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The combined effect of a lateral square superlattice potential and the Coulomb interaction on the ground
state of a two-dimensional electron gas in a perpendicular magnetic field is studied for different rational values
of �, the inverse of the number of flux quanta per unit cell of the external potential, at filling factor ν = 1 in
Landau-level N = 0. When Landau-level mixing and disorder effects are neglected, increasing the strength W0

of the potential induces a transition at a critical strength of W
(c)
0 from a uniform and fully spin-polarized state to

a two-dimensional charge density wave (CDW) with a meronlike spin texture at each maximum and minimum
of the CDW. The collective excitations of this “vortex CDW” are similar to those of the Skyrme crystal that is
expected to be the ground-state near filling factor ν = 1. In particular, a broken U (1) symmetry in the vortex
CDW results in an extra gapless phase mode that could provide a fast channel for the relaxation of nuclear spins.
The average spin-polarization Sz changes in a continuous or discontinuous manner as W0 is increased depending
on whether � ∈ [1/2,1] or � ∈ [0,1/2]. The phase mode and the meronlike spin texture disappear at a large
value of W0 leaving as the ground state a partially spin-polarized CDW if � �= 1/2 or a spin-unpolarized CDW
if � = 1/2.
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I. INTRODUCTION

The two-dimensional electron gas (2DEG) in a perpen-
dicular magnetic field has a very rich phase diagram that
includes several phases, such as the Laughlin liquids that give
rise to the integer and quantum Hall effects [1], the Wigner
crystal at a small filling factor in each Landau level [2,3], the
bubble crystals and the stripe phase in higher Landau levels
[4], and the Skyrme crystal [5,6] near-filling factor ν = 1 in
the lowest Landau level. The phase diagram is even more
complex when systems with extra degrees of freedom, such as
double-quantum wells (DQWs), are considered [7]. In DQWs,
the orientation of the pseudospin vector associated with the
layer degree of freedom can be modified by changing the
tunneling and electrical bias between the layers.

Another way to modify the properties of the 2DEG is by the
addition of a lateral two-dimensional superlattice patterned on
top of the GaAs/AlGaAs heterojunction hosting the 2DEG
that creates a spatially modulated potential at the position
of the 2DEG [8]. The effect of a one-dimensional periodic
potential on the Landau levels is particularly interesting
[9,10] since it leads to commensurability problems due to
the presence of different length scales: the lattice constant of
the external potential a0, the magnetic length � = √

�c/eB

(B is the magnetic field), and the Fermi wavelength. Novel
magnetoresistance oscillations with periods different than that
of the well-known Shubnikov–de Haas oscillations have been
detected in such systems. Even more interesting is the effect
of a periodic two-dimensional potential on the band structure
of the 2DEG [11–13]. The intricate pattern of eigenvalues
that results from such a potential has been studied by many
authors and is known as the Hofstadter butterfly spectrum
[14]. Its observation in the GaAs/AlGaAs heterojunction
is very difficult due to screening and disorder effects, but
experimental signatures in magnetotransport experiments in
2DEGs with lateral surface superlattice potentials with periods
on the order of 100 nm and less have been reported [15–17].

Interest in this problem has been revived recently by the
experimental observations of Hofstadter’s butterfly spectrum
that uses the moiré superlattices that arise from graphene
or bilayer graphene placed on top of the hexagonal boron
nitride [18,19]. Another interest of superlattice potentials is
their use to create artificial lattices. For example, a lateral
superlattice with a honeycomb crystal structure has recently
been proposed to create an artificial graphenelike system
[20,21] in a GaAs/AlGaAs heterojunction.

In this paper, we study theoretically the effect of a square
lattice lateral potential with a period a0 on the ground state of
the 2DEG in the GaAs/AlGaAs heterojunction at filling factor
ν = 1 and in Landau-level N = 0. We include the spin degree
of freedom and use the Hartree-Fock approximation to study
the combined effects of the external potential and the Coulomb
interaction. We assume that the potential is sufficiently weak
so that Landau-level mixing can be neglected. We also ignore
disorder and work at zero temperature. We vary the potential
strength W0 and calculate the ground state for different rational
values of � = ϕ0/Ba2

0 = q/p ∈ [0,1] (where ϕ0 = hc/e is the
flux quantum and q,p are integers with no common factors)
which is the inverse of the number of flux quanta per unit
cell of the surface potential. Our formalism allows for the
formation of uniform as well as spatially modulated ground
states with or without spin texture. Our calculation indicates
that, at a critical value of W

(c)
0 of the external potential, there

is a transition from a uniform fully spin polarized state to a
charge density wave (CDW) with an intricate spin texture.
Each unit cell of this CDW contains two positive and two
negative amplitude modulations, and the vortex spin texture
at each maximum (minimum) resembles that of a positively
(negatively) charged meron. The two positively (negatively)
charged merons in each unit cell have the same vorticity but
a global phase that differs by π . These meronlike textures,
however, are not quantized since the amplitude of the CDW
varies continuously with W0. In the vortex CDW, as we
call it, the average spin-polarization Sz varies with W0 in a
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continuous or discontinuous manner depending on whether
� ∈ [1/2,1] or � ∈ [0,1/2] and saturates at a finite positive
value of Sz that depends only on � in most cases. In the
special case of � = 1/2, the vortex-CDW phase is absent,
and the transition is directly from a fully spin-polarized and
uniform 2DEG to an unpolarized CDW. The phase diagram
for � ∈ [0,1/2] is richer than that of � ∈ [1/2,1] as it involves
the transition between the vortex CDW and its conjugate
phase, the antivortex CDW, obtained by reversing Sz(r) and
inverting the vorticity of all merons. This transition between
the two CDWs is accompanied by a discontinuous change in
Sz that becomes continuous when the Zeeman coupling goes to
zero.

We study the properties of the vortex CDW at different
values of � and with a particular emphasis on its collective ex-
citations which we derive using the generalized random-phase
approximation (GRPA). The vortex CDW has collective modes
that have much in common with the collective excitations of
the Skyrme crystal [22] that is expected to be the ground-state
near-filling factor ν = 1 in N = 0. Namely, the broken U (1)
symmetry in the vortex-CDW phase leads to a new gapless
mode that can provide a fast channel for the relaxation of
nuclear spins [23]. This mode and the meronlike spin texture
disappear at larger values of the external potential leaving a
ground state that is either unpolarized if � = 1/2 or partially
polarized if � �= 1/2.

Our paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of the 2DEG in the presence of the lateral
square lattice potential and briefly review the Hartree-Fock
and generalized random-phase approximation that we use to
compute the density of states, the density, the spin profiles,
and the collective excitations of the various phases. In Sec. III,
we present our numerical results for the phase diagram of
the 2DEG as a function of the potential strength W0 and the
inverse magnetic flux per unit cell �. We conclude in Sec. IV
with a discussion on the experimental detection of the new
vortex-CDW state.

II. HAMILTONIAN OF THE 2DEG IN
AN EXTERNAL POTENTIAL

The system we consider is a 2DEG in a GaAs/AlGaAs
heterojunction or quantum well submitted to a perpendicular
magnetic-field B = B ẑ and to a lateral superlattice potential
Ve(r). The coupling of the electrons to this external po-
tential is given by He = −e

∫
dr Ve(r)ne(r), where ne(r) =∑

α=± ne,α(r) is the total density operator including both
spin states α = ±1 (we take e > 0). We assume that only
the Landau-level N = 0 is occupied but our calculation can
easily be generalized to any Landau level by changing the
effective interactions H (q) and X(q) and the form factor
F (q). The Hamiltonian of the interacting 2DEG is given in
the Hartree-Fock approximation by

HHF = −Nϕ

�Z

2

∑
α

αρα,α(0)

− eNϕ

S

∑
q

∑
α

Ve(−q)F (−q)ρα,α(q)

+Nϕ

∑
α,β

∑
q �=0

H (q)〈ρα,α(−q)〉ρβ,β (q)

−Nϕ

∑
α,β

∑
q

X(q)〈ρα,β (−q〉ρβ,α(q), (1)

where S is the 2DEG area, Nϕ = S/2π�2 is the Landau-level
degeneracy, and the form factor for the N = 0 Landau level is

F (q) = e−q2�2/2, (2)

where � = √
�c/eB is the magnetic length. The averages

are over the Hartree-Fock ground state of the 2DEG. The
noninteracting single-particle energies, measured with respect
to the kinetic-energy �ωc/2, are given by

Eα = α
�Z

2
, (3)

where the Zeeman energy is �Z = |g∗|μBB with g∗ as the
effective g factor of bulk GaAs and μB is the Bohr magneton.
In some experiments on skyrmions, the effective g factor was
tuned in the range of −0.11 to 0.065 by applying hydrostatic
pressure to a sample of a GaAs/AlGaAs modulation-doped
quantum well [24]. In our paper, we will thus consider that
�Z is not determined by the magnetic field but is instead a
parameter than can be adjusted.

The Hartree and Fock interactions in N = 0 are given by

H (q) =
(

e2

κ�

)
1

q�
e−q2�2/2,

X(q) =
(

e2

κ�

)√
2

∫ ∞

0
dx e−x2

J0(
√

2xq�), (4)

where κ = 12.9 is the dielectric constant of GaAs. Finally, the
operators ρα,β (q) are defined by

ρα,β (q) ≡ 1

Nϕ

∑
X,X′

e−(i/2)qx (X+X′)δX,X′+qy�2c
†
X,αcX′,β , (5)

where c
†
X,α is the operator that creates an electron with guiding-

center index X (in the Landau gauge) and spin α. The four
operators ρα,β (q) are related to the averaged electronic and
spin densities on the xy plane by

nα(r) = 1

2π�2

∑
q

〈ρα,α(q)〉e−q2�2/4eiq·r, (6)

Sx(r) = 1

2π�2

∑
q

Re
[〈ρ+,−(q)〉e−q2�2/4eiq·r], (7)

Sy(r) = 1

2π�2

∑
q

Im
[〈ρ+,−(q)〉e−q2�2/4eiq·r], (8)

Sz(r) = �

2
[n+(r) − n−(r)]. (9)

The 〈ρα,β (q)〉′s can be considered as the order parameters of
an ordered phase of the 2DEG.
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The averaged Hartree-Fock ground-state energy per elec-
tron at ν = 1 is given by

〈HHF 〉
Ne

= −�Z

2

∑
α

α〈ρα,α(0)〉

− 1

S

∑
q

∑
α

Ve(−q)F (q)〈ρα,α(q)〉

+ 1

2

∑
α,β

∑
q �=0

H (q)〈ρα,α(−q)〉〈ρβ,β (q)〉

− 1

2

∑
α,β

∑
q

X(q)|〈ρα,β(q)〉|2. (10)

The order parameters 〈ρα,β (q)〉 are computed by solving the
Hartree-Fock equation for the single-particle Green’s function
Gα,β (q,τ ) which is defined by

Gα,β (q,τ ) = 1

Nϕ

∑
X,X′

e−(i/2)qx (X+X′)

× δX,X′−qy�2Gα,β(X,X′,τ ), (11)

where

Gα,β (X,X′,τ ) = −〈T cX,α(τ )c†X′,β(0)〉. (12)

They are obtained with the relation,

〈ρα,β (q)〉 = Gβ,α(q,τ = 0−). (13)

The Hartree-Fock equation of motion for the Green’s
function Gα,β(q,iωn) is given [25] by[

iωn − 1

�

(
α

�Z

2
− μ

)]
Gα,β(q,iωn)

= δq,0δα,β − e

�S

∑
q′

Ve(q − q′)F (|q − q′|)

× γq,q′Gα,β (q′,iωn)+1

�

∑
q′ �=q

UH (q−q′)γq,q′Gα,β (q′,iωn)

− 1

�

∑
q′

∑
γ

UF
α,γ (q − q′)γq,q′Gγ,β(q′,iωn), (14)

where

γq,q′ = e−i(q×q′)·̂z�2/2, (15)

and ωn are fermionic Matsubara frequencies, μ is the chemical
potential, and we have defined the potentials,

UH (q) =
∑

α

H (q)〈ρα,α(q)〉, (16)

UF
α,β (q) = X(q)〈ρβ,α(q)〉. (17)

These potentials depend on the order parameters 〈ρα,β (q)〉
that are unknown. The equation of motion for Gα,β(q,iωn)
must thus be solved numerically [25] by using a seed for the
order parameters and then iterate Eq. (14) until a convergent
solution is found. In the present case, the square lattice
structure is fixed by the external potential. We thus try different
seeds corresponding to different possible spin textures and see
if they lead to a converging solution. We compare the energy

of the different solutions that we find and choose as the ground
state the lowest-energy one. We then compute the dispersion
relation of the collective modes of this solution to make sure
that it is a stable solution. The order-parameter space is too big
to ensure that the solution that we retain is the true ground
state of the interacting Hamiltonian. Strictly speaking, the
self-consistent Hartree-Fock approach allows us to find the
lowest-energy state among a set of most likely candidates.

The density of states g(ω) is obtained from the single-
particle Green’s function by using the relation,

g(ω) = −Nϕ

π

∑
α

Im[Gα,α(q = 0,ω + iδ)]. (18)

To find the dispersion relation of the collective modes, we
derive the equation of motion in the generalized random-phase
approximation for the two-particle Green’s function,

χα,β,γ,δ(q,q′; τ ) = −Nϕ〈Tρα,β(q,τ )ργ,δ(−q′,0)〉
+Nϕ〈ρα,β (q)〉〈ργ,δ(−q′)〉. (19)

This equation is

χα,β,γ,δ(q,q′; i�n)

= χ
(0)
α,β,γ,δ(q,q′; i�n)

+ 1

�

∑
ξ,λ

∑
q′′

χ
(0)
α,β,ξ,ξ (q,q′′; i�n)H (q′′)χλ,λ,γ,δ(q′′,q′; i�n)

− 1

�

∑
ξ,λ

∑
q′′

χ
(0)
α,β,ξ,λ(q,q′′; i�n)X(q′′)χλ,ξ,γ,δ(q′′,q′; i�n),

(20)

where �n is a bosonic Matsubara frequency. Equation (20)
represents the summation of bubble (polarization effects) and
ladder (excitonic corrections) diagrams. The Hartree-Fock
two-particle Green’s function (the single-bubble Feynman
diagram with Hartree-Fock propagators) that enters this
equation is obtained from the Hartree-Fock equation of motion
for χα,β,γ,δ(q,q′; τ ) and is given by

[i��n + (Eα − Eβ)]χ (0)
α,β,γ,δ(q,q′,i�n)

= �[γ ∗
q,q′ 〈ρα,δ(q − q′)〉δβ,γ − γq,q′ 〈ργ,β(q − q′)〉δα,δ]

− e

S

∑
q′′

Ve(q − q′′)F (|q − q′′|)[γ ∗
q,q′′ − γq,q′′ ]

×χ
(0)
α,β,γ,δ(q′′,q′,i�n)

−
∑
q′′ �=0

UH (q−q′′)[γ ∗
q,q′′−γq,q′′]χ (0)

α,β,γ,δ(q′′,q′,i�n)

+
∑
α′

∑
q′′

UF
α,α′ (q − q′′)γ ∗

q,q′′χ
(0)
α′,β,γ,δ(q′′,q′,i�n)

−
∑
β ′

∑
q′′

UF
β ′,β(q − q′′)γq,q′′χ

(0)
α,β ′,γ,δ(q′′,q′,i�n).

(21)

By defining the superindices I = (α,β) and J = (γ,δ),
Eq. (20) can be rewritten as a 4 × 4 matrix equation for
the matrix of Green’s functions χI,J . This equation has
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R. CÔTÉ AND XAVIER BAZIER-MATTE PHYSICAL REVIEW B 94, 205303 (2016)

the form [i�nI − F ]χ = B. The matrix F , which depends
only on the 〈ρα,β (q)〉’s, is then diagonalized numerically to
find χI,J . The retarded response functions are obtained with
the analytic continuation i�n → ω + iδ. We compute the
following density and spin responses:

χR
ρi,ρj

(q,q′; ω) = −iNφ[〈[ρi(q,t),ρj (−q′,t ′)]〉θ (t − t ′)]ω,

(22)

where i = n,x,y,z and the operators,

ρx = 1
2 [ρ+,− + ρ−,+], (23)

ρx = 1

2i
[ρ+,− − ρ−,+], (24)

ρz = 1
2 [ρ+,+ − ρ−,−], (25)

ρn = ρ+,+ + ρ−,−. (26)

In a uniform phase, the order parameters 〈ρα,β (q)〉 are finite
only when q = 0, whereas in a two-dimensional CDW, they
can be nonzero each time q = G, where G is a reciprocal
lattice vector of the CDW. For the response function, we have
to compute χR

ρi ,ρj
(q,q; ω) in the uniform phase and χR

ρi ,ρj
(k +

G,k + G′; ω) in the CDW where k is by definition a vector in
the first Brillouin zone of the CDW. In the CDW, the GRPA
matrices F and B have dimensions of 4nR × 4nR , where nR

is the number of reciprocal lattice vectors considered in the
numerical calculation. We typically take nR ≈ 600.

The formalism developed in this section can also be applied
to the 2DEG in graphene if the electrons are assumed to occupy
only one of the two valleys. In Landau-level N = 0 of graphene
(and only in this level), the form factor F (q) and the Hartree
and Fock interactions H (q) and X(q) are the same as those
given in Eqs. (2) and (4).

III. PHASE DIAGRAM FOR ν = 1

We study the phase diagram of the 2DEG at filling factor
ν = 1 in Landau-level N = 0 and at a temperature of T = 0 K.
For the external potential, we choose the simple square lattice
form

Ve(r) = 2Ve

[
cos

(
2π√
2a0

(x + y)

)
+ cos

(
2π√
2a0

(x − y)

)]
,

(27)

so that Ve(q) = SVeδq,G1 in Eq. (1) with the vectors G1 ∈
2π√
2a0

{(1,1),(1,−1),(−1,1),(−1,−1)}. This external potential
tries to impose a two-dimensional density modulation of
the 2DEG with a square lattice constant a0. We allow the
spin texture (if any) to have the bigger lattice constant√

2a0 by considering the order parameters 〈ρα,β (G)〉 with
reciprocal lattice vectors given by G = 2π√

2a0
(n,m), where

n,m = 0, ± 1, ± 2, . . .. The density unit cell has a lattice
constant a0 whereas the magnetic unit cell has a lattice constant√

2a0. For the potential strength, we use W0 = eVeF (G1) [see
Eq. (14)], where G1 = 2π/a0. The critical values of W0 (not
Ve) for the transition between the uniform and the modulated
phases at different values of � are similar. Hereafter, we give all

energies in units of e2/κ�. We make the important assumption
that Landau-level mixing by both the Coulomb interaction and
the external potential can be neglected, i.e., we work in the
limit of a weak superlattice potential. We also neglect disorder
effect and work at zero temperature.

The ratio �/a0 that enters the Hartree-Fock energy and the
equation of motion for the single-particle Green’s function is
given by

�

a0
=

√
1

2π

ϕ0

Ba2
0

≡
√

�

2π
, (28)

where ϕ0 = hc/e is the flux quantum. The important parameter
�−1 is the number of flux quanta piercing a density unit-cell
area. With this definition, the factor F (G1) = e−G2

1�
2/4 =

e−π� . We limit our analysis to � = q/p where q and p are
integers with no common factors.

In Landau-level N = 0, a Wigner crystal [2] with a
triangular lattice can form at sufficiently small filling factor
ν [26]. At ν = 1, however, the ground state of the 2DEG
is a uniform electron liquid with full spin polarization, i.e.,
a quantum Hall ferromagnet [27] (QHF) whose energy per
electron is given by

〈HHF 〉
Ne

= −�Z

2
− 1

2

√
π

2

(
e2

κ�

)
(29)

(neglecting the kinetic energy that is a constant in N = 0).
The QHF remains the ground state even when the Zeeman
coupling goes to zero because a perfect alignment of the
spins minimizes the Coulomb exchange energy [the second
term on the right-hand side of Eq. (29)]. In a uniform state,
the Coulomb-Hartree energy is canceled by the neutralizing
uniform positive background.

A. Case of � ∈ [1/2,1]

We first consider the case of � ∈ [1/2,1]. Figure 1 shows
the ground-state energy and spin-polarization Sz/� as a func-
tion of the potential W0 for � = 1/2,2/3,3/4,4/5,1 and for a
Zeeman coupling �Z = 0.015. The ground state is spatially
uniform and has an energy 〈HHF 〉 and a spin-polarization Sz

that remain constant until a critical field W
(c)
0 ≈ 0.11. This

uniform state is described by only one order parameter, i.e.,
〈ρ+,+(0)〉 = 1 and is fully spin polarized, i.e., the spin per
electron is Sz = �/2. The corresponding change in the density
of states (DOS) with W0 is shown in Fig. 2. In the absence
of an external potential and a Coulomb interaction, the DOS
has two peaks at energies E± = ±�Z/2 corresponding to the
two spin states. With the Coulomb interaction, the Zeeman
gap �Z is strongly renormalized [see Fig. 2(a)] as is well
known. When the external potential is present, the DOS for
each spin orientation has p peaks corresponding to the number
of sub-bands expected when an electron is submitted to both
a magnetic field and a weak periodic potential [14]. This is
clearly visible in Figs. 2(a), 2(d), and 2(e) for � = 1,2/3,4/5.
The external potential increases the width of the peaks in the
DOS and decreases the renormalized Zeeman gap (which is
also the transport gap). We remark that the rapid oscillations
in some of the graphs at � = 1 are a numerical artifact. They
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FIG. 1. (a) Hartree-Fock energy per electron and (b) average spin
per electron Sz/� as a function of the applied external field W0 for
different values of � at filling factor ν = 1 in Landau-level N = 0
and for the Zeeman coupling �Z/(e2/κ�) = 0.015.

depend strongly on the number of reciprocal lattice vectors
kept in the calculation.

If we enforce the uniform solution beyond the critical
value of W

(c)
0 ≈ 0.11, we find that the transport gap closes

at W0 ≈ 0.15 for � = 1 where the system becomes metallic.
Our code no longer converges in this case. But this transition
to a metallic state does not occur because the uniform state
becomes unstable at W

(c)
0 . The stability of a state is evaluated

by computing the dispersion relation of its collective modes.
For the uniform state, the collective excitations reduce to a
spin-wave mode. When W0 = 0, the spin-wave dispersion is
given by [28]

ωSW (k) = �Z +
(

e2

κ�

)
[X(0) − X(k)]. (30)
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FIG. 2. Density of states for the uniform fully spin-polarized
phase at ν = 1 in Landau-level N = 0 for Zeeman coupling �Z =
0.015. (a)–(c) � = 1 and W0 = 0,0.05,0.1, respectively; (d) and (e)
� = 2/3 and W0 = 0.05,0.1, respectively; (f) � = 4/5 and W0 = 0.1.
The rapid oscillations in some of the graphs are a numerical artifact.
All energies are in units of e2/κ�.
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FIG. 3. Dispersion relation of the spin-wave mode in the uniform
fully spin-polarized state at ν = 1, N = 0 for � = 1, �Z = 0.015
and different values of the external potential W0. The wave-vector
k follows the path � − X′ − M ′ − � along the irreducible (density)
Brillouin zone of the square lattice. All energies are in units of e2/κ�.

This mode is gapped at the bare Zeeman energy and saturates at
ωSW (k → ∞) = �Z + √

π
2 ( e2

κ�
). Figure 3 shows its dispersion

for � = 1 and W0 = 0,0.05,0.10,0.11. The wave-vector k
runs along the path � − X′ − M ′ − �, i.e., along the edges of
the irreducible density Brillouin zone [with � = (0,0), M ′ =
(1/

√
2,0), X′ = (1/2

√
2,1/2

√
2) in units of 2π/a0]. The spin-

wave mode softens at a finite wave-vector k as W0 increases so
that the uniform state becomes unstable at W

(c)
0 ≈ 0.11, which

is also the value at which the 2DEG is seen to enter a new phase
in Fig. 1(a). When plotted in the reduced zone scheme as in
Fig. 3, the spin-wave mode is split into several branches that
accumulate into a very dense manifold near ωSW (k → ∞).
Only some of these branches are shown in Fig. 3 since we
are interested only in the low-energy sector. The spin-wave
dispersion is obtained by following the pole of the response
functions χR

ρ+,ρ− (k,k; ωt) with ρ± = ρx ± iρy for different
values of k. We remark that the softening of the spin-wave
mode by a one-dimensional external potential was reported
previously by Bychkov et al. [29]. These authors suggested
that the resulting condensation of the spin excitons at the
softening wave vector would create a new spin-density-wave
ground state. This is precisely what we find but this time for a
two-dimensional surface potential.

The ground state in a small region of W0 after W
(c)
0 is

a charge density wave with a vortex spin texture. Hereafter,
we refer to this state as the vortex CDW. The range of W0

where the vortex CDW is the ground state depends on � and
�Z . The electronic density and spin texture of the vortex
CDW are shown in Fig. 4 for the parameters � = 1 and
W0 = 0.12, �Z = 0.015. The value of W0 = 0.12 is close
to W

(c)
0 so that the amplitude of the CDW in this figure is

small. The amplitude increases with W0 however. Minima and
maxima of the CDW have the same amplitude, and there is no

x/a0

y/
a 0
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1.00
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FIG. 4. Vortex-CDW phase of the 2DEG at ν = 1 in Landau-
level N = 0 for W0 = 0.12 and Zeeman coupling �Z = 0.015. The
electronic density n(r) is in units of (2π�2)−1. The vector field shows
the vortex structure on the xy plane for the parallel component of the
spin vector. All energies are in units of e2/κ�.

net-induced charge in a unit cell as expected. The spin-density
Sz(r) (not shown in the figure) varies only slightly.

The spin texture of the vortex CDW is interesting. There is
a 2π spin vortex at each positive and negative modulation of
the density. Since the z component of the spin is everywhere
positive and because of the spin-charge coupling inherent to a
QHF [27], the positive and negative modulations have opposite
vorticities. We could, loosely speaking, refer to the positive and
negative modulations as merons and antimerons. A meron is
an excitation of a unit vector field m(r) that has mz(0) = ±1
at its center and mz(r) = 0 far away from the center where the
vectors lie on the xy plane and form a vortex configuration with
vorticity nv = ±1. As r increases from the meron core, the
spins smoothly rotate up [if mz(0) = −1] or down [if mz(0) =
+1] towards the xy plane. There are four flavors of merons [27]
with a topological charge given by Q = 1

2 [mz(∞) − mz(0)]nv .
In a QHF, merons carry half an electron charge. In our vortex
CDW however, we are dealing with a spin-density S(r) that
does not have |S(r)| = �/2 everywhere in space (the vectors
do not just rotate) so that our merons do not have a quantized
charge. But, for a given sign of Sz(0) the meron and antimeron
have opposite vorticities and so opposite electrical charges.
Moreover, our merons are closely packed in a square lattice
and have a large core so that the spin vector tilts towards the
xy plane but Sz(0) does not go to zero between two adjacent
merons.

In each magnetic unit cell of the vortex CDW, there are two
merons and two antimerons with the same vorticity but oppo-
site global phase for two merons or antimerons. This bipartite
meron lattice is similar to the square lattice antiferromagnetic
state of the Skyrme crystal that was predicted to occur in a
2DEG near (but not at) filling factor ν = 1 in the absence of
an external potential [22]. In the Skyrme crystal, the electrons
(or holes) added to the QHF state at ν = 1 crystallize in the
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FIG. 5. Density of states in the vortex CDW at ν = 1 in
Landau-level N = 0 for � = 2/3, Zeeman coupling �Z = 0.015,
and different values of W0 (all energies are in units of e2/κ�).

form of skyrmions for ν > 1 or antiskyrmions for ν < 1. The
vortex CDW that we find here occurs at precisely ν = 1.

Figure 1(b) shows that the average spin Sz decreases with
W0 in the vortex CDW and saturates at the precise value of
Sz = � − 1/2 for � = 1/2,2/3,3/4. In the saturation region
for Sz, the spin texture has disappeared, and the CDW has very
little modulation in Sz(r). We will call this phase the normal
CDW. There is no saturation for the two cases of � = 4/5,1.
The GRPA indicates that the meron CDW becomes unstable
above W0 ≈ 0.16 for � = 4/5,1 but none of the seeds that we
have tried lead to a stable solution. We thus limit our analysis
to the range of W0 ∈ [0,0.16] for most values of � in this
paper. More work is needed to establish the phase diagram at
larger values of W0. The change in Sz induced by the external
potential should be detectable experimentally. In particular,
the vortex CDW is absent for � = 1/2, and thus the 2DEG
makes a transition from a fully polarized to an unpolarized
CDW with period a0 instead of

√
2a0.

The density of states for the vortex CDW is shown in Fig. 5
for � = 2/3 and W0 = 0.12,0.14,0.18. The sub-band structure
gets more and more different from that of the uniform phase

W0/(e
2/κl)

E
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F
/(

N
ee

2
/κ

l)
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FIG. 6. Behavior with W0 of different contributions to the total
energy of the uniform and vortex-CDW states for � = 1 and the
Zeeman coupling �Z = 0.015.

as W0 increases [compare with Fig. 2(e)]. The electron-hole
gap decreases slowly with W0 in the vortex-CDW and normal-
CDW phases.

Figure 6 shows the Hartree, Fock (or exchange), external
potential, and Zeeman contributions to the total energy of the
vortex CDW and uniform state for � = 1 and Zeeman coupling
�Z = 0.015. The Hartree energy is zero in the uniform phase
and small in the vortex-CDW phase. The Zeeman energy is
also very small in both phases. The competition is between
the Fock and the external potential energies. The former is
minimal in the uniform state and increases with W0 in the
vortex-CDW phase. The latter is zero in the uniform phase but
decreases with W0 in the vortex-CDW state. Figure 6 shows
that the increase in exchange energy is more than compensated
by the decrease in the external potential energy when the vortex
CDW is formed.

The energy of the vortex-CDW state does not depend
on the global phase of its vortices. This U (1) symmetry,
which is broken in a particular realization of the vortex-CDW
state, leads to a gapless phase mode (a Goldstone mode).
This is clearly seen in Fig. 7(b) where the two modes for
ω < 0.05e2/�κ� are the spin-wave mode which is gapped at
�Z and the gapless phase mode. In Fig. 7, � = 2/3, and the
wave-vector k now follows the path � − M − X − � along
the edges of the irreducible magnetic Brillouin zone of the
square lattice [with � = (0,0), M = (1/2

√
2,1/2

√
2), X =

(1/2
√

2,0) in units of 2π/a0]. To obtain the dispersions in
the CDW phases, we have computed the response functions∑

G χR
ρj ,ρj

(k + G,k + G,ω) with j = n,x,y,z keeping the
first 25 reciprocal lattice vectors in the summation. The
summation allows the capture of modes that originate from
a folding of the full dispersion into the first Brillouin zone. It
also captures the electron-hole continuum [30] that starts at
the Hartree-Fock gap. In Fig. 7, we have cut the dispersions
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FIG. 7. Dispersion relations of the collective modes at ν = 1 in
Landau-level N = 0 for � = 2/3 and Zeeman coupling �Z = 0.015.
(a) W0 = 0.1; (b) W = 0.115; and (c) W = 0.13. All energies are in
units of e2/κ�.

at a frequency corresponding to the onset of this continuum.
Figure 7 shows the dispersion for: (a) the uniform phase, (b)
the vortex CDW, and (c) the normal CDW.

The vortex and normal CDWs have phonon modes gapped
by the external potential. The branch we indicate as the
gapped phonon mode in Fig. 7(b) has the strongest peak in
the response function χR

ρn,ρn
(k,k,ω) (no summation over G) as

k → 0 whereas the spin-wave and phase modes are stronger in
χR

ρ+,ρ− (k,k,ω) and χR
ρz,ρz

(k,k,ω), respectively. At W0 = 0.13
for � = 2/3, the ground state has transited to the normal CDW,
and the phase mode is gapped as shown in Fig. 7(c).

B. Case of � ∈ [0,1/2]

The phase diagram for � ∈ [0,1/2] is different from that
of � ∈ [1/2,1]. For � ∈ [0,1/2], we find a transition between
two types of vortex-CDW phases. The first vortex CDW is
the one described in the previous section; the second one, the
antivortex CDW, has the sign of all vortices and Sz inverted
(but different amplitudes for the charge and spin modulations).
This antivortex CDW evolves from a uniform state that has all
spins down as shown in Fig. 8. At �Z = 0, these two CDWs
are degenerate in energy. At finite Zeeman coupling, there is a
crossing between the energy curves of these two phases. The
ground state thus evolves from the uniform state with all spins
up to the vortex CDW, then to the antivortex CDW, and finally
into the normal CDW. Figure 8 shows these transitions for the
special cases of � = 1/3 and �Z = 0.015,0.006,0.002. The
corresponding behavior of Sz is also shown. The region where
Sz varies in each graph is where the vortex (or antivortex) CDW
is the ground state. As the Zeeman coupling gets smaller, this
region increases. The value of W0 for the crossing between
the two vortex-CDW states is shown by the dashed vertical
line in the Sz vs W0 curves. The average spin Sz changes
discontinuously at this point, but this discontinuity goes to zero
as �Z → 0. The value of Sz is always positive, however. For
� ∈ [1/2,1], the energy curve for the antivortex CDW is above
that of the vortex CDW for all values of W0. The two curves
merge at �Z = 0, but there is no crossing between the two
solutions. If we take advantage of the possibility of changing
the value of the g factor independently of the magnetic field
in GaAs/AlGaAs heterojunctions, then it is possible to reduce
the Zeeman coupling and as Fig. 9 clearly shows to increase
the transition region where the vortex CDW is expected.

Figure 9 shows the behavior of Sz in the ground state for � =
1/2,1/3,1/4,1/5 and a very small Zeeman coupling �Z =
0.001. The vertical dashed lines indicate where the transition
between the vortex- and antivortex-CDW phases occurs for
each value of �. The spin starts at Sz/� = 1/2 in the uniform
state then decreases in the vortex CDW (open symbols in
Fig. 9). When the antivortex CDW replaces the vortex CDW
as the ground state of the system, the value of Sz changes
discontinuously. This jump is more apparent for � = 1/5 in
Fig. 9. After this discontinuity, Sz increases (filled symbols in
Fig. 9) until it reaches the finite value of Sz/� = 1

2 − � at large
W0, a value that is independent of the Zeeman coupling �Z .
The behavior of Sz is not monotonous. In the limit �Z → 0,
the Sz curves for the vortex and antivortex CDWs would cross
at Sz = 0, and there would be no discontinuity. In the special
case of � = 1/2, the transition is directly from the uniform
and fully polarized state with Sz/� = 1/2 to the normal CDW
where Sz = 0. There is thus an important discontinuity in Sz

in this case.
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FIG. 8. Energy (left) and corresponding average spin Sz/� per
electron (right) of the vortex CDW (squares) and antivortex CDW
(triangles) for � = 1/3 and Zeeman couplings: (a) and (b) �Z =
0.015; (c) and (d) �Z = 0.006; (e) and (f) �Z = 0.002 in units of
e2/κ�. The vertical dashed lines indicate the value of the potential W0

at which the transition between the two vortex CDWs takes place.

As we mentioned above, our formalism can equally well be
used to discuss the energy of the electron gas in Landau-level
N = 0 in graphene if the electrons are assumed to occupy
only one valley. An exact diagonalization study by Ghazaryan
and Chakraborty [31] for a 2DEG in graphene finds transition
between unpolarized and partially polarized ground states
induced by the external potential when � = 1 (their α = 1).
Equation (14) was also used [32] to study the effect of the
Coulomb interaction on the density of states for graphene in a
modulated potential but the vortex-CDW state that we found
was not considered in that work.

W0/ (e2/ κl)
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Z

0.11 0.12 0.13 0.14
-0.60

-0.40
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0.20
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FIG. 9. Spin-polarization Sz/� as a function of the applied
external potential W0 for several values of � � 1/2 and Zeeman
coupling �Z = 0.001e2/κ�. The vertical dashed lines indicate the
potential strength W0 for each value of � where the transition from
the vortex (filled symbols) to the antivortex CDW (open symbols)
takes place. For � = 1/2, the transition is from the uniform (with
Sz/� = 1/2M) to the normal CDW with Sz = 0.

IV. SUMMARY AND DISCUSSION

We have computed the phase diagram of the 2DEG at
ν = 1 in Landau-level N = 0 in the presence of an applied
external potential with a square lattice periodicity for several
rational values of � ∈ [0,1]. We restricted our analysis to
W0 ∈ [0,0.16]. In this range, the 2DEG evolves first from a
uniform state with full spin polarization, then to a vortex-CDW
state and (if � < 1/2) antivortex-CDW state, and finally
into a normal CDW with no spin texture but with a finite
spin-polarization Sz if � �= 1/2.

The change in the spin-polarization Sz with the applied
field (smooth for � > 1/2 and abrupt for � � 1/2) is one
feature of the phase transition described in this paper that
should be measurable experimentally. Another one is the
gapless spin mode due to the broken U (1) symmetry in the
vortex-CDW phase. The same mode occurs in a Skyrme
crystal. In that system, it was shown that such a mode could
provide a fast channel for the relaxation of the nuclear spin in
nuclear magnetic resonance experiments [23]. Indeed, the bare
Zeeman gap in the dispersion of the spin-wave mode is orders
of magnitude larger than the nuclear spin splitting, impeding
the creation of spin waves by nuclear spins. The softening of
the spin-wave mode in the uniform phase may also lead to an
increase in nuclear spin-lattice relaxation time as suggested by
Bychkov et al. [29].

We have used W0 for the external potential because the
transition from the uniform to the vortex CDW takes place at
roughly the same value of W0 when the potential is expressed
in terms of W0. The actual external potential however is
Ve = F−1(G1)W0 = eπ�W0. This means that the critical field

205303-9
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W
(c)
0 ≈ 0.11 translates into different real critical fields for

different values of �, i.e., from V (c)
e = 0.21 for � = 1/5 to

V (c)
e = 2.5 for � = 1. It is not clear then if our assumption

of neglecting Landau-level mixing can be justified for � near
unity. We assumed that the external lattice parameter a0 is fixed
experimentally. When � is also given, all other parameters are
determined: the magnetic field, the electronic density ne (at
ν = 1), and the ratio α of the Coulomb interaction to the
cyclotron energy,

B = hc

ea2
0

1

�
= 4135.7

a2
0

1

�
T, (31)

ne = 1

�a2
0

= 1

a2
0

1

�
× 1014 cm−2, (32)

α =
e2

κ�

�ω∗
c

= a0

aB∗

√
�

2π
= a0

10.2

√
�

2π
, (33)

where a∗
B = κ�

2/m∗e2 is the effective Bohr radius and a0 is
the lateral superlattice constant in nanometers. We used for

GaAs κ = 12.9 and m∗ = 0.067me (where me is the electron
mass).

For � = 1, α = 0.039a0 so that with a very small (but
physically feasible [16]) superlattice period of a0 = 39 nm,
we get α = 1.5, B = 2.7 T, ne = 0.65 × 1011 cm−2 whereas
for � = 1/5, we get α = 0.68, B = 13.6 T, ne = 3.29 ×
1011 cm−2. The magnetic field and density pose no problem,
but α is not small, especially when � > 1/2. Clearly, a
more sophisticated calculation including a certain amount of
Landau-level mixing and screening is required to confirm that
the vortex-CDW phase is effectively the ground state in this
system. We leave this for further work.

ACKNOWLEDGMENTS

R.C. was supported by a grant from the Natural Sciences
and Engineering Research Council of Canada (NSERC).
Computer time was provided by Calcul Québec and Compute
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