are given as ρ(H) and the minimum distances between
passivant hydrogens as Rmin.

Diameter (nm) 1.4 2.2 2.5 3.0

NSi 87 281 465 705
NH 76 172 228 300
ρ(H) (1/nm2) 12.49 11.54 11.21 10.56
Rmin (H-H) (Å) 2.48 2.01 1.82 2.01
Egap (DFT) (eV) 2.692 1.877 1.664 1.498
Egap (AEP) (eV) 2.723 1.944 1.755 1.536

the high-density {100} surfaces, two hydrogen atoms are
connected to one Si atom. We use this characteristic to apply
weights: if a surface Si atom is passivated by two hydrogen
atoms, then the density is high and we apply a weight in
Eq. (10) of 0.6, which corresponds to the ratio of the densities
between slab [111] and [100]. In Fig. 6(a), we marked the
hydrogen atoms carrying a weight as orange spheres and
see that they are mostly localized on the {100} planes. The
results for the potential in the vacuum region, i.e., the offset,
is significantly improved by the use of weights, as can be seen
(orange curve) in Fig. 6(b).

We tested a more sophisticated approach, where we
derived two passivant AEPs, one generated from a [111] slab
calculation and one from a [100] slab calculation. We used both
potentials on the respective facets of a silicon NW with 3.0 nm
diameter [as shown in Fig. 6(a)]. The results were improved
for states close to the band gap from an error of 30 meV to
below 10 meV. However, this improvement on already very
small errors, was not systematic for all the states considered
(not shown). We conclude that an improvement of the results is
possible using this technique, which has the benefit to contain
no weight parameter. However, for our present purpose, the
results of the weighted passivants have more than satisfactory
quality and bare the advantage to lead to a simpler method
[need for only one passivant AEP per (pseudo)hydrogen]. The
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FIG. 8. Top panels: Eigenvalues for Si, InP, and CdSe nanowires in the proximity of the band gap. Lower panels: Bar charts showing the
differences between DFT results and the AEP result including the weight strategy (orange) and the AEP result without weight (blue).
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results for the potential in the vacuum region, i.e., the offset,
is significantly improved by the use of weights, as can be seen
(orange curve) in Fig. 6(b).

The main benefit of introducing a weight to the imaginary
part is to correct the offset, as just shown, which has direct
repercussions on the eigenvalues of excited states close to
the vacuum. In Fig. 7, which shows the eigenvalues in a large
energy range, starting at the lowest energy eigenstate at −15 eV
up to 6 eV above the gap. The calculations without weight
(blue data points) are in good agreement with the DFT results
(red data points) until an energy value of around 2 eV above
the CBM. At higher energies deviations become significant,
which are well corrected by the weighted potentials (orange
data points).

Finally, we perform a quantitative comparison of the
eigenvalues obtained for nanowires of different materials in
Fig. 8. In the upper panels, we show a large energy range in

the vicinity of the band gap. For all three materials, Si, InP, and
CdSe the AEP results (blue crosses) are in very good agreement
with the DFT results (red squares). The errors between the
DFT and the AEP results are given as bar chart in the lower
part of the figure, showing that all errors are below 150 meV,
which is more than satisfactory. The introduction of the weight
factor does not change the results significantly in this energy
range, as is shown by the orange error bars in the lower panels
of Fig. 8.

VII. RESULTS FOR Si QUANTUM DOTS

The final comparison for QDs is also the most challenging in
terms of transferability as the passivant atoms point virtually
in all directions. The structural information as well as the
numerical results for the band gaps are given in Table III for
four different silicon quantum dots. The average hydrogen
density, as well as the minimum hydrogen separation Rmin, are
similar to the values we obtained for the nanowires (Table II).
The band gaps are in good agreement to the DFT results for all
the sizes considered. Next, we focus on our largest quantum
dot with 3.0 nm diameter, which already represents are size
comparable to experiment, and present a thorough analysis
in Fig. 9.

In Fig. 9, we show the eigenvalues in a large range of
energy as well as the error bars in the usual way. The quality
of the results is excellent with errors below 50 meV. The
quality of the wave function can be judged by projecting
them onto the DFT wave functions: 〈ψAEP | ψDFT〉. We obtain
values very close to 1.0, with some improvement through the
use of the weight parameter [Eq. (10)]. In the lower part of
Fig. 9, we show selected wave function as one dimensional
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plots across the center of the quantum dot as illustration.
Wave functions of degenerate eigenstates are summed and
their degeneracy is denoted in brackets. The values close to
one are the numerical values of the projection onto the DFT
wave functions. The DFT results (red) and the AEP results
with weight (orange) show very good agreement. The insets in
the upper part of the figure show three dimensional isosurface
plots of the highest occupied nanostructure state (HOMO) and
the lowest unoccupied nanostructure state (LUMO) showing
clearly confined and well behaved envelope S-type states.

Finally, we reassess the importance of the imaginary part
(which is responsible for the asphericity of the potential) by
calculating the eigenvalues and eigenstates using only the real-
part of the AEP. The results of this “spherical approximation”
is shown in Fig. 10. We notice very large qualitative discrep-
ancies in the LUMO states and some quantitive differences
in the HOMO states. The surface dipoles—which can be
modeled by our nonspherical complex passivant AEP—and the
resulting band-offset to vacuum are essential for the LUMO
states of Si quantum dots. The degeneracy of the LUMO is
entirely different when the imaginary part of the potential is
neglected. The splitting between the HOMO states tends to be
overestimated in the spherical passivant approximation.

VIII. CONCLUSION

In conclusion, we propose a new method to derive passivant
AEPs that carry an imaginary part in their G-space representa-
tion, which translates into a nonspherical and noninversion
symmetric real-space potential. The nonsphericity of the
AEPs is shown to improve the results compared to the
more traditional spherical pseudopotentials at no additional
computational cost.

However, these new type of pseudopotentials require the
definition of a surface normal to the nanostructure which is
required for the orientation of the passivant potential. We show
that the imaginary part introduces a local asymmetry in the
vicinity of the passivant atom (which is rather small compared
to the symmetric part) as well as a band offset between vacuum
and nanostructure. This band offset effect is in nice agreement
with our general understanding of surface induced dipoles

developing at surfaces and inducing a band offset. We obtain
an excellent transferability of the passivant AEPs concerning
the local asymmetry effect, but a less transferable band offset
contribution. To improve on this latter point, we introduced
a weight parameter that corrects the band offset, which is
important for highly excited states. We link this correction
to the passivant density and derive a simple method to apply
it. With this approach, we seem to be able to capture the
self-consistent charge rearrangement effect leading to surface
dipoles.

For the test cases of silicon, InP and CdSe nanostructures
we obtain for the smaller structures (where surface effects are
very important) eigenvalues within 200 meV of the ab initio
DFT result, which represents a significant improvement over
former approaches that only lead to a qualitative result for
the passivant, such as an absence of surface states within
the band bap. For larger QD structures, our agreement with
DFT improves to well below 100 meV error. Our method is
rather universal, so that not only passivant such as hydrogen or
pseudohydrogen (for group III-V and II-VI as done here) can
be considered, but more realistic surfaces as well. The main
benefits of the approach is twofold. First, it opens the possibil-
ity to study surface related phenomena at the AEP level, i.e.,
involving up to one hundred thousand atoms [7]. For colloidal
QDs, the influence of the surface termination/passivation on
their electronic and optical properties is known to be large
and need to be taken into account for the elaboration of a
predictive theory. Second, it represents a large simplification
in the generation of the pseudopotentials, since we elaborate
a simple analytic connection between the DFT Kohn-Sham
potential and the passivant AEP.
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