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Spin-resolved orbital magnetization in Rashba two-dimensional electron gas
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2Department of Physics and Medical Engineering, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
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We calculate orbital spin-dependent magnetization in a two-dimensional electron gas with a Rashba-type
spin-orbit interaction. Such an orbital magnetization is admitted by the time-reversal symmetry of the system,
and gives rise to spin currents when the system is not in thermal equilibrium. The theoretical approach is based
on the linear response theory and the Matsubara Green’s function formalism. To account for the spin-resolved
orbital magnetization, a spin-dependent vector potential has been introduced. The spin currents which appear
in thermal nonequilibrium due to spin-resolved orbital magnetization play an important role in the spin Nernst
effect, and have to be included in order to correctly describe the low-temperature spin Nernst conductivity.
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I. INTRODUCTION

Heat currents coupled to electric and spin currents can be
effectively used in novel spintronics devices to control not
only charge and entropy/energy transport but also to control
spin transport. The latter is the main goal of spin caloritronics,
a new branch of spin electronics. Indeed, there is currently
huge interest, both experimental and theoretical, in the thermal
generation of spin currents which in turn can be used to control
the magnetic state of a system. One should mention here the
Seebeck and spin Seebeck effects, the Nernst and spin Nernst
effects, and also others.

The theoretical description of the phenomena that occur as
a system’s response to a temperature gradient is generally
more complex than the description of a system subject to
an external electric field. To describe heat/energy transport
in the framework of the Green’s function formalism and
the Kubo formula, an auxiliary vector potential has been
introduced [1–4] instead of the Luttinger “gravitational”
potential introduced earlier [5]. Such a vector potential may
be considered as an analog of the vector potential in the theory
of electromagnetism.

It is well known in the relevant literature that to determine
the system’s response (namely, the transverse electric current)
to a temperature gradient, the orbital magnetization should
be taken into account in order to get results that obey
fundamental thermodynamics laws. In other words, electric
current due to a nonzero orbital magnetization ensures the
physical behavior of the off-diagonal kinetic coefficients
in a zero-temperature limit, such as off-diagonal electrical
conductivity due to thermal bias. This problem was studied first
by Obraztsov [6], who introduced magnetization currents to the
problem of off-diagonal thermal transport in order to satisfy
the Onsager relations of the kinetic coefficients. Then, this
problem was raised in several papers, e.g., in the context of the
quantum Hall effect [7–10] or the Nernst effect in fluctuating
superconductors [11,12] and graphenelike materials [13,14].

The orbital magnetization appears as a consequence of the
orbital motion of electrons when the time-reversal symmetry in
a system is broken [15–18]. This happens in the case of ferro-
and ferrimagnets, or in nonmagnetic materials in an external
magnetic field. In the presence of a spin-orbit interaction, the

electron motion in a system is even more complex. Such an
interaction can appear as an effective momentum-dependent
magnetic field, and may lead to phenomena such as spin Hall
and spin Nernst effects that require neither magnetic materials
nor external magnetic fields.

An important question which arises in the context of a spin-
orbit interaction concerns the behavior of off-diagonal spin-
kinetic coefficients in systems with time-reversal symmetry. A
typical example of such systems is the two-dimensional elec-
tron gas with a Rashba spin-orbit interaction, which appears at
the interface of semiconductor heterostructures. The thermal
properties of such systems have been studied recently in a
couple of publications [1,19–23]. In our recent paper we have
shown that to describe properly the low-temperature behavior
of the spin Nernst effect in a two-dimensional electron gas
in the frame of the linear response theory, one needs to
introduce orbital effects as well, even though the system is
symmetrical with respect to the time reversal. The usual orbital
magnetization is then suppressed due to the time-reversal sym-
metry. Therefore, we have introduced spin-resolved orbital
magnetization and have shown that it contributes to the spin
current in thermal nonequilibrium, and therefore also to spin
Nernst conductivity [22]. Thus, such a spin-resolved orbital
magnetization can be considered as an additional source of
thermally induced spin currents, which in turn can play a
role in the thermal control of magnetic states in spintronics
devices. Indeed, such control is one of the key challenges of
present-day spintronics and spin caloritronics. Apart from this,
spin-resolved orbital magnetization can also contribute to a
proper description of the topological properties of systems with
spin-orbit interactions. Finally, we note that including the spin-
resolved orbital magnetization directly from the corresponding
quantum-mechanical operator is a rather complex task, so we
did this by introducing a spin-dependent magnetic field.

In this paper we present a detailed calculation of spin-
resolved orbital magnetization. In Sec. II we describe the
model and also present symmetry arguments for spin-resolved
orbital magnetization. In Sec. III we introduce the spin vector
potential and calculate the relevant Green’s function, which
is used in Sec. IV to calculate the corresponding spin-
dependent orbital magnetization. Discussion and conclusions
are presented in Sec. V.
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II. THEORETICAL MODEL

The Hamiltonian of a two-dimensional electron gas with a
Rashba spin-orbit interaction can be written as

HR = �
2k2

2m
σ0 + α(kyσx − kxσy), (1)

where σn (for n = x,y,z) are the Pauli matrices and σ0 is
the unit matrix. All these matrices operate in spin space. The
parameter α describes the strength of the Rashba interaction,
while kx and ky are the in-plane wave-vector components.
Eigenvalues of the above Hamiltonian have the form Ek± =
εk ± αk, with εk = �

2k2/2m and k2 = k2
x + k2

y .
The retarded Green’s function corresponding to the Hamil-

tonian (1) can be written in the following form,

GR
k (ε) = GR

k0(ε) σ0 + GR
kx(ε) σx + GR

ky(ε) σy, (2)

where

GR
k0(ε) = 1

2

[
GR

k+(ε) + GR
k−(ε)

]
, (3a)

GR
kx(ε) = 1

2 sin(φ)
[
GR

k+(ε) − GR
k−(ε)

]
, (3b)

GR
ky(ε) = − 1

2 cos(φ)
[
GR

k+(ε) − GR
k−(ε)

]
, (3c)

with φ denoting the angle between the wave vector k and the
axis x, and GR

k±(ε) defined as

GR
k±(ε) = 1

ε + μ − Ek± + i�
. (4)

Here, � is the imaginary part of the self-energy, which is
related to the appropriate relaxation time τ , � = �/2τ . The
advanced Green’s function can be written in a similar form
with � → −�.

The spin-orbit Rashba interaction is a consequence of a
structural inversion asymmetry of the confinement potential
in a quantum well. This means that whenever Ek,± = E−k,±
due to time-inversion symmetry, Ek,+ �= Ek,− due to the
noninvariance with respect to spatial inversion. The spin-orbit
interaction can be then considered as a momentum-dependent
magnetic field acting on the electron spin. However, this
internal magnetic field does not break time-reversal symmetry,
as also follows from the form of Hamiltonian (1), which is
symmetrical with respect to time reversal. As a consequence
of this symmetry, orbital magnetization in the system is sup-
pressed. However, time-reversal symmetry of the system under
consideration allows for spin-dependent orbital magnetization
(or equivalently for a spin-dependent magnetic field Bs ), which
has an opposite orientation for the spin-up and spin-down
electrons. The total orbital magnetization is then equal to zero,
M = M↑ + M↓ = 0, as M↑ and M↓ are oriented in opposite
directions, but the spin-resolved orbital magnetization defined
as Ms

orb = M↑ − M↓ is then nonzero, Ms
orb �= 0.

To calculate the spin-resolved orbital magnetization we
introduce a spin vector potential, As(r) = σzA(r), into the
Hamiltonian (1) by the substitution −i�∇σ0 → −i�∇σ0 −
e As . This spin vector potential is related to the spin-dependent
magnetic field Bs = σzB according to the formula Bs = rot As .
Thus, the effective spin-dependent magnetic field affects the
orbital motion of spin-up and spin-down electrons in different
ways. In the case considered here, this spin magnetic field

is oriented along the z axis (normal to the system’s plane),
B = (0,0,B). The resulting Hamiltonian reads

HA = �
2

2m

(
kσ0 − e

�
As

)2
+ α(kyσx − kxσy)

−α
e

�
(Asy ⊗ σx − Asx ⊗ σy). (5)

The main objective of the following sections is to calculate
the total energy of the system in the presence of a nonzero B,
and then to calculate the spin-resolved orbital magnetization as
a derivative of this energy with respect to B, taken at B → 0.

III. GREEN’S FUNCTION

The Green’s function describing a two-dimensional elec-
tron gas with a Rashba interaction in the spin-dependent
magnetic field Bs [see Eq. (5)] satisfies the following equation
written in the coordinate space,∫

d2r′
{
ε + �

2

2m

[
∇2

x + ∇2
y − 2ie

�
(Ax∇x + Ay∇y)

]

+ iα[σx∇y − σy∇x]

}
δ(r − r′)G(ε,r′,r′′)

= δ(r − r′′), (6)

where we neglect the diamagnetic term proportional to A2
s and

a contribution originating from the third term in Hamiltonian
(5), which gives a small correction since the Rashba interaction
is assumed to be small. Note that for notational brevity we write
in this section ε ≡ ε + μ + iδ sgn(ε) for the zero-temperature
casual Green’s function and ε ≡ iεn for the Matsubara-Green’s
function.

Similarly as in the case of a constant magnetic field, we
make use of the fact that the Green’s function may be expressed
as the product of the translationally and rotationally invariant
core Green’s function G0(ε,r − r′) and an exponential factor
[13,14,24,25],

G(ε,r,r′) = G0(ε,r − r′)eiArr′σz , (7)

where Arr′ ≡ e
�

∫ r′

r A(R) · dR is the Schwinger or Peierls
phase factor. The integral of gauge vector potential in this
phase factor is along a straight line from r to r′. Consequently,
Eq. (6) can be rewritten in the form∫

d2r′
{
ε + �

2

2m

[∇2
x + ∇2

y

] + iα[σx∇y − σy∇x]

}

× eiσzArr′ δ(r − r′)G0(ε,r′ − r′′)eiσzAr′r′′

= δ(r − r′′)eiσzArr′′ . (8)

We look for the Green’s function G0 in the following form,

G0(ε,r′ − r′′) =
∑

i

G0i(ε,r′ − r′′)σi (9)

where i = {0,x,y,z}. Thus, Eq. (8) leads to a set of four
equations for the four components of the Green’s function,
G0i(ε,r′ − r′′). Upon performing the Fourier transformation
with respect to the space variables, this set of equations can be
written in the following form (for details of calculations, see
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Appendix A),

	k(ε)

⎛
⎜⎝
Gk0(ε)
Gkx(ε)
Gky(ε)
Gkz(ε)

⎞
⎟⎠ =

⎛
⎜⎝

ak0(ε)
akx(ε)
aky(ε)
akz(ε)

⎞
⎟⎠, (10)

where Gki(ε) (for i = 0,x,y,z) is the Fourier transform of
G0i(ε,r′ − r′′), the matrix 	̂k(ε) is defined as

	̂k(ε)=

⎛
⎜⎜⎝

[gk0(ε)]−1 −αky αkx 0
−αky [gk0(ε)]−1 0 iαkx

αkx 0 [gk0(ε)]−1 iαky

0 −iαkx −iαky [gk0(ε)]−1

⎞
⎟⎟⎠,

(11)

with [gk0(ε)]−1 = ε − εk , and the functions aki(ε) on the right-
hand side of Eq. (10) have the following form,

ak0(ε) = 1, (12)

akx(ε) = −α
e

2�
B∂ky

Gk0(ε), (13)

aky(ε) = α
e

2�
B∂kx

Gk0(ε), (14)

akz(ε) = i
e

2�
B

[(
∂kx

[gk0(ε)]−1
)(

∂ky
Gk0(ε)

)
−(

∂ky
[gk0(ε)]−1

)(
∂kx

Gk0(ε)
)]

. (15)

Thus, the core Green’s function (9) in the momentum space
takes the form

Gk(ε) = Gk0(ε)σ0 + Gkx(ε)σx + Gky(ε)σy + Gkz(ε)σz, (16)

where Gkα(ε) are solutions of Eq. (10). The expressions for
these functions are rather cumbersome and their explicit form
is presented in Appendix A.

IV. SPIN-RESOLVED ORBITAL MAGNETIZATION

By analogy to ordinary magnetization, we define the
spin-resolved orbital magnetization as the derivative of the
free energy F with respect to B, M = −∂F/∂B (see, e.g.,
Refs. [12,24]). Since the magnetic field is a small perturbation,
the induced changes in the free energy F and energy E

are approximately equal [26], δF ≈ δE. Thus, using the
Hellmann-Feynman theorem, we can write (see, for example,
Ref. [17]),

Ms
orb = −∂〈H 〉

∂B
. (17)

In the following we will use the above equation to find the
spin-resolved orbital magnetization.

The quantum-mechanical average of energy 〈H 〉 for the
system in a spin-dependent magnetic field can be found in
the Matsubara-Green’s function formalism from the following
expression,

〈H 〉 = 1

β
Tr

∑
n

∫
d2k

(2π )2
HR Gk(iεn), (18)

where β = 1/kBT and the Matsubara energies are defined as
iεn = (2n + 1)iπkBT . The sum over Matsubara energies can

be calculated by the method of contour integration [27],

1

β

∑
n

ĤR Gk(iεn) = −
∫
C

dz

2πi
f (z)HRGk(z), (19)

where f (z) is a meromorphic function that has simple poles
at the odd integers, z = iεn, and takes the form f (z) = (eβz +
1)−1, while C is the appropriate contour of integration [27].
Combining Eqs. (18) and (19), one finds

〈H 〉 = −Tr
∫
C

dz

2πi

∫
d2k

(2π )2
f (z)HR Gk(z). (20)

The integral along the contour C has a branch cut at the line
z = ε, where ε is real. Consequently, one can write

〈H 〉 = i Tr
∫

d2k
(2π )2

∫
dε

2π
f (ε)HR

×[Gk(ε + iδ) − Gk(ε − iδ)], (21)

where δ is an infinitesimally small positive number. After
analytical continuation, we arrive at the formula

〈H 〉 = i Tr
∫

d2k
(2π )2

∫
dε

2π
f (ε)HR

[
GR

k (ε) − GA
k (ε)

]
. (22)

This general expression, in combination with the explicit
form of the core Green’s function (16), allows one to obtain
from Eq. (17) the analytical result for orbital spin-resolved
magnetization, which conveniently can be written as a sum of
three terms,

Ms
orb = M

s(1)
orb + M

s(2)
orb + M

s(3)
orb , (23)

where

M
s(1)
orb = −2i

∫
d2k

(2π )2

∫
dε

2π
f (ε)εk∂B

[
GR

k0(ε) − GA
k0(ε)

]
,

(24)

M
s(2)
orb = −2i

∫
d2k

(2π )2

∫
dε

2π
f (ε)αky∂B

[
GR

kx(ε) − GA
kx(ε)

]
,

(25)

M
s(3)
orb = 2i

∫
d2k

(2π )2

∫
dε

2π
f (ε)αkx∂B

[
GR

ky(ε) − GA
ky(ε)

]
.

(26)

The explicit forms of the integrals in Eqs. (24)–(26) are given
in Appendix B. After integration over ε, one arrives at (for
details, see Appendix B)

M
s(1)
orb = α

e

8π�

∫
dkε2

k [f ′′(E+) − f ′′(E−)]

−α
e

8π�

∫
dk

ε2
k

αk
[f ′(E+) + f ′(E−)]

+α
e

8π�

∫
dk

ε2
k

α2k2
[f (E+) − f (E−)]

+α
e

8π�

∫
dk

αk

2
εk[f ′′(E+) + f ′′(E−)]

−α
e

8π�

∫
dk

εk

2
[f ′(E+) − f ′(E−)] (27)
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A. DYRDAŁ, V. K. DUGAEV, AND J. BARNAŚ PHYSICAL REVIEW B 94, 205302 (2016)

and

M
s(2)
orb + M

s(3)
orb = α

e

16π�

∫
dkεk[f ′(E+) − f ′(E−)]

+α
e

16π�

∫
dkαkεk[f ′′(E+) + f ′′(E−)]

+α
e

16π�

∫
dkαk[f ′(E+) + f ′(E−)]

+α
e

16π�

∫
dkα2k2[f ′′(E+) − f ′′(E−)]

−α
e

16π�

∫
dk[f (E+) − f (E−)], (28)

where f ′ and f ′′ denote the first and second derivatives of
the Fermi distribution function with respect to energy. Upon
combining these two equations, one finally gets the general
expression for the spin-resolved orbital magnetization of the
two-dimensional electron gas with a Rashba interaction,

Ms
orb = αe

16π�

[∫
dk

(
2ε2

k

α2k2
− 1

)
[f (E+) − f (E−)]

−
∫

dkαk

(
2ε2

k

α2k2
− 1

)
[f ′(E+) + f ′(E−)]

+
∫

dkα2k2

(
2ε2

k

α2k2
− 1

)
[f ′′(E+) − f ′′(E−)]

+ 2
∫

dkαk[E+f ′′(E+) + E−f ′′(E−)]

]
. (29)

Expression (29) is our final result for the orbital spin-resolved
magnetization Ms

orb, which is valid at arbitrary temperature.
Though this formula is rather cumbersome, in the zero-
temperature limit it leads to a simple analytical expression for
Ms

orb(T = 0) = M
s,T =0
orb . When both subbands are occupied,

i.e., when μ > 0, we find the formula (for details, see
Appendix C)

M
s,T =0
orb = − emα2

12π�3
, (30)

which means that Ms
orb is quadratic in the Rashba parameter

α.
In Fig. 1 we show the temperature dependence of the

orbital magnetization Ms
orb normalized to its zero-temperature

value M
s,T =0
orb . Different curves correspond to the indicated

values of the Fermi energy μ0, i.e., the value of the chemical
potential at T = 0. Note that for a fixed particle density ρ,
the chemical potential varies with temperature as follows [28]:
μ = kBT ln(eμ0/kBT − 1) and μ0 = π�

2ρ/m. It is evident that
Ms

orb diminishes with increasing temperature, and this decrease
depends on the Fermi energy (particle density): It is faster
for low values of μ0. In turn, variation of the normalized
magnetization Ms

orb/M
s,T =0
orb with increasing Fermi energy μ0

is shown explicitly in Fig. 2 for several values of temperature.
One can observe a saturation of Ms

orb at its low-temperature
value when the particle density is sufficiently large.

The physical reason for the appearance of spin-resolved or-
bital magnetization is related to noncompensated spin currents
flowing at the edge of a sample. Note that when the temperature
is homogeneous, the spin currents are compensated in the

FIG. 1. Spin-resolved orbital magnetization Ms
orb, normalized

to its zero-temperature value M
s,T =0
orb , plotted as a function of

temperature for fixed values of the Fermi level μ0, as indicated.
Other parameters are m = 0.07m0 (where m0 is the electron mass),
and α = 2 × 10−11 eV m.

bulk except at the edges. However, when the temperature is
nonhomogeneous, the spin currents can also exist in the bulk
(see the discussions below). This is a spin analogy to the usual
orbital magnetization, which arises due to noncompensated
electric currents at the edges.

V. DISCUSSION AND CONCLUSIONS

In our recent paper [22] we used the Matsubara Green’s
function method to calculate the spin Nernst conductivity α

sz
xy .

This conductivity defines spin current flowing perpendicularly
to the temperature gradient. We have shown there that the
vertex correction due to scattering on impurities does not
cancel the bare bubble contribution, contrary to spin Hall
conductivity where such a cancellation takes place. As a result,
the spin Nernst conductivity in this approximation diverges in
the zero-temperature limit.

To remove this divergency, it was necessary to include an
additional contribution to the spin current (and also to the spin
Nernst conductivity) that follows from spin-resolved orbital

FIG. 2. Spin-resolved orbital magnetization Ms
orb, normalized to

its zero-temperature value M
s,T =0
orb , plotted as a function of the Fermi

level μ0 and for fixed temperatures, as indicated. The other parameters
are as in Fig. 1.
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magnetization. One can conceive the spin current Jz as a
superposition of spin-up and spin-down currents flowing in
opposite directions, Jz = J↑ − J↓. Each of the spin-polarized
currents generates a corresponding orbital magnetization.
However, the vectors M↑ and M↓ are oriented in opposite
directions, so the total orbital magnetization vanishes, M =
M↑ + M↓ = 0, as one can expect from the time-reversal
symmetry. In turn, the spin-resolved orbital magnetization
Ms

orb = M↑ − M↓ is nonzero, Ms
orb �= 0.

The spin current due to spin-resolved orbital magnetization
depends on temperature. Therefore, it contributes to spin
Nernst conductivity as the corresponding currents flowing
at the edges having different temperatures do not cancel
each other, though they flow in opposite directions. In turn,
these currents do not contribute to the spin Hall conductivity
because in a thermally uniform system the currents at the
two edges cancel each other. The correction to the spin

Nernst conductivity that originates from spin-resolved orbital
magnetization is given by the term (�/e)Ms

orb/T .
A similar situation takes place also in the case of the

Nernst effect in systems with no time-reversal symmetry.
In that case the absence of time-reversal symmetry admits
orbital magnetization. This magnetization in turn contributes
to charge current, and the corresponding contribution removes
the zero-temperature divergency in the Nernst conductivity
(see, e.g., Refs. [6,9,13,14]).
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APPENDIX A: EQUATIONS FOR THE GREEN’S FUNCTION AND ITS FOURIER TRANSFORM

In this Appendix we derive the matrix equation (10). Multiplying Eq. (8) on the right-hand side by e−iσzArr′′ and using
commutation relations for the Pauli matrices, we find

eiσzArr′G0(ε,r′ − r′′)eiσzAr′r′′ e−iσzArr′′ = G00(ε,r′ − r′′)σ0e
iσz(Arr′+Ar′r′−Arr′′ ) + G0z(ε,r′ − r′′)σze

iσz(Arr′+Ar′r′−Arr′′ )

+G0x(ε,r′ − r′′)σxe
−iσz(Arr′−Ar′r′′−Arr′′ ) + G0y(ε,r′ − r′′)σye

−iσz(Arr′−Ar′r′′−Arr′′ ). (A1)

The integral along the contour r − r′ − r′′ − r in the Peierls phase can be transformed into the surface integral,

e

�

∮
A(R) · dR = e

�

(∫ r′

r
A(R) · dR +

∫ r′′

r′
A(R) · dR +

∫ r

r′′
A(R) · dR

)

= e

�

1

2
B · (r′ − r) × (r′′ − r′), (A2)

so Eq. (A1) takes the form

eiσzArr′G0(εr′ − r′′)eiσzAr′r′′ e−iσzArr′′ = G00(ε,r′ − r′′)σ0e
iσz

e
�

B· 1
2 (r′−r)×(r′′−r′) + G0x(ε,r′ − r′′)σx + G0y(ε,r′ − r′′)σy

+G0z(ε,r′ − r′′)σze
iσz

e
�

B· 1
2 (r′−r)×(r′′−r′). (A3)

Inserting Eq. (A2) into Eq. (8) we obtain a set of four equations for the four components of the core Green’s function
G0i(ε,r′ − r′′),∫

dr′(ε − H0)G00(ε,r′ − r′′)δ(r − r′) + i

∫
dr′(ε − H0)G0z(ε,r′ − r′′)

e

2�
B · (r′ − r) × (r′′ − r′)δ(r − r′)

−α

∫
dr′κyG0x(ε,r′ − r′′)δ(r − r′) + α

∫
dr′κxG0y(ε,r′ − r′′)δ(r − r′) = δ(r − r′′), (A4a)

−α

∫
dr′κyG00(ε,r′ − r′′)δ(r − r′) − α

∫
dr′κxG00(ε,r′ − r′′)

e

2�
B · (r′ − r) × (r′′ − r′)δ(r − r′)

− iα

∫
dr′κyG0z(ε,r′ − r′′)

e

2�
B · (r′ − r) × (r′′ − r′)δ(r − r′) + iα

∫
dr′κxG0z(ε,r′ − r′′)δ(r − r′)

+
∫

dr′(ε − H0)G0x(ε,r′ − r′′)δ(r − r′) = 0, (A4b)

−α

∫
dr′κyG00(ε,r′ − r′′)

e

2�
B · (r′ − r) × (r′′ − r′)δ(r − r′) + α

∫
dr′κxG00(ε,r′ − r′′)δ(r − r′)

+iα

∫
dr′κyG0z(ε,r′ − r′′)δ(r − r′) + iα

∫
dr′κxG0z(ε,r′ − r′′)

e

2�
B · (r′ − r) × (r′′ − r′)δ(r − r′)

+
∫

dr′(ε − H0)G0y(ε,r′ − r′′)δ(r − r′) = 0, (A4c)
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i

∫
dr′(ε − H0)G00(ε,r′ − r′′)

e

2�
B · (r′ − r) × (r′′ − r′)δ(r − r′) +

∫
dr′(ε − H0)G0z(ε,r′ − r′′)δ(r − r′)

−iα

∫
dr′κxG0x(ε,r′ − r′′)δ(r − r′) − iα

∫
dr′κyG0y(ε,r′ − r′′)δ(r − r′) = 0, (A4d)

where H0 = �
2(κ2

x + κ2
y )/2m, with κα = −i∇α , and we expanded the exponential factors to the first order in B.

After Fourier transformation, this set of equations takes the form

[gk0(ε)]−1Gk0(ε) − i
e

2�
Bkεijk

(
∂

∂ki

[gk0(ε)]−1

)(
∂

∂kj

Gkz(ε)

)
− αkyGkx(ε) + αkxGky(ε) = 1, (A5a)

−αkyGk0(ε) + α
e

2�
Bkεijkδix

(
∂

∂kj

Gk0(ε)

)
+ iα

e

2�
Bkεijkδiy

(
∂

∂kj

Gkz(ε)

)
+ iαkxGkz(ε) + [gk0(ε)]−1Gkx(ε) = 0, (A5b)

α
e

2�
Bkεijkδiy

(
∂

∂kj

Gk0(ε)

)
+ αkxGk0(ε) + iαkyGkz(ε) − iα

e

2�
Bkεijkδix

(
∂

∂kj

Gkz(ε)

)
+ [gk0(ε)]−1Gky(ε) = 0, (A5c)

−i
e

2�
Bkεijk

(
∂

∂ki

[gk0(ε)]−1

)(
∂

∂kj

Gk0(ε)

)
+ [gk0(ε)]−1Gkz(ε) − iαkxGkx(ε) − iαkyGky(ε) = 0, (A5d)

where [gk0(ε)]−1 = ε − εk .
Equations (A4a)– (A4d) may be further simplified assuming linear response with respect to B,

i
e

2�
Bkεijk

(
∂

∂ki

[gk0(ε)]−1

)(
∂

∂kj

Gkz(ε)

)
∼= i

e

2�
Bεijk

(
∂

∂ki

[gk0(ε)]−1

)(
∂

∂kj

Gkz(ε)

)
= 0, (A6a)

α
e

2�
Bkεijkδix,y

(
∂

∂kj

Gk0(ε)

)
∼= α

e

2�
Bkεijkδix,y

(
∂

∂kj

Gk0(ε)

)
, (A6b)

iα
e

2�
Bkεijkδix,y

(
∂

∂kj

Gkz

)
∼= iα

e

2�
Bkεijkδix,y

(
∂

∂kj

Gkz

)
= 0, (A6c)

i
e

2�
Bkεijk

(
∂

∂ki

[gk0(ε)]−1

)(
∂

∂kj

Gk0(ε)

)
∼= i

e

2�
Bkεijk

(
∂

∂ki

[gk0(ε)]−1

)(
∂

∂kj

Gk0(ε)

)
, (A6d)

and finally we obtain the matrix equation (10).
The solution of Eq. (10) takes then the form of Eq. (16), where

Gk0 = 1

D

(
ε − εk − α2 e

2�
B

[(
∂

∂kx

Gk0(ε)

)
kx +

(
∂

∂ky

Gk0(ε)

)
ky

])
, (A7)

Gkx = 1

D

(
αky − α

e

2�
B

[(
∂

∂ky

Gk0(ε)

)
[gk0(ε)]−1 − kx

[(
∂

∂kx

[gk0(ε)]−1

)(
∂

∂ky

Gk0

)
−

(
∂

∂ky

[gk0(ε)]−1

)(
∂

∂kx

Gk0

)]])
,

(A8)

Gky = 1

D

(
−αkx + α

e

2�
B

[(
∂

∂kx

Gk0(ε)

)
[gk0(ε)]−1 + ky

[(
∂

∂kx

[gk0(ε)]−1

)(
∂

∂ky

Gk0

)
−

(
∂

∂ky

[gk0(ε)]−1

)(
∂

∂kx

Gk0

)]])
,

(A9)

Gkz = i

D
e

2�
B

([(
∂

∂kx

[gk0(ε)]−1

)(
∂

∂ky

Gk0(ε)

)
−

(
∂

∂ky

[gk0(ε)]−1

)(
∂

∂kx

Gk0(ε)

)]
[gk0(ε)]−1

−α2

[
kx

(
∂

∂ky

Gk0(ε)

)
− ky

(
∂

∂kx

Gk0(ε)

)])
, (A10)

with D = (ε − E+)(ε − E−).

APPENDIX B: INTEGRATION OVER ε

As follows from Eqs. (27) and (28), we need to calculate 24 integrals over ε:

I1,2 =
∫

dε
f (ε)

ε + μ − E± + i�
= P

∫
dε

f (ε)

ε + μ − E±
− iπf (E±), (B1)
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I3,4 =
∫

dε
f (ε)

ε + μ − E± − i�
= P

∫
dε

f (ε)

ε + μ − E±
+ iπf (E±), (B2)

I5,6 =
∫

dε
f (ε)

(ε + μ − E± + i�)2
= P

∫
dε

∂f (ε)

∂ε

1

ε + μ − E±
− iπf ′(E±), (B3)

I7,8 =
∫

dε
f (ε)

(ε + μ − E± − i�)2
= P

∫
dε

∂f (ε)

∂ε

1

ε + μ − E±
+ iπf ′(E±), (B4)

I9,10 =
∫

dε
f (ε)

(ε + μ − E± + i�)3
= 1

2
P

∫
dε

∂2f (ε)

∂ε2

1

ε + μ − E±
− i

π

2
f ′′(E±), (B5)

I11,12 =
∫

dε
f (ε)

(ε + μ − E± − i�)3
= 1

2
P

∫
dε

∂2f (ε)

∂ε2

1

ε + μ − E±
+ i

π

2
f ′′(E±), (B6)

I13,14 =
∫

dε
(ε + μ − εk)f (ε)

(ε + μ − E± + i�)3
= 1

2
P

∫
dε[2f ′(ε) + (ε + μ − εk)f ′′(ε)]

1

ε + μ − E±
∓ i

π

2
[2f ′(E±) + αkf ′′(E±)],

(B7)

I15,16 =
∫

dε
(ε + μ − εk)f (ε)

(ε + μ − E− − i�)3
= 1

2
P

∫
dε[2f ′(ε) + (ε + μ − εk)f ′′(ε)]

1

ε + μ − E−
∓ i

π

2
[2f ′(E−) − αkf ′′(E−)],

(B8)

I17,18 =
∫

dε
(ε + μ − εk)f (ε)

(ε + μ − E+ ± i�)2
= P

∫
dε[f (ε) + (ε + μ − εk)f ′(ε)]

1

ε + μ − E+
∓ iπ [f (E+) + αkf ′(E+)],

(B9)

I19,20 =
∫

dε
(ε + μ − εk)f (ε)

(ε + μ − E− ± i�)2
= P

∫
dε[f (ε) + (ε + μ − εk)f ′(ε)]

1

ε + μ − E−
∓ iπ [f (E−) − αkf ′(E−)],

(B10)

I21,22 =
∫

dε
f (ε)(ε + μ − εk)

ε + μ − E± + i�
= P

∫
dε

f (ε)(ε + μ − εk)

ε + μ − E±
∓ iπαkf (E±), (B11)

I23,24 =
∫

dε
f (ε)(ε + μ − εk)

ε + μ − E± − i�
= P

∫
dε

f (ε)(ε + μ − εk)

ε + μ − E±
± iπαkf (E±). (B12)

According to the above, we may write M
s(1)
orb and M

s(2)
orb + M

s(3)
orb as follows:

M
s(1)
orb = i

αe

4π�

∫
dk

2π
ε2
k

[
I9 − I11 + I12 − I10 + 1

2αk
(−I5 + I7 − I6 + I8) + 2

(2αk)2
(I1 − I3 − I2 + I4)

]

+i
αe

4π�

∫
dk

2π

αk

2
εk

[
I9 − I11 − I12 + I10 + 1

2αk
(−I5 + I7 + I6 − I8)

]
, (B13)

M
s(2)
orb + M

s(3)
orb = i

αe

8π�

∫
dk

2π
E+

[
I13 − I14 + 1

4α2k2
(I21 − I22 − I23 + I24) − 1

2αk
(I17 − I18)

]

+ i
αe

8π�

∫
dk

2π
E−

[
I16 − I15 − 1

4α2k2
(I22 − I21 − I24 + I23) − 1

2αk
(I19 − I20)

]
. (B14)

Taking into account explicit forms of the integrals In, we find

M
s(1)
orb = i

αe

4π�

∫
dk

2π
ε2
k

[
π [f ′′(E+) − f ′′(E−)] − π

αk
[f ′(E+) + f ′(E−)] + π

α2k2
[f (E+) − f (E−)]

]

+ αe

4π�

∫
dk

2π

αk

2
εk

[
π [f ′′(E+) + f ′′(E−)] − π

αk
[f ′(E+) − f ′(E−)]

]
, (B15)

M
s(2)
orb + M

s(3)
orb = αe

8π�

∫
dk

2π
E+

[
π [2f ′(E+) + αkf ′′(E+)] + π

2αk
[f (E+) + f (E−)] − π

αk
[f (E+) + αkf ′(E+)]

]

+ αe

8π�

∫
dk

2π
E−

[
−π [2f ′(E−) − αkf ′′(E−)] + π

2αk
[f (E−) + f (E+)] − π

αk
[f (E−) − αkf ′(E−)]

]
. (B16)

From Eqs. (B15) and (B16), one finally arrives at Eqs. (27) and (28), respectively.
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APPENDIX C: SPIN-RESOLVED ORBITAL MAGNETIZATION IN THE ZERO-TEMPERATURE LIMIT

In the low-temperature limit the orbital magnetization Ms
orb can be calculated analytically. To do this, let us write Ms

orb in the
form [see Eqs. (27) and (28)]

M
s(1)
orb =

5∑
i=1

Mi , (C1)

M
s(2)
orb + M

s(3)
orb =

10∑
i=6

Mi , (C2)

where

M1 = eα

8π�

∫
dkε2

k [f ′′(E+) − f ′′(E−)]

= e�
3α

32πm
√

m2α2 + 2mμ�2

[∫
dk

∂

∂k

(
k4 ∂k

∂E+

)
δ(k − k+) −

∫
dk

∂

∂k

(
k4 ∂k

∂E−

)
δ(k − k−)

]
= −2mα2

4π�3
, (C3)

M2 = − e�
3

32πm2

∫
dkk3[f ′(E+) + f ′(E−)]

= e�
3

32πm
√

m2α2 + 2mμ�2

∫
dkk3[δ(k − k+) + δ(k − k−)] = emα2

4π�3
+ eμ

8π�
, (C4)

M3 = α
e

8π�

∫
dk

ε2
k

α2k2
[f (E+) − f (E−)] = e�

3

32πm2α

∫ k+

k−
dkk2 = − emα2

12π�3
− eμ

8π�
, (C5)

M4 = eα2

16π�

∫
dkkεk[f ′′(E+) + f ′′(E−)]

= eα2
�

32π
√

m2α2 + 2mμ�2

[∫
dk

∂

∂k

(
k3 ∂k

∂E+

)
δ(k − k+) +

∫
dk

∂

∂k

(
k3 ∂k

∂E−

)
δ(k − k−)

]
= eα2m

8π�3
, (C6)

M5 = − eα

16π�

∫
dkεk[f ′(E+) − f ′(E−)] = eα�

32π
√

m2α2 + 2mμ�2

∫
dkk2[δ(k − k+) − δ(k − k−)] = −emα2

8π�3
, (C7)

M6 = −M5, (C8)

M7 = M4, (C9)

M8 = eα

16π�

∫
dkαk[f ′(E+) + f ′(E−)]

= − eα2m

16π�

√
m2α2 + 2mμ�2

∫
dkk[δ(k − k+) + δ(k − k−)] = −mα2e

8π�3
, (C10)

M9 = eα

16π�

∫
dkα2k2[f ′′(E+) − f ′′(E−)]

= α3me

16π�

√
m2α2 + 2mμ�2

[∫
dk

∂

∂k

(
k2 ∂k

∂E+

)
δ(k − k+) −

∫
dk

∂

∂k

(
k2 ∂k

∂E−

)
δ(k − k−)

]
= 0, (C11)

M10 = − eα

16π�

∫
dk[f (E+) − f (E−)] = − eα

16π�

∫ k+

k−
dk = α2me

8π�3
. (C12)

Taking into account the above results, one arrives at formula (30).
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