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We investigate the electrical conductivity and thermoelectric effects in topological crystalline insulators in the
presence of short- and long-range impurity interactions. We employ the generalized Boltzmann formalism for
anisotropic Fermi surface systems. The conductivity exhibits a local minimum as doping varies owing to the Van
Hove singularity in the density of states originated from the saddle point in the surface states’ band structure.
Suppression of the interband scattering of the charge carriers at high-energy Dirac points results in a maximum
in the electrical conductivity. Whenever the Fermi level passes an extremum in the conductivity, the Seebeck
coefficient changes sign. In addition, it is revealed that profound thermoelectric effects can be attained around
these extrema points.
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I. INTRODUCTION

Since the discovery of topological insulators (TIs) protected
by time-reversal symmetry [1], the extension of the topological
classification to other discrete symmetry classes such as
particle-hole and translation symmetries has been investigated.
Recently, this classification has been extended to topologically
distinct classes of band structures which cannot be smoothly
deformed into each other without breaking certain crystal
point group symmetries [2]. A hallmark of this new class,
topological crystalline insulators (TCIs), is the existence of the
surface states on crystal faces which respect the corresponding
crystal symmetry [2,3]. The low-energy properties of the
surface states are determined by the surface orientation.
The Dirac structure of the TCI is quite distinct from that
in the standard TI systems. The TCI supports an even number
of metallic Dirac states on crystal surfaces, while it is an odd
number of the most common TI systems. There are two types
of surface states [4], which preserve the discrete rotational
symmetries and support gapless surface states, in which type I
refers to the (110) surface states and type II denotes the states
of (001) and (111) surfaces.

Hsieh et al. predicted [5] that, using first-principles sim-
ulations, the IV-VI semiconductor SnTe as well as related
alloys Pb1−xSnxTe and Pb1−xSnxSe belong to a TCI class
protected by mirror symmetry [6] which is characterized by
robust surface states on the (001) plane. The inverted band
ordering in SnTe, in which the valence band is originated from
the p orbitals of the cation Sn and the conduction made by the
band from Te, relative to a trivial ionic insulator gives rise to
the TCIs phase in SnTe [5]. Remarkably, this prediction has
been experimentally confirmed by the direct observation of
topological surface states using angle-resolved photoemission
spectroscopy (ARPES) [7–9]. Signatures of surface states
have also been observed in transport and scanning tunneling
microscopy (STM) measurements [10–12].

The remarkable properties of the TCIs is that there emerge
four topological protected surface Dirac cones. Alongside
theoretical studies stemming from first-principles simulations
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and a low-energy effective Dirac theory, it has been verified
experimentally [7–9] that in the (001) surface states there
are gapless Dirac cones at the X and Y points and at the
� and three M points in the (111) surface [13,14]. The
(001) surface states contain four Dirac cones centered at
mirror-symmetric-invariant momenta (two along X-�-X and
two along Y -�-Y , as indicated in Fig. 1) in the surface Brillouin
zone, while the (111) surface states consist of Dirac cones
centered at a time-reversal-invariant momenta, namely, � and
M points. The low-energy Dirac points in the (001) surface
centered away from the X and Y points are protected only by
mirror symmetry; i.e., the two degenerate states at each Dirac
point have different mirror eigenvalues, while the high-energy
Dirac points centered at the X (Y ) point are only protected by
time-reversal symmetry. As the energy changes away from the
low-energy Dirac point, the topology of the surface states’ band
structures undergoes a Lifshitz transition at a critical energy,
where the constant-energy contour changes from two separate
charge pockets to two concentric pockets. At this transition
point, saddle points in the surface band structure lead to a Van
Hove singularity in the density of states.

A hallmark of the thermoelectric material study came
actually from the pioneering works in Ref. [15] proposing
that nanostructuring materials should more likely provide high
thermoelectric efficiencies than bulk materials. Theoretical and
numerical studies have mainly focused on the band structure
calculations and k · p Hamiltonian for various types of TCIs
surface states and there was a lack of study on their conductiv-
ity and thermoelectric properties. Thermoelectric effects have
received great attention in recent years owing to their crucial
relevance in meso- and nanoscopic systems [16,17]. The study
of the thermoelectric effects is not only technologically helpful
in managing the generated heat in nanodevices; the analysis
of thermoelectric effects are also of fundamental interest as
it is very useful in elucidating some details of the electronic
band structure of TCI surface states that cannot be probed by
conductance measurements alone due to a particular aspect of
the ambipolar nature of this gapless material.

In this paper, we investigate the combination of the
charge and heat transport in TCI (001) surface states as a
system due to their peculiar features. We consider the system
exposed by a thermal gradient and moreover bias voltages

2469-9950/2016/94(20)/205401(8) 205401-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.205401


BABAK ZARE RAMESHTI AND REZA ASGARI PHYSICAL REVIEW B 94, 205401 (2016)
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FIG. 1. (a) The TCI (001) surface states band structure in the
surface Brillouin zone. The (001) surface states consists of four Dirac
cones centered away from the X and Y points, located on the lines �-X
and �-Y , respectively. The high-energy Dirac cones are centered at the
X(Y ) point. The inset shows the detailed band structure in the plane of
�X and in the vicinity of the X point. (b) The corresponding constant-
energy contour plots in the surface Brillouin zone. The constant-
energy contour undergoes a Lifshitz transition, changing from two
disconnected electron pockets to two concentric electron and hole
pockets and vice versa, as energy changes away from zero energy.

in diffusive regimes considering a short-range potential and
long-range charge-charge Coulomb potential with a Thomas-
Fermi screening as the source of scattering. Having employed
the generalized Boltzmann transport equation, we obtain the
conductivity, the Seebeck coefficient, and the figure of merit,
which is a measure of thermoelectric efficiency. Our findings
show that when the Fermi energy lies at the transition point,
a local minimum of the conductivity emerges and, on the
other hand, when it lies at the high-energy Dirac points, the
interband scattering is suppressed due to the vanishing density
of states for one of the subbands at that point. As a result,
a maximum at a finite doping appears in the conductivity. In
addition, the Seebeck coefficient changes sign at the low- and
high-energy Dirac points as well as transition points, owing to
the conversion of the charge carriers from electrons to holes
and vice versa. Taking into account the fact that electronic
properties of TCI surface states can be easily tuned in contrast
to common materials due to the gapless excitation spectrum of

TCI surface states, these results propose that TCIs could be a
promising material for the caloritronic applications rather than
common metals.

This paper is organized as follows. In Sec. II, we introduce
our system and model and explain the method which is used
to calculate the conductivity and thermoelectric coefficients in
the presence of short-range and long-range Coulomb potentials
using the generalized Boltzmann method. In Sec. III, we
present and describe our numerical results for the conductivity
and thermoelectric coefficients of TCI surface states. Finally,
we conclude and summarize our main results in Sec. IV.

II. MODEL AND BASIC FORMALISM

A. Hamiltonian

Topological crystalline insulators are characterized by
robust surface states on the (001) plane, which in the surface
Brillouin zone contains four Dirac points centered on non-
time-reversal-invariant momenta at low energy; two of them
are along the X-�-X direction and two others are along the
Y -�-Y direction. The minimal Hamiltonian near the X and Y

points to capture all the essential features of the (001) surface
states are given by [4,18–21]

HX(k) = v1kxσy − v2kyσx + nτx + δσyτy,
(1)

HY (k) = v2kxσy − v1kyσx + nτx + δσxτy.

Here σ and τ are the Pauli matrices for the spin and pseudospin
representing the cation-anion degree of freedom, respectively,
and the off-diagonal terms n and δ describe the pseudospin
mixing. Typical values are v1 = 1.3 eV, v2 = 2.4 eV, n =
70 meV, and δ = 26 meV. In the absence of symmetry-
breaking perturbations, the X and Y points are related to
each other by a rotation of π/2 since the band structure
near the X has a symmetry-related partner near the Y point.
This Hamiltonian respects all the symmetries of the (001)
surface, including mirror symmetry about the xz plane (Mxz),
mirror symmetry about the yz plane (Myz), and time-reversal
symmetry (� = T C, where C denotes a complex conjugate).
After diagonalizing HX from Eq. (1), we obtain four surface
bands with energy-momentum dispersions in the vicinity of
the X point and they are given by

ε2
X(k) = n2 + δ2 + v2

1k
2
x + v2

2k
2
y

±2
√

(n2 + δ2)v2
1k

2
x + n2v2

2k
2
y. (2)

Furthermore, in the vicinity of the Y point, the energy can
be obtained by substituting kx �→ ky,ky �→ kx in Eq. (2). The
corresponding surface band structure is shown in Fig. 1. In the
case that δ = 0, the lower Dirac cone associated with upper
Dirac point overlaps with the upper Dirac cone associated
with a lower Dirac point on an ellipsoid in k space at zero
energy given by v2

1k
2
x + v2

2k
2
y = n2. A nonzero δ lifts this

degeneracy everywhere except for two points along the x axis
where two bands with opposite mirror eigenvalues (associated
with the reflection Mxz) cross each other. In the low-energy
regime, there are two Dirac cones along the �-X-� direction
located at (kx,ky) = (±	,0), where 	 = √

n2 + δ2/v1, which
are protected only by mirror symmetry (Mxz). However,
along the M-X-M direction, there is no band crossing point
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due to the absence of the mirror symmetry. There is an
anticrossing in that line owing to the fact that they have the
same eigenvalues of Myz. Two high-energy Dirac points at
energies ε = ±√

n2 + δ2, centered at the X (Y ) point, are
protected only by the time-reversal symmetry, and therefore
they appear in both directions, as indicated in Fig. 1.

By invoking the band energy dispersion, the x and y

components of the velocity in the vicinity of the X point are
given by

vX
x (k) = v2

1kx

ε(k)

⎡
⎣1 ± n2 + δ2√

(n2 + δ2)v2
1k

2
x + n2v2

2k
2
y

⎤
⎦, (3)

vX
y (k) = v2

2ky

ε(k)

⎡
⎣1 ± n2√

(n2 + δ2)v2
1k

2
x + n2v2

2k
2
y

⎤
⎦, (4)

and in the vicinity of the Y point those velocities can be
obtained by using the transformation vY

x (k) = vX
y (ky �→ kx)

and vY
y (k) = vX

x (kx �→ ky), due to the underlying fourfold
rotation symmetry.

B. Generalized Boltzmann equations

In this section, we consider the transport properties of
the conduction electrons of TCIs experiencing thermoelectric
forces, a temperature gradient ∇T , an external electric field
E, and a density gradient ∇n, where the two latest can be
combined with an effective field E = E + 1

e

∂μ

∂n
∇n, where μ

indicates the chemical potential. In the linear response regime
where the relation between driving forces and the resulting
generalized currents are linear, the response matrix,(

j

jq

)
=

(
σ σS

T σS K

)(
E

−∇T

)
, (5)

relates the charge j and heat jq currents to the effective
electric field E and the temperature gradient ∇T . Here, σ and
K are the electrical and thermal conductivities, respectively,
and S denotes the thermopower which describes the voltage
generation owing to the temperature gradient. The two off-
diagonal thermoelectric coefficients are related to each other
through the Onsager relation.

The figure of merit, the ability of a material to efficiently
produce thermoelectric power, is described by a dimensionless
quantity denoted by ZT as

ZT = σS2

K T . (6)

For the practical viability of thermoelectric applications,
tailoring materials with high ZT is certainly the main issue.
For this purpose, it is needed the power factor σS2 to be
increased at fixed K value. We explore this factor in detail
in the TCI system. Moreover, since the thermal conductivity
incorporates both the electron and the phonon contributions,
we just concentrate on the low-enough temperatures where
only electrons contribute effectively in the thermal transport
and disregard phonon contributions. However, the phonon
thermal conductivity is significantly reduced to interface
effects at finite temperature.

Below, we derive general expressions for the charge and
heat conductances and thermopower in the diffusive transport
regime, employing the generalized Boltzmann formalism for
an anisotropic two-band system [22,23]. The thermoelectric
properties due to the presence of both electric field and
temperature gradient can be found by taking into account
two important cases of the short-range (SR) potential (e.g.,
defects or neutral adatoms) given by a Dirac δ-like potential
and long-range (LR) Coulomb potential in our study. In the
diffusive regime, the transport coefficients can be calculated
from the following general expression for the charge current
and energy flux density,[

j
jq

]
=

∑
n

∫
d2k

(2π )2

[ −e

εn(k) − μ

]
vn(k)fn(k), (7)

where vn(k) is the semiclassical velocity of the carriers in the
band n, which is related to the energy dispersion εk,n through
vn = (1/�)∇kεk,n. The nonequilibrium distribution function
fn(k) describes the evolution of the charge distribution in the
presence of an external perturbation. In order to calculate the
current densities, we do need to obtain the nonequilibrium
distribution function f = fn(k,E,T ) in the presence of driving
fields. To this end, we take the Boltzmann equation up to a
linear order in the presence of driving fields,(

−eE + ε − μ

T
∇T

)
· vn(k)

[ − ∂εf
0(εkn

)]

=
∑
n′

∫
d2k′

(2π )2
wnn′(k,k′)[fn(k,E,T ) − fn′(k′,E,T )],

(8)

where f 0 is the equilibrium distribution function and
wnn′(k,k′) is the scattering rate from state k in band n to
final-state k′ in band n′, which needs to be specified according
to the microscopic origin of the scattering mechanisms. The as-
sumption of the elastic scattering, wnn′ (k,k′) ∝ δ(εk,n − εk′,n′ )
and microreversibility condition implies that wnn′(k,k′) =
wn′n(k′,k). Although the relaxation time approximation leads
to the exact solution of the Boltzmann equation in isotropic
systems, this approximative approach cannot describe the full
aspects of the anisotropy features of the transport properties.
To attain this, an exact integral equation approach might
be implemented. Having parametrized E and k as E =
E(cos θ, sin θ ) and k = k(cos φ, sin φ), in the linear response
theory we seek a solution of Eq. (8) in the form of

fn(φ,θ ) − f 0
n = [An(φ) cos θ + Bn(φ) sin θ ]E

+[Cn(φ) cos θ + Dn(φ) sin θ ]∇T , (9)

where, An(φ) = ∂Ex
fn, Bn(φ) = ∂Ey

fn, Cn(φ) = ∂∇Tx
fn, and

Dn(φ) = ∂∇Ty
fn. In the anisotropic bands, vn do not need to

be parallel with k; therefore, we use ξn(φ) defined by vn(k) =
vn(φ)[cos ξn(φ), sin ξn(φ)] to parametrize the Fermi velocities
of the two bands. By plucking Eq. (9) into Eq. (8), we end up
with a set of linear integral equations [22,23],

cos ξn(φ) = w̄n(φ)an(φ)

−
∑
n′

∫
dφ′ vn′ (φ′)

vn(φ)
wnn′ (φ,φ′)an′ (φ′), (10)
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sin ξn(φ) = w̄n(φ)bn(φ)

−
∑
n′

∫
dφ′ vn′ (φ′)

vn(φ)
wnn′ (φ,φ′)bn′ (φ′), (11)

with similar relations for cn(φ) and dn(φ). Here wnn′(φ,φ′) =
(2π )−2

∫
k′dk′wnn′ (k,k′) and w̄n(φ) = ∑

n′
∫

dφ′wnn′ (φ,φ′).
Also, the quantities An(φ) = −evn(φ)[−∂εf

0
n ]an(φ), Bn(φ) =

−evn(φ)[−∂εf
0
n ]bn(φ), Cn(φ) = vn(φ)( ε−μ

T
)[−∂εf

0
n ]cn(φ),

and Dn(φ) = vn(φ)( ε−μ

T
)[−∂εf

0
n ]dn(φ) are defined. The

scattering rates using the Fermi golden rule within the lowest
order of the Born approximation is given by

wnn′(k,k′) = 2π

�
ni |〈n′k′|V̂ |nk〉|2δ(εk,n − εk′,n′ ), (12)

where ni is the areal density of randomly distributed scatterers
and V (k − k′) is the Fourier transformation of the interaction
potential between an electron and a single impurity, and
obviously it depends on the nature of impurities. In the
short-ranged case it is quite usual to approximate it with a
zero-range hard-core potential V (k − k′) = V0. On the other
hand, scattering from charged impurities will be long-ranged
Coulombic interaction. This potential is screened by other
electrons of the system like the Thomas-Fermi approach. The
scattering rates wnn′(φ,φ′) are thus given by

wnn′(φ,φ′) =
∫ ∞

0

k′dk′

(2π )2
wnn′ (k,k′)

= ni

2π�
|〈n′k′|V̂ |nk〉|2|∇kεn(k) · k/k2|−1, (13)

which is only a function of φ and φ′. By invoking the
relaxation-rate-like quantities, solutions of Eqs. (10) and (11)
into Eq. (9) yield the exact solution of the Boltzmann equation
up to the linear order in E and ∇T .

The response matrix coefficients can be expressed in terms
of some kinetic coefficients Lβ = ∑

n L
β
n as follows:

σ = L0, S = − 1

eT
(L0)−1L1,

K = 1

e2T
[L2 − L1(L0)−1L1]. (14)

All of the coefficients obey the relation

Lβ
n (θ,θ ′) =

∫ ∞

−∞
dε

[ − ∂εf
0
n

]
(εn − μ)βσn(ε; θ,θ ′), (15)

with conductivity given by

σn(ε; θ,θ ′) = e2
∫

d2k

(2π )2
δ[εn − ε(k)]v2

n(φ)

× [an(φ) cos θ ′ + bn(φ) sin θ ′] cos[θ − ξn(φ)],

(16)

with θ = θ ′ = 0 for σxx and θ = θ ′ = π/2 for σyy , i.e.,
longitudinal currents.

Transverse currents, however, can be derived by taking
into account the Berry phase of Bloch states, which has been
established in [24] that has a significant effect on transport
driven by thermoelectric forces. The presence of the Berry
phase introduces anomalous transport, i.e., transport in the

transverse direction of a thermoelectric force. In anomalous
transport case at low temperatures, we thus have [24]

σyx(ε) = e2

�

∑
n

∫
d2kn

(2π )2
f 0

(
εkn

)
�n

z (kn) (17)

αyx = π2

3

k2
BT

e

∂σyx(ε)

∂ε

∣∣∣∣
ε=μ

, (18)

where �n = −Im[〈∇kun,k| × |∇kun,k〉] is the Berry curvature
with Bloch eigenstates |un,k〉. The first term, Eq. (17), is the
intrinsic anomalous Hall conductivity, while the second term,
Eq. (18), gives the anomalous Nernst conductivity which is
the transverse electric current in response to a longitudinal
temperature gradient in the absence of a magnetic field.

The formalism introduced here is general for any multiband
anisotropic material and all of the thermoelectric properties
described by Lβ

n can be found by calculating the longitudinal
conductivity, which depends crucially on the relaxation mech-
anisms while the intrinsic transverse transport is determined
only by the Berry curvature and band structure. Note that
this semiclassical theory is valid only in the regime of dilute
impurity concentration i.e., when the density of impurities is
much smaller than the density of charge carriers.

III. NUMERICAL RESULTS AND DISCUSSION

Here, we present our numerical and analytical results
based on the aforementioned theory. We focus on the charge
conductivity, Seebeck coefficient (S), and its corresponding
figure of merit ZT , in the presence of both the SR and the
LR potentials. According to the so-called Thomson relation
� = T S, where � is the Peltier coefficient, originated from
the symmetry properties of the response matrix elements
demanded by Onsager reciprocity, there is a direct relation
between Seebeck coefficient and the Peltier coefficient. In
the following, we set T = 20 K in all calculated quantities.
Furthermore, we will use ni = 5.2 × 1012 cm−2 for the
impurity concentration of both short-range and long-range
scatterers. This guarantees that the diluteness criteria will
be satisfied for a wide range of chemical potentials in the
following results. This impurity concentration corresponds to
the chemical potential approximately μ ≈ 10−4 eV.

Figure 2 shows the xx component of the conductivity
around both the X and the Y points and the total conductivity
as a function of the chemical potential μ, in the presence
of SR impurity interaction, where we consider V (k − k′) =
V0 = 1000 eV Å

2
. Note that this value has been used for

graphene [25], and we assume that it should be applicable here.
The total conductivity σ = σX + σY , is simply superpositions
of the conductivities contributed by states around the X point
and those around the Y point, each one explicitly breaks
the corresponding fourfold rotational symmetry. Let us first
focus on the conductivity around the X point; due to the C4

symmetry the same analysis can be explored for that around
the Y point, too. The yy component of the conductivity,
based on this symmetry is the same as its xx component.
The conductivity shows a local minimum at the transition
point μ = ±δ originated from the saddle points in the surface
states’ band structure which lead to a Van Hove singularity
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(a)

(b) (c)

FIG. 2. (a) The xx component of the conductivity of TCIs (001)
as a function of doping μ around the X and Y points at the presence
of short-range impurity interaction. There is a local minimum at the
transition point and a maximum at the high-energy Dirac point in the
conductivity. (b) Density of states as a function of chemical potential.
At the transition point, a saddle point on the constant-energy contour
leads to a Van Hove singularity at energy μ ± δ = 0, indicated by red
dashed lines. (c) The constant-energy contour when the Fermi energy
lies at transition point, μ ± δ = 0, and high-energy Dirac points,
μ ± √

n2 + δ2 = 0; saddle points marked by black dots, and the blue
dot denotes the high-energy Dirac point.

in the density of states. This can be understood from the fact
that the relaxation-rate-like quantities vary inversely with the
density of states, so the transition point corresponds to a local
minimum in these quantities and as a result a local minimum
in the conductivity occurs.

Remarkably, in TCIs materials, there is a maximum at
high-energy Dirac points μ = ±√

n2 + δ2 since at these points
the density of states for one of the subband vanishes and
subsequently no interband scattering can happen. This leads
to an increasing in the relaxation-rate-like quantities and a
subsequently the conductivity increases. The maximum in
the conductivity arises from the fact that the states around
the high-energy Dirac point, with energies ε ≈ ±√

n2 + δ2,
which effectively contribute in transport, are relatively better
conducting than other states since interband scattering is
suppressed to them. A maximum in the conductivity around the
Dirac point, due to spin-flip-induced transitions of electrons
between exchange split spin subbands, in magnetic graphene
has been investigated [26]. It is important to mention that a
large electrical conductivity is usually found in high-carrier-
concentration metals.

FIG. 3. The xx component of the conductivity of TCIs (001) as
a function of doping μ around the X and Y points at the presence of
long-range charge-impurity Coulomb interaction. The dashed lines
are guides for the eye.

Owing to the fact that long-range charge-impurity Coulomb
interactions are the dominant scatterers in most samples, we
thus consider the Coulomb interaction. To account partially
for screening and to avoid the well-known Fermi velocity
artifact of mean-field theory in systems with long-range inter-
actions [27], we have used an interaction potential including
Thomas-Fermi screening,

vk−k′ = 2πe2

ε0(|k − k′| + q
T F

)
, (19)

where q
T F

= 2πe2N (μ)/ε0 is the Thomas-Fermi screening
vector and N (μ) is the density of states of the system which is
calculated numerically and shown in Fig 2(b). The dielectric
constant of the insulator crystal SnTe [28] is quite large and it
is about ε0 = 1200.

In Fig. 3, the xx component of the conductivity of TCIs
(001) as a function of doping μ around the X and Y points are
shown in the presence of LR interactions. Although the energy
dependence of the conductivity is quantitatively different
in comparison with SR impurities, interestingly, the overall
behavior for |μ| > δ, illustrating of extrema, is the same as the
SR interactions. In other words, our results show that despite
the details of the scattering phenomena, the band structure
and dispersion of TCI surface states play a main role in the
conductivity in the high-energy regime. On the other hand,
there is a clear discrepancy between two types of scatters
in the low-energy regime. It should be noted that unlike the
graphene [25,29], in which diffusive transport caused by SR
impurities do not lead to any thermoelectric effects, due to the
constant conductivity, the conductivity of TCI surface states
when only short-range scatterers are present has an explicit
energy dependence. Furthermore, LR interactions plays an
essential role in low-energy; however, the SR scatter illustrates
the most impact at high energy. Notice that the value of the
conductivity is proportional to the value of V −2

0 or ε2 in
the SR and LR interactions, respectively, and those values
can be reduced by considering the surface-charge screening
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FIG. 4. Seebeck coefficient of TCI (001) surface states as a
function of doping μ at the presence of short- and long-range
Coulomb impurities. Vertical dashed lines represent μ = δ and
high-energy μ = √

n2 + δ2, respectively.

effects. It should also be noted that as we concentrate on
low temperatures where only electrons contribute effectively
in thermal transport, the thermal conductivity behaves more
or less like charge conductivity at very low temperatures,
originated from Sommerfeld expansion.

Now we turn to the discussion on the Seebeck coefficient
(thermopower) S, which is more feasible quantities in real
experiments. According to Eq. (15),L(1)

n (θ,θ ′), which plays the
key role in thermoelectric effects, vanishes when σn(ε; θ,θ ′)
is a symmetric function of εn − μ, owing to the fact that
the electron-hole asymmetry around the Fermi level in the
band structure or transport properties is responsible for the
thermoelectric effects. The variation of thermopower S with
doping at the presence of SR and LR interactions is obtained
as shown in Fig. 4. We see that the coefficient S passes from
zero and changes sign when the Fermi level lies at the low-
and high-energy Dirac points μ = 0 and μ ± √

n2 + δ2 = 0,
respectively, as well as at the transition points μ ± δ = 0.
This is similar to the well-known effect in semiconductors
in which the thermopower for n and p types has opposite
sign and, based on this effect, devices made of p-n junctions
are used for electronic cooling. It is worth mentioning that
a large Seeback coefficient is usually found in low-carrier-
concentration semiconductors as it shown in this figure.

When the Fermi level lies in the region |ε| < δ, ther-
mally activated electrons (holes) move along a temperature
gradient which results in a charge accumulation gradient in
the opposite (same) direction due to the negative (positive)
charge of the electrons (holes). Therefore, a negative (positive)
thermopower is obtained. Notice that in this case, the Fermi
surface consists of two disconnected Dirac pockets centered
away from the X and Y points of the same type of carriers as
indicated in Fig. 1. By further increasing in the energy, then
the constant-energy contour evolves rapidly and undergoes
a change in topology through a Lifshitz transition, changing
from two disconnected Dirac pockets to two concentric pockets
of different carrier types. In the conduction band the Fermi
surface comprises a large electron and a small hole pocket,

FIG. 5. The variation of corresponding figures of merit are
depicted as a function of the chemical potential μ at the presence of
short- and long-range charge-impurity interactions. Vertical dashed
lines represent μ = δ and high-energy μ = √

n2 + δ2, respectively.

both centered at the X (Y ) point, while in the valance
band it consists of a large hole and a small electron Dirac
pocket. When the Fermi energy lies in this region, different
charge carriers are thermally activated simultaneously. Such
excitations carry a different charge current and as a result,
their contributions in the Seebeck effect compete to each
other. With increasing energy away from ε = ±δ (saddle
points) the large pocket becomes even larger, while the small
pocket shrinks and eventually vanishes at the high-energy
Dirac points, ε = ±√

n2 + δ2, which means the density of
states of one subband tends to zero. Consequently, when the
Fermi level passes the high-energy Dirac points, once again S
changes sign. At higher energies, |ε| >

√
n2 + δ2, the Fermi

surface consists of two concentric Dirac pockets of the same
type carriers both centered at the X(Y ) point. We see that
thermopower always shows the change of the sign in the
vicinity of the low- and high-energy Dirac points as well as
at the transition point. In addition, as expected, the figure of
merit attains its maximum value around the chemical potential
μ. The figure of merit of the Seebeck effect becomes large
where the thermoelectric effect is very strong, while the heat
transport is not. This effect can be seen in Fig. 5, where the
variation of ZT is shown with the chemical potential μ.

The calculated anomalous Hall conductivity σyx and
anomalous Nernst conductivity αyx (inset figure) are plotted
in Fig. 6 as a function of doping. The anomalous Hall con-
ductivity increases almost monotonically with doping below
the high-energy Dirac point at μ = √

n2 + δ2, but enhances
significantly when the high-energy band also contributes in the
transport. This gives rise to a large peak in the corresponding
intrinsic Nernst conductivity at the high-energy Dirac point
beside the small peak at transition point μ = δ.

It is worthwhile comparing the thermoelectric properties
of TCIs with other advanced two-dimensional crystalline.
Although graphene has very high charge mobility, it has
two major problems with a view to thermoelectric appli-
cations [30]. First, graphene is a gapless semimetal, and it
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FIG. 6. The variation of anomalous Hall conductivity σyx as a
function of the chemical potential μ. (Inset) Anomalous Nernst
conductivity αyx as a function of the chemical potential. Vertical
dashed lines represent μ = δ and the high-energy μ = √

n2 + δ2,
respectively.

would be difficult to separate the opposite contributions of
electrons and holes to the Seebeck coefficient. The second
difficulty lies in its very high lattice conductivity leads to the
decreasing of the ZT . Monolayers of dichalcogenides, on the
other hand, have some advantages over gapless graphene and
are suitable for many electrical and photonic applications. A
famous element in this group is monolayer MoS2, which is a
two-valley direct gap semiconductor. It has been shown that
the thermal conductivity of MoS2 is three orders of magnitude
lower than that of graphene [31] and it is insensitive to width
and edge-type in a MoS2 nanoribbon. Based on the density-
functional theory, it has been investigated [32] that ZT > 0.5
for the p-type monolayer MoS2. Moreover, Fei et al [33]
predicted that ZT can reach to unity at room temperature
in phosphorene, a new atomistically thin two-dimensional
materials, at low density.

Finally, we should like to comment on the possible
influences of phonon in our results which we have not
considered. The main effect of phonons is their contribution

in the thermal conductivity K and the thermopower are not
affected with the presence of phonon. Therefore, it is clear
that the thermal conductivity of phonon Kph can only affect
the figure of merit in our results and since it does not depend
on the chemical potential, it might only increase K depending
on the temperature values. This should decrease ZT , but
dependence on the μ will not be changed qualitatively. At
higher temperatures, phonons become important but, as we
mentioned before, it only results in the overall decline of the
predicted figures of merit, without affecting their qualitative
behavior.

IV. CONCLUSION

In conclusion, we have studied the effects of both short-
range and long-range charge-impurity interactions on the
electronic transport and thermoelectric effects of a surface
states of topological crystalline insulators using the general-
ized semiclassical Boltzmann theory for multiband anisotropic
systems. Taking into account both intra- and interband scatter-
ing processes, we have obtained that the doping dependence
of the conductivity exhibits a local minimum at a transition
point, originated from the Van Hove singularity in the density
of states. The conductivity also illustrates a maximum owing to
interband-induced transitions of electrons between subbands.
This effect is the direct result of the gapless Dirac spectrum
of TCIs in which the density of states declines linearly with
varying the energy toward the Dirac point with a vanishing
the density of states. We also reveal that TCIs could be a
very promising material for caloritronics [34] studies and
applications. Thermopower changes sign several times due
to the conversion of electrons to holes, and vice versa, at
each extremum of the conductivity. The intrinsic anomalous
transport due to the Berry curvature is also investigated, which
will be more important in the case of short-range impurities.
Therefore, based on this study, we believe that TCIs can be used
as a base material to investigate thermoelectric phenomena.
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