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We investigate the quasiparticle spin relaxation with superconducting-velocity–tunable state in GaAs (100)
quantum wells in proximity to an s-wave superconductor. We first present the influence of the supercurrent
on the quasiparticle state in GaAs (100) quantum wells, which can be tuned by the superconducting velocity.
Rich features such as the suppressed Cooper pairings, large quasiparticle density and nonmonotonically tunable
momentum current can be realized by varying the superconducting velocity. In the degenerate regime, the
quasiparticle Fermi surface is composed by two arcs, referred to as Fermi arcs, which are contributed by the
electron- and holelike branches. The D’yakonov-Perel’ spin relaxation is then explored, and intriguing physics
is revealed when the Fermi arc emerges. Specifically, when the order parameter tends to zero, it is found that the
branch-mixing scattering is forbidden in the quasielectron band. When the condensation process associated with
the annihilation of the quasielectron and quasihole is slow, this indicates that the electron- and holelike Fermi
arcs in the quasielectron band are independent. The open structure of the Fermi arc leads to the nonzero angular
average of the effective magnetic field due to the spin-orbit coupling, which acts as an effective Zeeman field. This
Zeeman field leads to spin oscillations even in the strong-scattering regime. Moreover, in the strong-scattering
regime, we show that the open structure of the Fermi arc also leads to the insensitiveness of the spin relaxation
to the momentum scattering, in contrast to the conventional motional narrowing situation. Nevertheless, with
a finite order parameter, the branch-mixing scattering can be triggered, opening the interbranch spin relaxation
channel, which is dominant in the strong-scattering regime. In contrast to the situation with an extremely small
order parameter, due to the interbranch channel, the spin oscillations vanish and the spin relaxation exhibits a
motional narrowing feature in the strong-scattering regime.
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I. INTRODUCTION

In recent years, the superconducting spintronics has at-
tracted much attention for providing new methods to control
over the spin degree of freedom based on the spin-triplet
Cooper pairs and Bogoliubov quasiparticles [1–3]. On one
hand, the triplet Cooper pairs combine both the features of the
spintronics [4–11] and superconductivity, offering the possi-
bility to realize the spin-polarized supercurrent [1–3,12–17].
On the other hand, as the quasiparticle charge depends on
its momentum in a conventional superconductor, which is
exactly zero at the Fermi momentum, it is promising to tune
the spin degree of freedom with a weak disturbance on the
charge one in one system [18–32]. To reveal the physics in
the superconducting spintronics, the spin dynamics for both
the spin-polarized Cooper pairs and quasiparticles has been
intensively studied [1–3,18–34].

Specifically, for the quasiparticle, rich physics has been
reported in the studies on the charge or spin injection
from a nonmagnetic metal or ferromagnet to a conventional
superconductor [18–20,22–29,31,32]. It is shown that the
injection of one electron with charge e into the superconductor
can add one Cooper pair with charge 2eṽ2

k and spin 0
and a quasiparticle with charge e(ũ2

k − ṽ2
k) and spin 1/2,

respectively [19,20,25,26,28,32]. Here, ũ2
k = 1/2 + ζ̃k/(2Ek)

*Corresponding author: mwwu@ustc.edu.cn

and ṽ2
k = 1/2 − ζ̃k/(2Ek), in which ζ̃k = εk − μS with εk

represent the kinetic energy of the electron and μS is the
chemical potential in the superconductor; Ek =

√
ζ̃ 2

k + |�S |2
denotes the energy spectrum of the quasiparticle with �S

being the superconducting order parameter. Accordingly, in
the steady state, the injected charge and spin are mainly carried
by the Cooper pairs and quasiparticles separately, indicating
that the spin-charge separation can be realized during the
injection [2,27–29,35]. It is further noticed that in the process
of the charge and spin injections, nonequilibrium charge and/or
spin imbalance can be created [18,19,28,29,36,37]. It is then
revealed that in the dynamical process, to maintain the charge
neutrality, the Cooper pair condensate can respond to the
dynamics of the injected quasiparticles [18,20,24,25,28,32].
Accordingly, the study on the quasiparticle dynamics itself is
essential to further reveal the dynamics of Cooper pairs.

Among the quasiparticle dynamics, the spin dynamics in
the superconducting metals has been studied both theoret-
ically [18,21] and experimentally [26,27,32]. Theoretically,
the quasiparticle spin relaxation has been calculated by
considering the spin-flip [18,21] and spin-orbit scatterings
due to the impurities [18], which lies in the Elliott-Yafet
mechanism [38,39]. In the superconducting state, it is shown
that the spin-flip scattering is efficiently enhanced due to the
enhancement of the density of states (DOS) [18,21]. Whereas
the spin-orbit scattering is efficiently suppressed due to the
coherence factor ζk/Ek in the scattering term [18]. Experi-
mentally, long injection lengths were reported for spin injected
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into superconducting Al [26,27] and Nb [31], indicating a
long spin relaxation time (SRT) in the superconducting state
compared to the normal one. Furthermore, it is further found
that the injected spin current in the superconducting Al can
significantly influence the quasiparticle SRT, with the spin
relaxation behavior in the superconducting state resembling
the normal one when the injected spin current is large [31].
As rich physics is revealed in the Elliott-Yafet mechanism
in the superconducting metal, it is intriguing to study the
D’yakonov-Perel’ (DP) mechanism [40], which is more
important for materials without center-inversion symmetry,
in the superconducting state. Furthermore, proximity-induced
superconductivity has been realized in InAs [41–43] and
GaAs [44–46] heterostructures, offering the chance to study
the DP mechanism in the superconducting semiconductors.

It is noted that in the study of the dynamics in a super-
conducting system, different kinetic equations based on the
quasiclassical [13–15,47–62] and quasiparticle [18,21,63–72]
approximations are used. The quasiclassical approximation is
applicable for a system with a large Fermi energy, in which
the dependence on the momentum magnitude is neglected
in the Green function, whereas the frequency and angle-
of-momentum dependencies are explicitly considered. For
the quasiparticle approximation, in the Green function, the
dependencies on the angle and magnitude of the momentum
are explicitly considered, but the frequency dependence is not
emphasized. Moreover, this approximation is applicable only
when the perturbation on the superconducting order parameter
is not strong, and hence the quasiparticle energy spectrum
is well defined [57,64,67]. To the best of our knowledge,
the quasiparticle approximation is mainly applied to systems
without the SOC [18,21,63–70]. When the SOC exists, Einzel
et al. derived a kinetic equation based on the quasiparticle
approximation, nevertheless, in which the scattering is not
considered [71,72]. Kinetic equations of quasiparticles with
the scattering term explicitly considered in the presence of the
SOC are still absent, even for the simplest case with the s-wave
order parameter.

In this work, we investigate the DP spin relaxation with a
superconducting-velocity–tunable quasiparticle state in GaAs
(100) quantum wells (QWs) in proximity to an s-wave
superconductor. The influence of the supercurrent on the
quasiparticle state is first addressed in the superconducting
QWs, based on which the quasiparticle spin relaxation is then
explored. In the s-wave superconductor, the order parameter,
i.e., �S = |�S |ei�, is contributed by its magnitude |�S |
and superconducting phase �. Then, due to the supercon-
ducting proximity effect [16,73–76], by assuming that the
superconducting phase is not disrupted by the disorder, an
s-wave order parameter with the same superconducting phase
at the superconductor-semiconductor interface but different
magnitude |�| can arise in the semiconductor. Specifically,
with the inhomogeneous superconducting phase, a supercon-
ducting velocity vs = ∇�/m∗ ≡ q/m∗ arises with m∗ being
the electron effective mass in the QWs [77,78]. Here, it is
assumed that vs is perpendicular to the growth direction of
QWs, from which a supercurrent is induced. In this work, it
is further assumed that the superconducting velocity is small,
which marginally influences the superconducting state in the
s-wave superconductor [77,78]. However, when |�| � |�S |,

FIG. 1. Schematic showing the tilt of the quasiparticle energy
spectrum and the formation of the blocking region. Here, |�| is
taken to be extremely small. In (a) [(b)], vs ≡ q/m∗ = 0 (vs �= 0).
The red solid (green dashed) curves represent the quasielectron
(quasihole) energy spectrum; whereas the curve labeled by the dots
(stars) denotes the electron (hole) band. In (b), compared to (a), due to
the superconducting velocity, the electron and hole bands are shifted
by q/2 and −q/2, respectively, and hence the resulting quasielectron
energy spectrum is tilted. When the quasielectron energy is tilted to
be smaller than the chemical potential μ represented by the blue chain
line, the blocking region emerges, which is represented by the green
region in the crescent shape in (b). Finally, it is addressed that with
|�| tending to zero, the branch-mixing scattering due to the impurity
(represented by the black arrow) is forbidden without and with the
supercurrent.

the superconducting velocity can efficiently tune the super-
conducting state in QWs. It is noted that the influence of the
supercurrent on the proximity effect between the superconduc-
tor and semiconductor was first theoretically predicted [79,80]
and then experimentally confirmed [43]: in the semiconductor
in proximity to the s-wave superconductor, the diamagnetic
supercurrent induced by the magnetic field can cause the
Doppler shift for the quasiparticle state in the semiconductor.

We show that in the superconducting QWs, the supercon-
ducting velocity can cause the tilt of the quasiparticle energy
spectrum. Specifically, in the presence of the supercurrent, the
energy spectra of the quasielectron (+) and quasihole (−) are

E±
k = k · vs/2 ± Ek. (1)

Here, Ek =
√

ε2
k + |�|2 with εk = k2/(2m∗) + m∗v2

s /8 − μ

with μ being the chemical potential in the semiconductor
(� ≡ 1 throughout this paper). It is noted that the chemical
potential is shifted by −m∗v2

s /8 due to the superconducting
velocity. From Eq. (1), for the quasielectron band, when
|�| → 0, E+

k ≈ (k + q/2)2/(2m∗) − μ if |k| > kF and E+
k ≈

−(k − q/2)2/(2m∗) + μ if |k| < kF. With the former and latter
branches referred to as the electron- (ζk > 0 with negative
charge) and holelike (ζk < 0 with positive charge) branches,
it can be seen that the superconducting velocity leads to shifts
of the electron- and holelike branches by q/2 and −q/2 (i.e.,
the Doppler shift [43,79,80]), respectively. Then the tilt of the
quasiparticle energy spectrum can be simply understood.

In Fig. 1(a) [Fig. 1(b)], the quasielectron (quasihole)
energy spectrum is schematically plotted with |�| → 0 when
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vs ≡ q/m∗ = 0 (vs �= 0) by the red solid (green dashed)
curves. It can be seen that the quasielectron (quasihole) band
is composed by the positive (negative) parts of the electron and
hole bands, shown by the curves labeled by the dots and stars.
Due to the superconducting velocity, compared to Fig. 1(a),
the electron and hole-bands are shifted by q/2 and −q/2,
respectively, and hence the resulting quasiparticle energy
spectrum is tilted [Fig. 1(b)]. Specifically, the tilted excitation
energy can be even smaller than the chemical potential μ,
represented by the blue chain line in Fig. 1. Accordingly, the
quasielectrons mainly populate the region with the negative
excitation energy even at zero temperature, which is referred
to as the blocking region [81,83]. In Fig. 1(b), the blocking
region for the quasielectron is schematically represented by the
green “crescent,” whose formation can be treated as the shift
of the Fermi surfaces of the electron and hole. The appearance
of the blocking region can significantly influence the Cooper
pairings, the quasiparticle density, and the momentum current
driven by the supercurrent in QWs [77,78,81–83].

Specifically, we show that driven by the supercurrent, the
center-of-mass momentum q is carried by the Cooper pairs,
with the anomalous correlations only existing between the
states with momentum k + q/2 and −k + q/2. Moreover, we
show that the anomalous correlations around the Fermi surface
are efficiently suppressed due to the emergence of the blocking
region (refer to Sec. III B 1). Furthermore, the quasiparticle
density increases with the increase of the superconducting
velocity. In this process, the system experiences a crossover
between the nondegenerate and degenerate limits. Finally, it is
revealed that when the blocking region appears, the momentum
current contributed by the quasiparticles flows in the opposite
direction to the one due to the Cooper pairs. Accordingly, due
to the competition of the Cooper pairs and quasiparticles in the
blocking region, there exists a peak in the superconducting-
velocity dependence of the momentum current, whose
position corresponds to the appearance of the blocking
region.

We then study the quasiparticle spin relaxation in the
superconducting QWs. Based on the quasiparticle approxi-
mation due to the small Fermi energy in QWs, the kinetic
spin Bloch equations (KSBEs) [4,9] for the quasiparticle are
set up with the SOC and quasiparticle-impurity scattering
explicitly considered. By using the KSBEs, we calculate the
SRT without and with the superconducting velocity, respec-
tively. Rich physics is revealed. Without the supercurrent,
we address that the branch-mixing scattering [36,37] due to
the impurity represented by the black arrow in Fig. 1(a) is
forbidden. Here, the branch-mixing scattering is referred to as
the scattering of quasiparticles between the electronlike and
holelike branches [36,37]. This indicates that the electron-
and holelike branches are independent and hence only the
intrabranch spin relaxation channel exists. In this situation,
when |�| tends to zero, the SRT recovers to the normal one.
Whereas with a finite order parameter, it is found that in
the superconducting state, no matter whether the scattering
is weak or strong, the SRT is enhanced compared to the
normal one, whereas the boundary between the weak- and
strong-scattering regimes is unchanged. This comes from the
efficient suppressions of the SOC and impurity scattering for
the quasiparticle by the same factor |εk|/Ek.

FIG. 2. Schematic of the intra- and interbranch spin relaxation
processes. The blocking region is represented by the green area in the
crescent shape. Around the blocking region, its left (right) boundary
represented by the gray (red) dashed curve mainly comes from the
electron(hole) band, which is referred to as the electron(hole)like
Fermi arc in this work. Around the electron- and holelike Fermi arcs,
the red solid and blue dashed arrows denote the effective magnetic
field due to the SOC (i.e., �k). With an extremely small order
parameter, the branch-mixing scattering is forbidden, and the spin
polarization in the electron- and holelike bands relaxes independently.
This is referred to as the intrabranch spin relaxation. Whereas
with the finite order parameter, when the blocking region emerges,
the quasiparticles can be efficiently scattered between the left and
right boundaries of the blocking region (e.g., scattering from A to
A’), triggering the branch-mixing scattering [36,37]. This opens the
interbranch spin relaxation channel.

With the supercurrent, the quasiparticle spin relaxations
with extremely small (|�| � 0.1 meV) and finite (|�| �
0.1 meV) order parameters are explored. When the order
parameter is extremely small (e.g., |�| = 0.01 meV), the
branch-mixing scattering is still forbidden [refer to Fig. 1(b)].
This is because the coherence factor (≈εk/|εk| + εk′/|εk′ |) in
the quasiparticle-impurity scattering tends to zero. However,
differing from the situation without the supercurrent, when the
blocking region emerges, the Fermi surfaces from the electron-
and holelike branches are not closed, referred to as “Fermi
arcs.” In Fig. 2, the Fermi arcs from the electron- and holelike
branches are represented by the gray and red dashed curves
in the left and right boundaries of the blocking region. One
observes that in the electron- or holelike Fermi arc, the angular
average of the effective magnetic field due to the SOC (i.e.,
�k) is not zero. When the condensation process is slow, which
can be associated with the annihilation of quasielectron and
quasihole [84–86], the spin polarization mainly relaxes within
the Fermi arcs.

It is revealed that the quasiparticle spin relaxation at the
Fermi arc exhibits anomalous features in the strong scattering
regime. Specifically, on one hand, the spin oscillations can be
induced by the superconducting velocity; on the other hand,
the spin relaxation becomes insensitive to the momentum scat-
tering. The latter phenomenon is in contrast to the conventional
DP relaxation, where the spin relaxation is suppressed by the
momentum scattering (motional narrowing effect [40]). We re-
veal that the nonzero angular average of the SOC in one Fermi
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arc corresponds to an effective Zeeman field. This effective
Zeeman field can cause the spin oscillations even in the strong
scattering regime, which nevertheless has little influence on
the spin relaxation. Actually, this feature provides a direct
proof for the existence of the Fermi arc. It is further shown
that by switching off the effective Zeeman field, the magnitude
of the residue effective magnetic field strongly depends on the
direction of the momentum, causing an effective modular-
dependent inhomogeneous broadening [9,87] even for the
elastic scattering. This modular-dependent inhomogeneous
broadening can be enhanced by the momentum scattering in
the strong-scattering regime and tends to enhance the spin
relaxation. Nevertheless, the motional narrowing effect tends
to suppress the spin relaxation [40]. Thus the competition of the
two opposite trends leads to the insensitiveness of momentum
scattering dependence of the SRT in the strong-scattering
regime.

When the order parameter is big enough (i.e., |�| �
0.1 meV in our model), in the presence of the supercurrent, it
is revealed that the tilt of the energy spectrum can trigger the
branch-mixing scattering. In this situation, there exist the intra-
and interbranch spin relaxation channels for the quasiparticle
spin relaxation, as illustrated in Fig. 2. Furthermore, we
reveal the role of the intra- and interbranch spin relaxation
channels on the spin relaxation in both the weak- and strong
scattering regimes. Specifically, in the weak-scattering regime,
the intrabranch spin relaxation channel is dominant; whereas in
the strong-scattering regime, the interbranch channel becomes
dominant when the blocking region appears. Moreover, in the
strong-scattering regime, with the branch-mixing scattering
efficiently triggered, the quasielectron can feel all the SOC
around the Fermi surface, whose angular average is zero (refer
to Fig. 2). Accordingly, in the strong-scattering regime, in
contrast to the situation with extremely small order parameter,
no spin oscillation occurs. Furthermore, in this situation, the
inhomogeneous broadening becomes the conventional one and
hence the spin relaxation is suppressed by the momentum
scattering, exhibiting the motional narrowing feature.

This paper is organized as follows. We first lay out the
Hamiltonian in Sec. II. In Sec. III, we analyze the quasiparticle
state in the superconducting QWs both analytically (Sec. III A)
and numerically (Sec. III B). In Sec. IV, the quasiparticle
spin relaxation is studied by using the KSBEs, derived in
the quasiparticle approximation. We conclude and discuss in
Sec. V.

II. HAMILTONIAN

In this section, we present the Hamiltonian of the
symmetric (100) QWs in proximity to an s-wave super-
conductor. In the particle space, the Hamiltonian is com-
posed by the Bogoliubov-de Gennes (BdG) Hamiltonian and
electron-impurity interaction. The BdG Hamiltonian is written
as [16,73–76]

H0 =
∫

dr
2

�†(r)

⎛
⎜⎜⎜⎝

ζk hk 0 �(r)

h∗
k ζk −�(r) 0

0 −�∗(r) −ζk h∗
k

�∗(r) 0 hk −ζk

⎞
⎟⎟⎟⎠�(r), (2)

where �(r) is the particle field operator. Here, ζk =
k2/(2m∗) − μ; hk = −αkx − iαky comes from the Dressel-
haus SOC, [88] in which α = γD(π/a)2 for the infinitely
deep well with γD and a being the Dresselhaus coefficient
and well width, respectively; �(r) = |�|eiq·r is the s-wave
order parameter. Specifically, |�| and q are assumed to be
homogeneous in this work.

The electron-impurity interaction is expressed as

Him = 1

2

∫
dr�†(r)V (r)τ3�(r), (3)

with τ3 ≡ diag(1,1,−1,−1) and V (r) denoting the screened
Coulomb potential, whose Fourier component Vk = V 0

k /(1 −
P

(1)
k V 0

k ). Here, V 0
k = ∫

dy 1
πa

|I (y)|2 e2

ε0κ0(k2+4y2/a2) , with ε0 and
κ0 representing the vacuum permittivity and relative dielectric
constant; |I (y)|2 = π4 sin2(y)

(π2−y2)2y2 standing for the form factor;

P
(1)
k denoting the longitudinal polarization function, whose

expression has been derived in Ref. [16].
In the momentum space, the BdG Hamiltonian is further

represented as

H0(k) = 1

2

∑
k

�
†
k

⎛
⎜⎜⎜⎝

ζk+ q
2

hk+ q
2

0 |�|
h∗

k+ q
2

ζk+ q
2

−|�| 0

0 −|�| −ζk− q
2

h∗
k− q

2|�| 0 hk− q
2

−ζk− q
2

⎞
⎟⎟⎟⎠�k,

where �
†
k = (a†

k+ q
2 ↑,a

†
k+ q

2 ↓,a−k+ q
2 ↑,a−k+ q

2 ↓); the electron-
impurity interaction is written as

Him = 1

2

∑
kk′

�
†
kVk−k′τ3�k′ . (4)

We then transform the Hamiltonian in particle space to the
quasiparticle one by using the transformation

Uk =

⎛
⎜⎝

uk 0 0 vk
0 uk −vk 0
0 vk uk 0

−vk 0 0 uk

⎞
⎟⎠. (5)

Here, uk =
√

1
2 + εk

2Ek
and vk =

√
1
2 − εk

2Ek
. Then in the

quasiparticle space, the field operator is denoted as
k ≡ (αk↑,αk↓,α

†
−k↑,α

†
−k↓)T = Uk�k. Accordingly, the BdG

Hamiltonian in the quasiparticle space is written as

H
q

0 (k)

=

⎛
⎜⎜⎜⎜⎝

k · vs
2 + Ek

εk
Ek

hk + h q
2

−|�|
Ek

hk 0
εk
Ek

h∗
k + h∗

q
2

k · vs

2 + Ek 0 |�|
Ek

h∗
k

−|�|
Ek

h∗
k 0 k · vs

2 − Ek
εk
Ek

h∗
k − h∗

q
2

0 |�|
Ek

hk
εk
Ek

hk − h q
2

k · vs

2 − Ek

⎞
⎟⎟⎟⎟⎠.

(6)

The electron-impurity interaction Hamiltonian is transformed
to be

Him = 1

2

∑
kk′


†
kV

q
k′−kk′ , (7)
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where the impurity potential

V
q

k′−k = Vk′−k

⎛
⎜⎜⎝

Akk′ 0 0 Bkk′

0 Akk′ −Bkk′ 0
0 −Bkk′ −Akk′ 0

Bkk′ 0 0 −Akk′

⎞
⎟⎟⎠, (8)

with Akk′ = ukuk′ − vkvk′ and Bkk′ = ukvk′ + vkuk′ .

III. SUPERCONDUCTING-VELOCITY–TUNABLE
QUASIPARTICLE STATE IN QWs

In this section, we analyze the quasiparticle state in the
superconducting QWs, which can be tuned by the super-
conducting velocity, first analytically (Sec. III A) and then
numerically (Sec. III B).

A. Analytical analysis

In this part, we analytically analyze the quasiparticle state
by using the equilibrium Green function at the Matsubara
representation [89–91]. In the derivation, the SOC is neglected
as it is much weaker compared to the kinetic energy.

In the particle space, the equilibrium Green func-
tion at the Matsubara representation is defined as G̃12 =
−i〈Tτ �̃1�̃

†
2〉 [89–91], in which Tτ represents the chrono-

logical product, (1) = (τ1,r1) is the imaginary time-space
point, 〈· · · 〉 denotes the ensemble average, and �̃(t,r) ≡
eiτ3�(t,r)/2�(t,r). The Green function in the frequency-
momentum space is derived to be

G̃(iωn,k)

=

⎛
⎜⎜⎝

A(iωn,k) 0 0 C(iωn,k)
0 A(iωn,k) −C(iωn,k) 0
0 −C(iωn,k) B(iωn,k) 0

C(iωn,k) 0 0 B(iωn,k)

⎞
⎟⎟⎠,

(9)

where

A(iωn,k) = iωn + ζk−q/2

(iωn − ζk+q/2)(iωn + ζk−q/2) − |�|2

B(iωn,k) = iωn − ζk+q/2

(iωn − ζk+q/2)(iωn + ζk−q/2) − |�|2

C(iωn,k) = |�|
(iωn − ζk+q/2)(iωn + ζk−q/2) − |�|2 . (10)

Here, ωn = (2n + 1)πkBT are the Matsubara frequencies with
n being integer and T representing the temperature. From this
Green function, one obtains the particle density matrix at the
equilibrium state,

ρc
e (k) =

⎛
⎜⎜⎝

A (k) 0 0 C (k)
0 A (k) −C (k) 0
0 −C (k) B(k) 0

C (k) 0 0 B(k)

⎞
⎟⎟⎠, (11)

whose diagonal elements denote the electron and hole distribu-
tions, and the off-diagonal elements represent the anomalous
correlations due to the superconducting order parameter.

In Eq. (11),

A (k) ≡ 〈a†
k+ q

2 ↑ak+ q
2 ↑〉 = u2

kf (E+
k ) + v2

kf (E−
k )

B(k) ≡ 〈a−k+ q
2 ↑a

†
−k+ q

2 ↑〉 = v2
kf (E+

k ) + u2
kf (E−

k )

C (k) ≡ 〈a−k+ q
2 ↓ak+ q

2 ↑〉 = ukvkf (E+
k ) − ukvkf (E−

k ), (12)

where f (Ek) = 1/{exp[Ek/(kBT )] + 1} is the Fermi distribu-
tion function. For the quasiparticle, by a unitary transforma-
tion, the density matrix at the equilibrium state is

ρh
e (k) = Ukρ

c
e (k)U †

k

= diag{f (E+
k ),f (E+

k ),f (E−
k ),f (E−

k )}, (13)

in which only the diagonal elements exist, denoting the
quasielectron and quasihole distributions.

From the quasiparticle distribution at the equilibrium state,
one specific feature arises due to the modification of the energy
spectrum by the superconducting velocity [77,78,81–83]. It is
noted that when vs = 0, E+

k (E−
k ) is always bigger (smaller)

than zero. When vs �= 0, it can be found that when m∗v2
s μ/2 >

|�|2, there exist regions in which E+
k < 0 and E−

k > 0 are
satisfied. These regions are referred to as the blocking regions
because they are occupied by the quasielectrons even at zero
temperature [81–83]. Specifically, the blocking region for the
quasielectron is written as

−
√

m∗v2
s μ

2
− |�|2 < ζk − m∗v2

s

8
<

√
m∗v2

s μ

2
− |�|2

−1 � cos θk < −
√

[ζk + m∗v2
s /8]2 + |�|2

m∗v2
s /2[ζk + μ]

, (14)

with θk being the angle between the momentum and su-
perconducting velocity. Finally, it is addressed that in the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [81–83], the
Zeeman-field–induced center-of-mass momentum of Cooper
pairs plays similar role to the superconducting velocity here.

B. Numerical results

In this part, we present the numerical results for the prop-
erties of the quasiparticle state in GaAs QWs. All parameters
including the band structure and material parameters used in
our computation are listed in Table I [92,93]. In the table,
ne is the electron density, and P0 represents the initial spin
polarization.

1. Blocking region

We first analyze the energy spectrum of the quasielectron
[Eq. (1)]. It is assumed that the superconducting velocity
is small, which influences the superconducting state in the

TABLE I. Parameters including the band structure and material
parameters used in the computation [92,93].

m∗/m0 0.067 ne (cm−2) 1011

κ0 12.9 γD (eV Å3) 23.9
κ∞ 10.8 a (nm) 20
P0 1% T (K) 1
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FIG. 3. Energy spectra of the quasielectron with different su-
perconducting velocities m∗vs/kF = 0 (the red solid curve), 0.14
(the blue dashed curve) and 0.5 (the green chain curve). |�| =
0.5 meV in the calculation. When m∗vs/kF = 0, the excitation
energy is symmetric for kx > 0 and kx < 0. However, the finite
superconducting velocity can cause the tilt of the energy spectrum.
Specifically, when m∗vs/kF � 0.14, E+

k � 0 can be realized.

s-wave superconductor marginally [77,78]. However, when
|�| � |�S | here, it can efficiently tune the superconducting
state in QWs. Without loss of generality, we assume that the
superconducting velocity is along the x̂ direction. In Fig. 3,
the kx dependencies of the energy spectra of the quasielectron
are plotted at different superconducting velocities. It can
be seen from the figure that without the supercurrent (the
red solid curve), the excitation energy is symmetric for
kx > 0 and kx < 0. When there is finite superconducting
velocity, the energy spectrum becomes tilted. Specifically,
when m∗vs/kF = 0.14, E+

k = 0 can be realized, which is
represented by the blue dashed curve; when m∗vs/kF > 0.14,
there exist regions with E+

k < 0, as shown by the green chain
curve when m∗vs/kF = 0.5. Here, kF is the Fermi momentum
of the electron.

When E+
k < 0, the blocking region appears, which is de-

termined by Eq. (14). When vs = 0.5kF/m∗, the quasielectron
population at the equilibrium state is calculated [Eq. (13)],
whose momentum dependence is plotted in Fig. 4(a). It can be
seen from Fig. 4(a) that the blocking region is in the crescent
shape, whose boundary constitutes the Fermi surface for the
quasielectron. Furthermore, it can be seen that in the Fermi
surface, its left and right boundaries are contributed by the
electron- and holelike branches, respectively, in the shapes of
arcs, referred to as Fermi arcs in the following. It is addressed
that even though |�| is taken to the finite here, the basic pictures
of the blocking region as well as the Fermi arcs remain the same
as those revealed in Figs. 1 and 2.

Actually, the electron distribution in the particle space
is also significantly influenced due to the superconducting
velocity [Eq. (11)], whose Fermi surface is no longer a circle,
as shown in Fig. 4(b). It can be seen from Fig. 4(b) that
a crescent region at kx > 0 (labeled by “A,” enclosed by

the dots) disappears and a new crescent region (labeled by
“B”) emerges at kx < 0. The modification of the electron
distribution inevitably influences the anomalous correlations
when there exists a supercurrent. In the presence of the
supercurrent, there exist the anomalous correlations between
the electron states with momentum k + q/2 and −k + q/2,
which can be calculated from C (k) in Eq. (12). This indicates
that the Cooper pairs carry the center-of-mass momentum q,
driven by the supercurrent [77,78]. From the analysis of the
electron distribution in Fig. 4(b), one finds that the absence
of the crescent region at kx > 0 makes the electrons in the
newly arising crescent region at kx < 0 unable to find their
partners to constitute the Cooper pairs. Accordingly, there
is no anomalous correlation for the electrons in the newly
arising crescent region with kx < 0 at zero temperature. The
momentum dependence of the anomalous correlations without
and with the superconducting velocity are explicitly shown in
Figs. 4(c) and 4(d). It can be seen from those two figures that
only the electrons around the Fermi surface can have efficient
anomalous correlations. Specifically, in Fig. 4(c) without
the supercurrent, all the electrons around the Fermi surface
are paired. However, when vs = 0.5kF/m∗ in Fig. 4(d), the
blocking region appears, in which the anomalous correlation is
suppressed to be close to zero at low temperature. Accordingly,
the residue regions with anomalous correlations are suppressed
to be very small when the superconducting velocity is large.
This shows that the superconducting velocity provides an
efficient way to tune the Cooper pairing in the superconducting
QWs.

2. Quasiparticle density

In this part, we show that the quasiparticle density in
QWs can be efficiently tuned by the superconducting velocity.
The quasiparticle density is calculated from the quasiparticle
distributions in the presence of the superconducting velocity:

nq =
∑

k

[f (E+
k↑) + f (E+

k↓)]. (15)

In Fig. 5, the superconducting velocity dependence of the
quasiparticle density with different order parameters |�| =
0.5, 0.3, 0.2, and 0.1 meV are plotted by the blue dashed,
yellow dashed, red solid, and green chain curves. It is shown
that with the increase of the superconducting velocity, the
quasiparticle density first increases rapidly and then slowly,
with the turning point corresponding to the appearance of
the blocking region roughly. Specifically, with the increase of
the quasiparticle density due to the superconducting velocity,
the blocking region and the Fermi surface emerge. In this
process, the system can experience the crossover between
the nondegenerate and degenerate limits. Finally, it is noticed
that when the superconducting velocity is large enough, the
quasiparticle density is comparable to the one in the normal
state.

3. Momentum current

In the presence of a finite superconducting velocity, the
momentum current arises in the QW, which is calculated from
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FIG. 4. Momentum dependencies of the quasielectron distribution [(a)], electron distribution [(b)], and anomalous correlations without
[(c)] and with [(d)] the supercurrent. (a) is plotted in the quasiparticle space, whereas (b), (c), and (d) are shown in the particle space. In (a)
and (b), vs = 0.5kF/m∗. |�| = 0.5 meV in all the calculations. Specifically, in (a), the quasielectron distribution is addressed, in which the
blocking region in the crescent shape arises, whose boundary constitutes the “Fermi surface.” In (b), for the electron distribution, it is observed
that a crescent region when kx > 0 (labeled by “A,” enclosed by the dots) disappears and a new crescent region (labeled by “B”) appears when
kx < 0. In (c), we show the anomalous correlation without the supercurrent, in which all the electrons around the Fermi surface are paired.
Finally, in (d), the anomalous correlation with the supercurrent (vs = 0.5kF/m∗) is presented. It can be seen that compared to (c), the regions
with efficient anomalous correlations are suppressed to be very small.

the equilibrium density matrix,

J =
∑

k

1

2
Tr

{
τ3

[
Ukρ

h
e (k)U †

k + 1

2
(τ3 − 1)

]

× diag
(

k + q
2
,k + q

2
,−k + q

2
,−k + q

2

)}
. (16)

Obviously, Jy = 0 when q = qx̂. In Fig. 6, the
superconducting-velocity dependencies of Jx are plotted with
different order parameters |�| = 0.5, 0.3 and 0.2 meV. The
unit for the momentum current is set to be J0 ≡ nekF(kBT /EF)
with EF being the Fermi energy for the electron. It is shown
that with the increase of the superconducting velocity, the
momentum current first increases linearly and then decreases
slowly, with the emergence of a peak. By defining the
superconducting velocity corresponding to the peak of the
current as the critical velocity, it can be seen that the critical
velocity increases with the increase of the order parameter.

We start our analysis from the case with small supercon-
ducting velocity (i.e., before the appearance of the block-
ing region). With small superconducting velocity satisfying

k · vs � Ek, the quasiparticle distribution function can be
expanded as a series of vs . By keeping vs to its linear order
and considering |�| � kBT here, from Eqs. (11) and (16), the
momentum current is calculated to be

Ja
x ≈ m∗vs

∑
k

{
u2

kf (Ek) + v2
k[1 − f (Ek)]

}

+
∑

k

k2
xvs

∂f (Ek)

∂Ek
≈ m∗vs

∑
k

v2
k. (17)

It is noted that v2
k is just the distribution function of the

Cooper pair condensate when vs = 0 (e.g., refer to Takahashi
et al. [28,77,78]), and hence here the momentum current is
mainly carried by the Cooper pairs. The results calculated from
Eq. (17) when |�| = 0.5 meV is plotted by the green chain
curve in Fig. 6, which almost coincides with the blue dashed
curve when vs is small. However, when the superconducting
velocity is large, i.e., with the appearance of the blocking
region, the current contributed from the quasiparticles becomes
significant. Specifically, the quasielectron (quasihole) mainly
populate with kx < 0 (kx > 0). Therefore, from Eq. (16), the
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FIG. 5. Superconducting velocity dependence of the quasipar-
ticle density with different order parameters |�| = 0.5 meV (the
blue dashed curve), 0.3 (the yellow dashed curve), 0.2 (the red solid
curve), and 0.1 meV (the green chain curve). With the increase of
the superconducting velocity, the quasiparticle density first increases
rapidly and then slowly, with the turning point corresponding to the
appearance of the blocking region approximately.

current contributed by the quasiparticles flows in the opposite
direction to the one carried by the Cooper pairs. Accordingly,
there exists the competition between the quasiparticles and
Cooper pairs, leading to the critical velocity. Thus, the critical
velocity can be estimated by vc

s ≈
√

2|�|2/(m∗μ), which just
corresponds to the appearance of the blocking region.
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FIG. 6. Superconducting velocity dependence of the momentum
current with different order parameters |�| = 0.5 (the blue dashed
curve), 0.3 (the yellow dashed curve), and 0.2 meV (the red solid
curve). The unit for the momentum current is set to be J0 ≡
nekF(kBT /EF). The green chain curve shows the results calculated
from Eq. (17) when |�| = 0.5 meV, which describes the behavior of
momentum current with small superconducting velocity fairly well.

4. Role of momentum scattering on quasiparticle state

Finally, we address the role of the momentum scattering on
the quasiparticle state. High mobility QWs can be realized
and in this “clean” case, the tilted energy spectrum and
Fermi arc are expected to be stable. Nevertheless, when there
exists disorders, i.e., in the “dirty” case, the tilted energy
spectrum and Fermi arc can be disrupted due to the momentum
scattering, which is a phase-breaking effect. Here, we show that
the tilted energy spectrum and Fermi arc for the quasiparticle
in the QWs can be stabilized by the condensate, with the
condition estimated as follows.

In the proximity effect, the Andreev reflection is the
key mechanism when considering the single particle tunnel-
ing [94–96]. In the Andreev reflection from the superconduct-
ing metal to the QWs, the time for the tunneling electrons
combining into the Cooper pairs is estimated by ξ/vF , with ξ

and vF being the coherence length in the QWs and the Fermi
velocity in the superconducting metal. When the combination
time is smaller than the momentum scattering time, i.e.,
ξ/vF � τp, the momentum scattering is expected to have little
influence on phase-breaking in the Andreev reflection. Here,
the coherence length in the QWs is estimated by ξ ≈ vS�/|�|
with vS being the Fermi velocity in the QWs [94–96]. One
obtains |�| � (vS/vF )(�/τp). Specifically, for τp � 1 ps and
vS/vF = 50, one obtains |�| � 0.01 meV. Therefore, even
when the order parameter in the QWs is extremely small, the
superconducting phase is marginally influenced by the disorder
because of the large Fermi velocity mismatch between the
QWs and superconducting metal.

Once the Cooper pairs with finite momentum are created
in the proximity effect, the impurity scattering cannot average
their center-of-mass momentum to be zero. This is because
there exists a source, i.e., the superconducting metal, to inject
the Cooper pairs with definite momentum. It is noted that this
is very different from the FFLO state in the genuine supercon-
ductor, in which the disorder can average the center-of-mass
momentum of the Cooper pair and hence destroy the FFLO
state [97,98]. Then in the presence of the superconducting
velocity in the QWs, for the quasiparticle, the disorder in the
QWs mainly causes the broadening of the energy spectrum
due to the finite lifetime of the quasiparticle state. However,
this broadening cannot destroy the tilted energy spectrum and
Fermi arc, which are driven and stabilized by the condensate.

IV. QUASIPARTICLE SPIN RELAXATION

In this section, we study the quasiparticle spin relax-
ation in the superconducting GaAs (100) QWs. We first
derive the KSBEs for the quasiparticle in the quasiparticle
approximation [18,21,63–72], via the nonequilibrium Green
function method with the generalized Kadanoff-Baym (GKB)
ansatz [9,99,100] (Sec. IV A), and then show the numerical
results for the SRTs without (Sec. IV B 1) and with the
supercurrent (Sec. IV B 2).

A. KSBEs

1. Derivation with full Hamiltonian

With a small Fermi energy in the semiconductor QWs,
the derivation of the KSBEs is based on the quasiparticle
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approximation [18,21,63–72,99]. In the quasiparticle space,
the contour-ordered nonequilibrium Green function is defined
as [9,64,99]

G12 = −i〈Tc1
†
2〉 =

(
G++

12 G+−
12

G−+
12 G−−

12

)
, (18)

which is an 8 × 8 matrix. Here, 1 = (t1,r1) represents the
time-space point, Tc denotes the time contour, and (t,r) =
(α↑(t,r),α↓(t,r),α†

↑(t,r),α†
↓(t,r))T is the quasiparticle field

operator. Specifically, G++
12 = −i〈T 1

†
2〉, G+−

12 ≡ G<
12 =

i〈†
21〉, G−+

12 ≡ G>
12 = −i〈1

†
2〉 and G−−

12 = −i〈T̃ 1
†
2〉

with T and T̃ representing the chronological ordering and
anti-chronological ordering, respectively.

The contour-ordered Green function G12 satisfies the
Gor’kov’s equations [90,91]

[
i

→
∂ t1 −

→
H

q

0 (k̂1)
]
G12 = δ(1 − 2)τ̃3 +

∫
c

d3τ̃3�13G32, (19)

G12
[−i

←
∂ t2 −

←
H

q

0 (−k̂2)
] = δ(1 − 2)τ̃3 +

∫
c

d3�13G32τ̃3.

(20)

Here, τ̃3 = diag(I4×4,−I4×4), and �13 is the self-energy
due to the quasiparticle-impurity interaction. Specifically,
from Eqs. (19) and (20), one obtains the kinetic equations

for G<
12,

[
i

→
∂

∂t1
−

→
H

q

0 (k̂1)

]
G<

12 =
∫

d3
(
�R

13G
<
32 + �<

13G
A
32

)
, (21)

G<
12

[
−i

←
∂

∂t2
−

←
H

q

0 (−k̂2)

]
=
∫

d3
(
GR

13�
>
32 + G>

13�
A
32

)
,

(22)

where “R” and “A” label the retarded and advanced Green
functions [64–66,69,99].

By defining (t,r) = (t1 − t2,r1 − r2) and (R,T ) = (t1 +
t2,r1 + r2)/2 and then taking the difference of Eqs. (21)
and (22), one obtains

i∂T G<
12 − [→

H
q

0 (k̂1)G<
12 − G<

12

←
H

q

0 (−k̂2)
]

=
∫

d3
(
�R

13G
<
32 + �<

13G
A
32 − GR

13�
>
32 − G>

13�
A
32

)
. (23)

From Eq. (23), by using the gradient expansion, [99] the
kinetic equation is derived for the Fourier component of G<

12,
i.e., G<(R,T ; k,E) = ∫

dtdreiEt−ik·rG<(R,T ; r,t), which is
written as

∫
dE

2π
e−iEt ∂G<(R,T ; k,E)

∂T
+ i

[
H

q

0 ,

∫
dE

2π
e−iEtG<(R,T ; k,E)

]
− 1

2

{
∂H

q

0

∂R
,

∫
dE

2π
e−iEt ∂G<(R,T ; k,E)

∂k

}

+ 1

2

{
∂H

q

0

∂k
,

∫
dE

2π
e−iEt ∂G<(R,T ; k,E)

∂R

}
= −i

∫ t1

−∞
dt3[�>(R,k; t1,t3)G<(R,k; t3,t1) + G<(R,k; t1,t3)

×�>(R,k; t3,t1) − �<(R,k; t1,t3)G>(R,k; t3,t1) − G>(R,k; t1,t3)�<(R,k; t3,t1)]. (24)

Here, [,] and {,} represent the commutator and

anticommutator, respectively; �
>
<(R,k; t1,t3) =

ni

∑
k′ V

q

k′−kG
>
<(R,k′; t1,t3)V q

k−k′ with ni standing for
the impurity density.

In Eq. (24), the full BdG Hamiltonian H
q

0 (k) [Eq. (6)]
is used, from which neither the detailed balance nor the
quasiparticle number conservation are satisfied. This can be
seen as follows. On one hand, the summation over k on the
right-hand side of Eq. (24) is not zero due to the matrix form
of V

q
k−k′ , which indicates the violation of detailed balance.

On the other hand, from the second term in the left-hand
side of Eq. (24), the off-diagonal 2 × 2 blocks in H

q

0 (k)
can break the quasiparticle number conservation because of
the precession between the quasielectron and quasihole. This
is not strange because in H

q

0 (k), the quasiparticle number
operator does not commute with the BdG Hamiltonian (also
the electron-impurity interaction Hamiltonian) because of the
terms proportional to ααS† and α†α†S [18,84–86]. Here, S

and S† are the annihilation and creation operators for the
Cooper pairs [18,84–86]. Specifically, these terms are related
to the annihilation or creation of two quasiparticles to create
or annihilate one Cooper pair [18,84–86].

Nevertheless, it suggests that when the process for the
quasiparticle annihilation (creation) to (from) the Cooper pair

condensate is slow compared to the process under investiga-
tion, the part violating the quasiparticle number conservation
in the full Hamiltonian can be neglected. This approximation
has been well applied in the derivation of the quasiparticle
kinetic equation (e.g., Refs. [18,57,67]). Fortunately, once the
Hamiltonian violating the quasiparticle number conservation
is neglected, the detailed balance is automatically satisfied. We
address that this assumption is reasonable for the weak SOC
and low impurity density in this investigation.

The violation of the detailed balance and quasiparticle num-
ber conservation can also be understood from the mathematical
point of view. It is noted that the Gor’kov space spanned
by the “electron” and “hole” bands is larger than the real
physical space. For linear operations on the Green function,
no consequence will occur. However, for nonlinear operations,
unphysical consequence may appear.

2. KSBEs with detailed balance and quasiparticle number
conservation satisfied

From the above analysis, to obtain a self-consistent kinetic
equation, we neglect the off-diagonal 2 × 2 blocks in both
the BdG Hamiltonian [Eq. (6)] and quasiparticle-impurity
interaction Hamiltonian [Eq. (7)]. To further derive the scatter-
ing term, the GKB ansatz and Markovian approximation are
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used [9,99,100]. Specifically, in the GKB ansatz [9,99,100],

G
>
<(R,k; t1,t2) = ∓[GR(R,k; t1,t2)ρ

>
<(R,k; t2)

− ρ
>
<(R,k; t1)GA(R,k; t1,t2)], (25)

where ρ
>
<(R,k; t) = −i

∫
dE/(2π )G

>
<(R,k; t,E). In Eq. (25),

GR(R,k; t1,t2) and GA(R,k; t1,t2) are further approximated by
their free equilibrium forms, written as

GR(k; t1,t2) ≈ −iθ (t1 − t2) exp[−i(t1 − t2)H ′
0(k)], (26)

GA(k; t1,t2) ≈ iθ (t2 − t1) exp[−i(t1 − t2)H ′
0(k)]. (27)

Here, θ (x) is the Heaviside step function, and H ′
0(k) does

not include the off-diagonal 2 × 2 blocks. In the Markovian
approximation [9,99],

ρ
>
<(R,k; t3) = exp[iH ′

0(k)(t1 − t3)]ρ(R,k; t1)

× exp[−iH ′
0(k)(t1 − t3)]. (28)

Furthermore, due to the small SOC, its contribution to the
second and third terms in the left and right-hand sides of
Eq. (24) can be neglected [9].

Finally, by taking t1 → t2, i.e., t → 0, from the E-
integrated Green function, one obtains the KSBEs of the
quasiparticle,

∂ρh
k

∂T
+
(

vs

2
+ εk

Ek

k
m∗ τ3

)
· ∂ρh

k

∂R
+ εk

Ek

[
−∂μ(R)

∂R

]
τ3

∂ρh
k

∂k

+ i

[(
he

soc(k) 0
0 hh

soc(k)

)
,ρh

k

]
= −2πni

∑
k′

∣∣V eff
k−k′

∣∣2

×
[
δ(E+

k′ − E+
k )

1 + τ3

2

(
ρh

k − ρh
k′
)+ δ(E−

k′ − E−
k )

× 1 − τ3

2

(
ρh

k − ρh
k′
)]

, (29)

where ∣∣V eff
k−k′

∣∣2 = |Vk−k′ |2(ukuk′ − vkvk′)2, (30)

he
soc(k) =

(
0 εk

Ek
hk + h q

2
εk
Ek

h∗
k + h∗

q
2

0

)
, (31)

hh
soc(k) =

(
0 εk

Ek
h∗

k − h∗
q
2

εk
Ek

hk − h q
2

0

)
. (32)

In this investigation at extremely low temperature, the
quasiparticle-quasiparticle and quasiparticle-phonon interac-
tions are inefficient and hence only the quasiparticle-impurity
scattering is presented here. One notes that when the SOC
and vs are taken to be zero, Eq. (29) can recover the traditional
Boltzmannlike equation for the quasiparticle [18,28,57,63,67].
Moreover, when |�| and vs are taken to be zero, Eq. (29) can
also recover the conventional KSBEs for electrons [9].

In Eq. (29), the second, third, and fourth terms correspond
to the diffusion, drift, and coherence terms, respectively. Their
physical origins are clear from the point of view that the
quasiparticle state is the combination of the electron and hole
ones [Eq. (5)] [18,20,25,28,67]. Specifically, for the diffusion

term, one notes that the group velocities for the quasielectron
and quasihole are vs

2 + εk
Ek

k
m∗ and vs

2 − εk
Ek

k
m∗ , respectively,

which correspond to the quasiparticle velocities in Eq. (29).
For the drift term, it can be seen that the charges for the
quasielectron and quasihole are −|e|(u2

k − v2
k) = −|e|εk/Ek

and |e|εk/Ek, respectively, which are just responsible for the
electrical force experienced by the quasiparticle under the
electrical field. Finally, for the coherence term, the SOC
experienced by the quasielectron [Eq. (32)] is the combination
of the ones experienced by the electron and hole, which can
be calculated from

he
soc(k) = u2

k

(
0 hk+ q

2

h∗
k+ q

2
0

)
+ v2

k

(
0 −hk− q

2

−h∗
k− q

2
0

)
.

(33)

B. Numerical results

In this part, we study the quasiparticle spin relaxation in
the spatially homogeneous system. By numerically solving
the KSBEs [Eq. (29)], one obtains the SRT from the time
evolution of the spin polarization

S(t) =
∑

k

1

4nq

Tr

{
τ3

[
ρh

k (t) + 1

2
(τ3 − 1)

]
diag(σ ,−σ )

}
,

(34)

where σ are the Pauli matrices. Here, we focus on the situation
that the initial spin polarization of the quasiparticle is along
the ẑ direction, corresponding to the spin imbalance, which
can be realized by the spin injection with small charge im-
balance [19,20,22–29,31,32]. Accordingly, the initial density
matrix for the quasiparticle is written as

ρh
k (t = 0) = diag[f (E+

k↑),f (E+
k↓),f (E−

k↑),f (E−
k↓)], (35)

where f (E±
k↑) = f (E±

k + μ
q

↑) and f (E±
k↓) = f (E±

k + μ
q

↓).
Here, μ

q

↑ and μ
q

↓ are determined by the density of quasielec-
trons with spin-up n

q

↑ and spin-down n
q

↓, i.e.,

n
q

↑,↓ =
∑

k

f (E+
k↑,↓) =

∑
k

f (E+
k + μ

q

↑,↓). (36)

The parameters for the computation are listed in Table I.

1. Quasiparticle spin relaxation without a supercurrent

In this part, we analyze the quasiparticle spin relaxation
without the supercurrent, i.e., vs = 0, and reveal the influence
of the magnitude of the order parameter on the quasiparticle
spin relaxation. When |�| = 0, the system returns to the
normal situation with the Rashba-like SOC, which has been
well studied in GaAs (100) QWs [9]. In Fig. 7, it is shown
that when ni � 0.05ne (ni � 0.05ne), the system lies in the
weak- (strong) scattering regime with τs ∝ τN

k [τs ∝ (τN
k )−1].

Here, τN
k is the momentum relaxation time in the normal state.

When |�| varies from 0.1 to 0.5 meV, the SRTs are enhanced
in both the weak and strong-scattering regimes. However, the
boundary between the weak- and strong-scattering regimes
is unchanged. This can be understood from the following
analytical analysis.
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FIG. 7. Impurity density dependence of the quasiparticle SRTs
without the supercurrent when |�| = 0 (normal state, the red solid
curve with squares), 0.1 (the yellow dashed curve with circles), 0.3
(the green chain curve with squares), and 0.5 meV (the blue dashed
curve with crosses). No matter in the weak- or strong-scattering
regime, the SRTs are enhanced in the superconducting state compared
to the normal one. However, the boundary between the weak- and
strong-scattering regimes is unchanged with the variation of the order
parameter magnitudes.

From Eq. (29), one can see that when vs = 0, both the SOC
and momentum scattering for the quasiparticle are modified
by the order parameter. Specifically, from the coherent term
[the fourth term in Eq. (29)], one observes that when vs = 0,
the SOC is modified to be

hS
soc(k) = (εk/Ek)hN

soc(k), (37)

where hN
soc(k) is the normal-state SOC in GaAs (100) QW.

Accordingly, due to the factor εk/Ek in Eq. (37), the SOC is
exactly zero when |k| = kF and efficiently suppressed for the
quasiparticles with momentum around kF. For the scattering
term, new features arise due to the modifications of the
quasiparticle-impurity interaction potential [Eq. (30)] and the
DOS. In the quasiparticle-impurity potential [Eq. (30)], the co-
herent factor (ukuk′ − vkvk′)2 arises [18,67], which equals to
(εk/Ek)2 because in the elastic scattering, the branch mixing
is forbidden [36,37] and hence |k′| = |k|. Whereas the DOS
is modified to be (Ek/|εk|)N0(k) with N0(k) being the DOS
in the normal state. Accordingly, compared to the normal
state, a new prefactor |εk|/Ek arises in the scattering term
for the superconducting state, which is also exactly zero when
|k| = |k′| = kF. Consequently, the momentum scattering time
in the superconducting state becomes [18,21,84]

τS
k = (Ek/|εk|)τN

k . (38)

Because at low temperature, the quasiparticles mainly populate
around the states with momentum |k| = kF, the momentum
scattering is efficiently suppressed in the superconducting
state.

Obviously, from Eqs. (37) and (38), |hS
soc(k)|τS

k =
|hN

soc(k)|τN
k , and hence the boundary between the weak- and

strong scattering regimes remains unchanged when the system

enters to the superconducting state. Then by solving the KSBEs
analytically, one obtains the SRTs in both the strong- and weak-
scattering regimes [9,101,102]. Specifically, in the strong
scattering limit with �S

kτS
k � 1, Sz

k(t) ≈ P0 exp[−4(�S
k)2τS

k t].
Here,

�S
k = (αk)(εk/Ek) = �N

k (εk/Ek) (39)

is the precession frequency due to the SOC, and

1

τS
k

= nim
∗

2π

εk

Ek

∫
dθk−k′ |Vk−k′ |2(1 − cos θk−k′). (40)

In the weak-scattering limit with �S
kτS

k � 1, Sz
k(t) ≈

P0 exp[−t/(2τS
k )] cos(2�S

kt). On one hand, the momentum
scattering opens a spin relaxation channel due to the factor
exp[−t/(2τS

k )]; on the other hand, the factor cos(2�S
kt) can

cause the free induction decay due to different precession
frequency with different momentum, which is suppressed in
the degenerate regime [9,101,102]. Accordingly, the SRT for
the quasiparticle with momentum k reads

τS
s (k) ≈

{[
4
(
�S

k

)2
τS

k

]−1
, �S

kτS
k � 1;

2τS
k , �S

kτS
k � 1;

(41)

= (Ek/|εk|)τN
s (k), (42)

with τN
s (k) being the SRT in the normal state. Due to the factor

Ek/|εk| in Eq. (42), no matter in the strong- or weak-scattering
regime, the SRT for the quasiparticle with the momentum
around kF is enhanced compared to the normal one.

Finally, based on Eq. (42), we calculate the total SRT of the
quasiparticle, written as [9,102]

1

τs

=
∑

k
1

τN
s (k)

|εk|
Ek

[f (Ek↑) − f (Ek↓)]∑
k[f (Ek↑) − f (Ek↓)]

. (43)

With the small spin polarization, the spin polarization is limited
to the region around the Fermi surface, and hence in Eq. (43),
τN
s (k) ≈ τN

s (kF ). Accordingly, from Eq. (43), one obtains

1

τs

≈ 1

τN
s

1

P0nq

m∗

2π
(μq

↑ − μ
q

↓)
[
f (
√

μ2 + |�|2) − 2f (|�|)].
(44)

Furthermore, when μ � |�| and μ
q

↑ ≈ −μ
q

↓ ≡ δμ due to the
small spin polarization, one obtains

1

τs

≈ 1

τN
s

1

P0nq

2m∗

π
|δμ|f (|�|) = Q

1

τN
s

, (45)

with Q ≡ 1
P0nq

2m∗
π

|δμ|f (|�|). Here, with |�| = 0.1, 0.3 and
0.5 meV, 1/Q is calculated to be 1.7, 2.7, and 3.3, in good
agreement with the numerical results. From Eq. (45), this
shows that due to the order parameter, the SRT can be enhanced
by several times and increases with the increase of the order
parameter. Finally, it is addressed that we also consider the
influence of the inelastic quasiparticle-quasiparticle scattering
on the quasiparticle spin relaxation, which is proven to be inef-
ficient even with the low impurity density ni = 10−3ne [103].

2. Quasiparticle spin relaxation with a supercurrent

In this part, we consider the influence of the supercurrent or
superconducting velocity on the quasiparticle spin relaxation
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FIG. 8. Impurity density [(a) and (b)] and superconducting velocity [(c) and (d)] dependencies of the SRTs. In (a) and (c) [(b) and (d)],
|�| = 0.01 (0.5) meV. Specifically, in (a) and (b), the SRTs are plotted with different superconducting velocities vs = 0 (the red solid curve
with squares), 0.1kF/m∗ (the blue dashed curve with diamonds) and 0.5kF/m∗ (the green chain curve with circles). In (c) and (d), the SRTs
are presented with different impurity densities ni/ne = 0.005 (the red solid curve with squares) and 1 (the blue dashed curve with squares).
Finally, with the branch-mixing scattering removed, in (c) and (d), the SRTs are shown by the cyan (yellow) dashed curve with crosses (circles)
when ni/ne = 0.005 (1).

with small and large order parameters |�| = 0.01 and 0.5
meV, respectively. The superconducting velocity can cause
the tilt of the quasiparticle energy spectrum and hence
modifies the quasiparticle distribution (refer to Sec. III B 1),
which is expected to cause rich physics in the quasiparticle
spin relaxation. It is assumed that the condensation process
associated with the annihilation of the quasielectron and
quasihole is slow compared to the spin relaxation rate. Here,
we first describe the rich phenomenon from the impurity
density and superconducting velocity dependencies of the
quasiparticle SRTs.

Specifically, in Figs. 8(a) and 8(b), the impurity den-
sity dependencies of the SRTs are plotted with different
superconducting velocities vs = 0 (the red solid curve with
squares), 0.1kF/m∗ (the blue dashed curve with diamonds)
and 0.5kF/m∗ (the green chain curve with circles). In Fig. 8(a),
with an extremely small order parameter |�| = 0.01 meV, it
can be seen that in the weak- (strong) scattering limit, the SRT
can be enhanced (suppressed) by the superconducting velocity
when vs � 0.5kF/m∗. Moreover, with the increase of the
superconducting velocity, the boundary between the weak- and
strong-scattering regimes remains unchanged. Anomalously,
when the system enters into the strong-scattering regime,
for vs � 0.1kF/m∗, the SRT becomes insensitive to the

momentum scattering. However, when the order parameter
is large enough with |�| � 0.1 meV, the behaviors of the SRT
become different. Specifically, it can be seen from Fig. 8(b)
that when |�| = 0.5 meV, in the weak- (strong) scattering
regime, the SRT can be either enhanced or suppressed
(suppressed) by the superconducting velocity. In particular,
for the superconducting velocity vs = 0.1kF/m∗, the boundary
between the weak- and strong-scattering regimes is shifted,
which arises at the larger impurity density and remains
unchanged with the further increase of the superconducting
velocity (e.g., vs = 0.5kF/m∗).

To see the role of the superconducting velocity on the
quasiparticle spin relaxation more clearly, we further calculate
the superconducting velocity dependencies of the SRTs with
different impurity densities, shown in Figs. 8(c) and 8(d)
at low and high impurity densities with |�| = 0.01 and
0.5 meV. Specifically, in Fig. 8(c), one finds that when
the order parameter is extremely small (|�| = 0.01 meV),
with the increase of the superconducting velocity, in the
weak scattering regime with ni/ne = 0.005, the SRT first
increases and then becomes insensitive to the superconducting
velocity; whereas in the strong-scattering regime, the SRT
first decreases rapidly and then increases. However, when
the order parameter becomes larger (with |�| � 0.1 meV),
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the response of the SRTs to the superconducting velocity
also becomes very different. Specifically, it can be seen from
Fig. 8(d) that when |�| = 0.5 meV, with the increase of
the superconducting velocity, the SRT in the weak-scattering
regime (ni/ne = 0.005) first increases, then decreases and
finally becomes insensitive to the superconducting velocity;
whereas in the strong-scattering regime (ni/ne = 1), the SRT
decreases monotonically.

Before a detailed explanation for the rich behaviors of
the quasiparticle spin relaxation in the impurity density and
superconducting velocity dependencies, we first address two
important influences of the superconducting velocity on the
quasiparticle state. On one hand, when a supercurrent exists,
as addressed in Sec. III B 1, the quasiparticle energy spectrum
is tilted by the superconducting velocity, and hence a blocking
region can appear. Around the blocking region, the quasipar-
ticle Fermi surface emerges, which consists of the electron-
and holelike Fermi arcs (refer to Figs. 1 and 2). On the other
hand, only when |�| � 0.1 meV, due to the superconducting
velocity, the branch-mixing scattering [36,37] can be efficiently
triggered due to the tilt of the energy spectrum (refer to Fig. 2).
When |�| → 0, the branch-mixing scattering is forbidden
because the coherence prefactor (≈εk/|εk| + εk′/|εk′ |) tends
to zero in the momentum scattering [Eq. (30)].

a. Quasiparticle spin relaxation in a Fermi arc. We first
analyze the quasiparticle spin relaxation with extremely small
order parameters (|�| � 0.1 meV). As addressed above, the
branch-mixing scattering for the quasiparticle is forbidden,
indicating that the electron- and holelike Fermi arcs are
independent when the condensation process is slow enough.
When vs � 0.1kF/m∗, the quasiparticle distribution enters
into the degenerate regime (refer to Fig. 5), and the thermal
excitations of the quasiparticles happen around the Fermi arcs.
In this situation, the quasiparticle spin relaxation can be simply
understood by only analyzing the Fermi arc. Specifically, the
angular average of the effective magnetic field in one Fermi
arc, i.e., 〈�k〉a , is not zero. By writing the effective mag-
netic field as �k = (�k − 〈�k〉a) + 〈�k〉a ≡ �eff

k + 〈�k〉a ,
one finds that around one Fermi arc, �eff

k plays the role of the
effective magnetic field (inhomogeneous broadening [9,87])
and 〈�k〉a acts as an effective Zeeman field. Specifically, at
low temperature, the effective Zeeman field can cause the
spin oscillations even in the strong-scattering regime (refer
to Appendix).

Moreover, when |〈�k〉a| is comparable to |�eff
k |, 〈�k〉a

plays marginal role on the spin relaxation, whereas �eff
k leads

to the spin relaxation [6,9,104]. In particular, one finds that
the magnitude of �eff

k strongly depends on the direction of the
momentum. Accordingly, around one Fermi arc, the variation
of momentum direction can cause the variations of both the
direction and magnitude of the effective magnetic field, acting
as the angle-dependent and modular-dependent inhomoge-
neous broadenings, respectively. In this situation, even due to
the elastic scattering, the module-dependent inhomogeneous
broadening is triggered [102], which is enhanced by the
momentum scattering. Nevertheless, the motional narrowing
effect can suppress the spin relaxation in the strong-scattering
regime [40]. Thus the competition of the two trends leads
to the insensitiveness of momentum scattering dependence of

the SRT in the strong-scattering regime. The above features
for the spin relaxation in the strong-scattering regime actually
provide a method for experimentally verifying the existence
of the Fermi arc.

The Fermi arc structure also influences the quasiparticle
spin relaxation in the weak-scattering regime. By assuming
that the proportions of the spin polarization carried by the
electron- and holelike branches are Pe and 1 − Pe, respectively.
Then, due to the separations of the electronlike (holelike)
Fermi arc, the angular-averaged effective magnetic field mag-
nitude is estimated to be 〈|�eff

k |〉a ≈ Pe|�k| [(1 − Pe)|�k|],
and the momentum scattering time becomes τ ′

k ≈ τN
k /Pe

[τN
k /(1 − Pe)]. Obviously, 〈|�eff

k |〉aτ ′
k ≈ |�k|τN

k , and hence
the boundary between the weak- and strong-scattering regimes
remains unchanged in the presence of the supercurrent.
Moreover, with Pe around 1/2, the angular average of
the momentum scattering time can be estimated by 〈τ ′

k〉 =
Pe(τN

k /Pe) + (1 − Pe)τN
k /(1 − Pe) = 2τN

k . Then when vs �
0.1kF/m∗, the SRT in the weak-scattering regime is enhanced
to be two times of the one with vs = 0, which agrees with the
numerical calculation in Figs. 8(a) and 8(c) fairly well. It is
emphasized that these estimations are based on the Fermi arcs,
which are only established when vs � 0.1kF/m∗.

Facilitated with these understandings, we then analyze the
superconducting velocity dependencies of the SRT, explicitly
shown in Fig. 8(c). When the superconducting velocity is small
(vs � 0.1kF/m∗), there still exists considerable quasiparticle
population in the region with kx > 0. In this situation, the
momentum scattering time increases from τN

k to 2τN
k with the

increase of the superconducting velocity. Hence, in the weak-
(strong) scattering regime, the SRT increases (decreases) with
the increase of the superconducting velocity. Whereas when
vs � 0.1kF/m∗, the physics can be simply understood based on
the Fermi arc as addressed. Accordingly, in the weak-scattering
regime, the SRT becomes two times of the one with vs = 0, and
remains unchanged with the increase of the superconducting
velocity. However, in the strong-scattering regime, with the
increase of the superconducting velocity, 〈�k〉a decreases,
and the module-dependent inhomogeneous broadening is sup-
pressed. Hence, with the momentum scattering time relatively
unchanged, the SRT in the strong-scattering regime increases
with the increase of the superconducting velocity.

b. Branch-mixing–induced spin relaxation channel. We
then focus on the quasiparticle spin relaxation with finite order
parameter (|�| � 0.1 meV). We first explain the shift of the
boundary between the weak- and strong scattering regimes
due to the superconducting velocity when |�| = 0.5 meV
[Fig. 8(b)]. It is noticed that when |�| = 0.5 meV with vs = 0,
from Eq. (37), one finds that the SOC around the Fermi
momentum is markedly suppressed for the quasiparticles.
Due to the supercurrent, before the blocking region appears
(vs � 0.14kF/m∗), the quasiparticle populations are shifted
away from the Fermi momentum. This enhances not only the
inhomogeneous broadening but also the momentum scattering
time due to the suppression of the phase space available
for the quasiparticle scattering. Thus, when vs = 0.1kF/m∗,
these two responses to the supercurrent jointly lead to the
shift of the boundary between the weak- and strong-scattering
regimes to a larger impurity density. Nevertheless, once the
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blocking region forms (e.g., vs = 0.5kF /m∗), the influence
of the superconducting velocity on the boundary between the
weak- and strong-scattering regime is similar to the case with
extremely small order parameter addressed above. Thus, when
vs = 0.5kF/m∗ in Fig. 8(b), the boundary between the weak-
and strong-scattering regimes remains unchanged.

We then analyze the superconducting velocity dependen-
cies of the SRTs, shown in Fig. 8(d). Unlike the situation
with an extremely small order parameter, the branch-mixing
scattering can be efficiently triggered in the presence of the
blocking region. Here, the role of the branch-mixing scattering
on the quasiparticle spin relaxation is revealed by comparing
the SRTs with and without the branch-mixing scattering. In
Fig. 8(d), with the branch-mixing scattering switched off,
in the strong- (weak) scattering regime, it is shown by the
yellow (cyan) dashed curve with circles (crosses) that the
SRTs are much larger than (comparable to) the ones with
the branch-mixing scattering when vs � 0.14kF/m∗. Hence
the branch-mixing scattering plays dominant (marginal) role
on the quasiparticle spin relaxation in the strong- (weak)
scattering regime in the presence of the blocking region. It is
noted that the spin relaxation channel due to the branch-mixing
scattering resembles the one due to the intervalley scattering
shown in our previous studies on the electron spin relaxations
in monolayer rippled [105] and bilayer [106] graphene or
monolayer MoS2 [107].

Finally, we address a new feature in the weak-scattering
regime when |�| = 0.5 meV compared to the case with
extremely small order parameter |�| = 0.01 meV. In Fig. 8(d),
one notices that when |�| = 0.5 meV with ni/ne = 0.005,
with the increase of the superconducting velocity in the
region 0.1kF/m∗ � vs � 0.3kF/m∗, the SRT is suppressed.
This suppression of the SRT comes from the quasiparticle
density dependencies on the superconducting velocity (refer
to Fig. 5). When 0.1kF/m∗ � vs � 0.3kF/m∗, the system lies
in the crossover between the nondegenerate and degenerate
limits. As predicted in the Brooks-Herring formula [108], in
the nondegenerate regime, the momentum scattering due to
impurities is enhanced with the increase of the quasiparticle
density, owing to the increase of the phase space available for
the quasiparticle scattering; whereas in the degenerate regime,
the quasiparticle-impurity scattering becomes insensitive to
the quasiparticle density [6,9]. Hence, when vs � 0.1kF/m∗,
the SRT first decreases and then becomes unchanged with the
increase of the superconducting velocity.

V. CONCLUSION AND DISCUSSION

In conclusion, we have investigated the DP spin relaxation
for the quasiparticle with a novel superconducting-velocity–
tunable state in GaAs (100) QWs in proximity to an s-wave
superconductor, by the KSBEs derived in the quasiparticle ap-
proximation. In the superconducting QW, the superconducting
velocity induced from the superconducting phase is shown
to cause the tilt of the quasiparticle energy spectrum. It is
found that when the quasiparticle energy spectrum is tilted
to be smaller than the chemical potential, a blocking region
corresponding to the negative excitation energy appears, which
is in the crescent shape. The existence of the blocking region

can significantly influence the Cooper pairings, quasiparticle
density and momentum current in QWs.

Specifically, the center-of-mass momentum q is carried
by the Cooper pairs, with the anomalous correlations only
existing between the states with momentum k + q/2 and
−k + q/2. Moreover, the Cooper pairings around the elec-
tron Fermi surface are efficiently suppressed. Furthermore,
the quasiparticle density increases with the increase of the
superconducting velocity. Particularly, the degenerate regime
can be realized and the Fermi surface around the blocking
region for the quasiparticles appears. The quasiparticle Fermi
surface is constituted by the electron- and holelike Fermi arcs.
Finally, it is revealed that when the blocking region appears,
the momentum current contributed by the quasiparticles flows
in the opposite direction to the one carried by the Cooper
pairs. Thus, in the superconducting velocity dependence of the
momentum current, a peak arises due to the competition of the
Cooper pairs and quasiparticles in the blocking region, whose
appearance corresponds to the emergence of the blocking
region.

We then study the DP spin relaxation for the quasiparticles
in the superconducting QWs by the KSBEs. The KSBEs
for the quasiparticle is set up based on the quasiparticle
approximation, in which the SOC and quasiparticle-impurity
scattering are explicitly considered. By using the KSBEs, the
SRTs without and with the supercurrent are calculated. Rich
physics is revealed. Without the supercurrent, we address that
the branch-mixing scattering [36,37] due to the impurity is
forbidden, indicating that the electron- and holelike branches
are independent and hence only the intrabranch spin relaxation
channel exists. In this situation, when |�| tends to zero, the
SRT recovers to the normal one. Whereas with finite order
parameter, we find that compared to the normal state, both
the SOC and quasiparticle-impurity scattering are efficiently
suppressed due to the same coherence factor |εk|/Ek. This
leads to the enhancement of the SRT in both weak- and
strong-scattering regimes with the boundary between the
weak- and strong-scattering regimes unchanged.

When the supercurrent is turned on, the Fermi arc has
intriguing effect on the DP spin relaxation, which exhibits
very different physics depending on the magnitude of the
order parameter. Specifically, when the order parameter is
extremely small (e.g., |�| = 0.01 meV), the branch-mixing
scattering is still forbidden because the coherence factor
(≈εk/|εk| + εk′/|εk′ |) tends to be zero in the quasiparticle-
impurity scattering, indicating that the electron- and holelike
Fermi arcs are independent. Anomalous features are revealed
for the quasiparticle spin relaxation at the Fermi arc in the
strong scattering regime. Specifically, on one hand, the spin
oscillations can be induced by the superconducting velocity; on
the other hand, the SRT becomes insensitive to the momentum
scattering. The latter feature is in contrast to the motional
narrowing feature in the conventional DP relaxation [40] in
which the spin relaxation is suppressed by the momentum
scattering.

With the finite order parameter (|�| � 0.1 meV), the
situation becomes different. It is revealed that the tilt of the
energy spectrum can trigger the branch-mixing scattering.
In this situation, there exist not only the intrabranch spin
relaxation channel, but also the interbranch one. Furthermore,
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we reveal the role of the intra- and interbranch spin relaxation
channels on the spin relaxation in both the weak- and strong
scattering regimes. Specifically, in the weak-scattering regime,
the intrabranch spin relaxation channel is dominant; whereas in
the strong-scattering regime, the interbranch channel becomes
dominant when the blocking region appears. Moreover, it
is found that in contrast to the situation with an extremely
small order parameter, in the strong-scattering regime, no spin
oscillation occurs and the spin relaxation is suppressed by the
momentum scattering.

Up till now, the predicted Fermi arc induced by the super-
current has not yet been experimentally reported and we expect
that our work will bring experimental attention. Nevertheless,
it is noted that the experimental observation of the Doppler
shift was realized in the Andreev reflection in the InAs QWs
contacted by Nb electrodes [43]. Accordingly, one expects that
for the superconducting-velocity–tunable quasiparticle state in
the QWs, the suppressed Cooper pairings, large quasiparticle
density, and nonmonotonically tunable momentum current
can be directly measured, which reflects the information of
the tilted quasiparticle energy spectrum and the emergence
of the blocking region. For the quasiparticle spin relaxation,
when the order parameter is extremely small as reported in
Ref. [46] (|�| = 46 μeV), in the presence of the supercurrent,
the spin oscillations and the insensitiveness of the SRT on the
impurity density can provide the evidence for the existence of
the Fermi arcs; when the order parameter is finite, in the strong-
scattering regime, the absence of the spin oscillations and the
suppression of the SRT by the relatively large superconducting
velocity (larger than the critical velocity) show the effect
of the branch-mixing scattering on the quasiparticle spin
relaxation.

Finally, we point out that the existence of the Fermi arcs can
be markedly influenced by the dynamics of the quasiparticle
condensation. It is important that the condensation rate is
slower than the spin relaxation one. However, up till now,
the details of the condensation process are not clear in super-
conductors [84–86], not to mention in the system proximity to
a superconductor. Therefore the study on the spin dynamics
and the existence of the Fermi arc can even shed light on the
condensation process.
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FIG. 9. Temporal evolution of the spin polarization in the strong
scattering regime with extremely small order parameter |�| =
0.01 meV (the red solid curve) and finite order parameter |�| =
0.5 meV (the green chain curve). vs = 0.1kF /m∗ The impurity
density is ni/ne = 1, indicating that the system lies in the strong-
scattering regime. The blue dashed curve represents the situation by
switching off the branch-mixing scattering.

APPENDIX: SPIN OSCILLATIONS INDUCED BY
SUPERCONDUCTING VELOCITY

In this appendix, we show the spin oscillations induced by
the superconducting velocity in the strong-scattering regime
with extremely small order parameter. It has been addressed in
Sec. IV B 2 that the angular average of the effective magnetic
field in one Fermi arc is not zero, which acts as an effective
Zeeman field. Accordingly, even in the strong-scattering
regime, this effective Zeeman field can lead to spin oscillations.

In Fig. 9, it is shown by the red solid curve that when
the order parameter is extremely small (|�| = 0.01 meV),
in the strong-scattering regime (ni/ne = 1) with the super-
current (vs = 0.1kF /m∗), the spin polarization oscillates in
the temporal evolution. Whereas with a finite order parameter
|�| = 0.5 meV, it is shown by the green chain curve that the
oscillations vanish. This is because in the strong-scattering
regime here, the triggered branch-mixing scattering becomes
important. Thus the quasielectron can feel the SOC around
the Fermi surface, whose angular average is exactly zero. By
arbitrarily switching off the branch-mixing scattering, the spin
oscillations of the spin polarization occur, shown by the blue
dashed curve.
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