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Real-space Hopfield diagonalization of inhomogeneous dispersive media
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We introduce a real-space technique able to extend the standard Hopfield approach commonly used in quantum
polaritonics to the case of inhomogeneous lossless materials interacting with the electromagnetic field. We derive
the creation and annihilation polaritonic operators for the system normal modes as linear, space-dependent
superpositions of the microscopic light and matter fields. We prove their completeness and invert the Hopfield
transformation expressing the microscopic fields as functions of the polaritonic operators. As an example, we
apply our approach to the case of a planar interface between vacuum and a polar dielectric, showing how we
can consistently treat both propagative and surface modes, and express their nonlinear interactions, arising from
phonon anharmonicity, as polaritonic scattering terms. We also show that our theory, including the proof of
completeness, can be naturally extended to the case of dissipative materials.
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I. INTRODUCTION

Photons propagating in a polarizable medium can reso-
nantly interact with an optically active resonance and a part of
the photonic energy thus resides in the matter degrees of free-
dom, resulting in a dispersive reduction of the group velocity.
Quantum descriptions of such systems can be achieved through
macroscopic approaches where one starts from the Maxwell
equations treating the matter by a dispersive dielectric function
ε(ω). A modified orthonormality between the fields is derived
to achieve the expected commutation relations with the final
results dependent on the group velocity in the dielectric [1,2].
Such approaches can describe dissipative systems by addition
into the Maxwell equations of noise currents preserving
the commutation relations [3], allowing one to describe
the system dynamics by recourse to the Green’s function
of the classical scattering problem [4–6]. The consistency of
the approach can be shown in the homogeneous and general
inhomogeneous case [7]. Quantization of the electromagnetic
field in inhomogeneous systems is particularly relevant to the
study of quantum effects in surface plasmon polaritons [8–13]
and other analogous excitations living at the interface between
materials with different optical properties, such as surface
phonon polaritons [14] surface excitons [15], and Tamm states
[16]. In the study of surface plasmon polaritons the quantum
properties of the matter degrees of freedom are usually of little
interest, and macroscopic approaches that do not explicitly
account for them are very successful. Elson and Ritchie were
the first to quantize the electromagnetic field at the surface of a
metal described by a Drude model in the absence of dissipation
[17]. This work was then extended to more general dielectric
constants [18,19].

A different, microscopic approach to the interaction of
light with matter in solid-state physics was initially pioneered
by Hopfield, that considered the matter degrees of freedom
as bosonic fields coupled to the photons [20]. The normal
modes of the coupled light-matter system, usually referred to
as polaritons, are then found as linear superpositions of the
creation and annihilation operators of the original light and
matter fields. In this way it is possible to microscopically derive
results postulated in macroscopic approaches [21,22]. Losses

can be taken into consideration by coupling the system to a
broadband reservoir [23]. Furthermore, the Hopfield approach
can be made fully covariant [24] and equivalence can also
be shown with the macroscopic Green’s function approaches
under the appropriate choice of dielectric function [25].

The Hopfield method though, has the advantage of treating
on equal footing light and matter, thus becoming the tool
of choice in the domain of quantum polaritonics, where
nonlinear processes depending upon the matter component
of the excitations are of paramount importance [26–28].
Once the polaritonic operators have been obtained as linear
superpositions of light and matter fields, the Hopfield trans-
formation can be inverted, allowing one to express the fields
describing the microscopic degrees of freedom as linear su-
perpositions of polaritonic operators. Arbitrary nonlinearities,
usually stemming from terms nonlinear in the matter field,
can then be naturally expressed as scattering terms between
the polaritonic normal modes, allowing one to investigate
coherent and noncoherent polaritonic scattering processes.
Although plasmons were initially quantized by Bohm and
Pines as microscopic bosonic degrees of freedom [29],
Hopfield approaches to the study of surface plasmon polaritons
have appeared only recently [30], using ad hoc methods that
make it difficult to invert the Hopfield transformation. A
general theory of Hopfield diagonalization in inhomogeneous
materials has yet to be formulated, and this becomes a pressing
issue as inhomogeneous polaritonic systems characterized
by extremely localized resonances [31,32], and thus potentially
by large nonlinear effects, become commonplace. The neces-
sity of real-space approaches in polaritonics has also recently
been highlighted in Ref. [33], proving that an inhomogeneous
Hopfield theory is necessary to study subhealing length details
in polaritonic condensates.

In this paper we introduce a real-space Hopfield approach
to the study of nonmagnetic polarizable materials, which
allows one to determine invertible Hopfield transformations
for generic geometries. For the sake of simplicity we will limit
ourselves to the isotropic case, the extension to the anisotropic
one not presenting any conceptual difficulty. As an alternative
to the Green’s function and path integral approaches previously
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employed, we are able to use a straightforward modal analysis
in the nondissipative case to derive the polaritonic wave
functions, and we can normalize the resulting modes imposing
bosonic commutation relations, without the need to recur to
flux normalization [22].

This paper is organized as follows: In Sec. II we introduce
the general real-space Hopfield approach in the nondissipative
case. While for surface plasmon polaritons a nondissipative
treatment is accurate only at the qualitative level, this is not
true for surface phonon polaritons, where quality factors
in excess of 100 for localized resonances are nowadays
commonly achieved [31,34,35]. The increasing interest in
those systems [36–43] and the need for a simple and powerful
tool to study them has been one of the primary motivations
for the present work. In Sec. III, in order to give a physical
instantiation of the formal theory, we explicitly apply it to the
analytically manageable case of the interface between vacuum
and a polar dielectric, sustaining both propagative and surface
excitations [44]. In Sec. IV we extend the model to include
losses, showing how we recover an equivalent formulation to
the Green’s function approach of Ref. [25] and the results of
Ref. [23] in the homogeneous case.

II. REAL-SPACE HOPFIELD THEORY FOR
NONDISSIPATIVE MATERIALS

A. Formulation of the problem

The coupled light-matter system can be described by the
Power-Zienau-Wooley Lagrangian density [30]

L0(r) =
∫

dr
[
ε0

2
E(r)2 − 1

2μ0
B(r)2

+ ρ(r)

2
Ẋ(r)2 − ρ(r)ωT(r)2

2
X(r)2

− κ(r)X(r) · Ȧ(r) − U(r)∇[κ(r)X(r)]

]
, (1)

where the electromagnetic field is described by the electric
and magnetic components E(r),B(r), related to the vector and
scalar potentials A(r) and U(r) by

E(r) = −∇U(r) − Ȧ(r), (2)

B(r) = ∇ × A(r), (3)

and the field X(r) describes the degrees of freedom of the
matter resonance with a space-dependent transverse frequency
ωT(r) and density ρ(r). The function κ(r) describes the
spatially inhomogeneous light-matter coupling. Matter is
present only inside the regions where ρ(r) �= 0 and thus, in
order not to burden the notation, we will in the following
assume that all the integrals involving matter degrees of
freedom extend only inside those regions. In the rest of this
paper the spatial dependence of all variables will be suppressed
where not necessary. Notice that the Lagrangian in Eq. (1) not
only models the coupling of light with microscopic harmonic
degrees of freedom as excitons or phonons, but it has been
shown to correctly describe plasmonic excitations in the limit
of vanishing ωT [30]. The canonical momenta can now be

calculated as

� = δL0

δȦ
= ε0Ȧ − [κX]T, (4)

P = δL0

δẊ
= ρẊ, (5)

where δ is a functional derivative and the superscript T refers
to the transverse component of the field. Introducing the
longitudinal frequency

ω2
L = ω2

T + κ2

ε0ρ
, (6)

we can obtain from the Lagrangian in Eq. (1) the Hamiltonian

H0 =
∫

dr
[

d2

2ε0
+ μ0H2

2
+ P2

2ρ
+ ρω2

LX2

2
− κ

ε0
X · D

]
,

(7)

where we expressed the electromagnetic variables in terms of
the electric displacement D = −� and magnetic field H =
B/μ0. This Hamiltonian can be quantized by imposition of
canonical commutation relations, whose nonzero components
read

[X(r),P(r′)] = i�δ(r − r′), (8)

[D(r),A(r′)] = i�δT(r − r′), (9)

where δT(r − r′) is the transverse delta function and � is
Planck’s constant. From Eq. (8) we can derive the further com-
mutation relation between electric displacement and magnetic
field

[D(r),H(r′)] = i
�

μ0
∇′ × δ(r − r′), (10)

where the prime on ∇ denotes it acting upon primed variables.
As the Hamiltonian is quadratic in the fields, in the spirit of
the original Hopfield paper [20], we look for normal modes
of the system in the form of polaritonic operators, linear
superpositions of the light and matter microscopic fields,
weighted by arbitrary space-dependent coefficients

K =
∫

dr[α · D + β · H + γ · P + η · X], (11)

where we will refer to α, β, γ , η as real-space Hopfield
coefficients and to K as the annihilation operator of a polariton
mode. The choice of the four microscopic operators we use
in the definition of the polariton operators in Eq. (11) is
somehow arbitrary, and we could have used as well creation
and annihilation operators for the light and matter fields, as in
the original Hopfield paper [20], or conjugate variables � and
A also for the electromagnetic field. In order for the polariton
operator to diagonalize the Hamiltonian H0 it must obey the
Heisenberg equation

[K,H0] = �ωK. (12)
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Using Eqs. (7)–(11) we obtain

[K,H0] = i�

∫
dr ∇ × α · H − c2∇ × β · D

+ κ c2∇ × β · X − ρω2
Lγ · X + κ

ε0
γ · D + 1

ρ
η · P

= �ω

∫
dr α · D + β · H + γ · P + η · X, (13)

which, equating the coefficients of the different operators, can
be restated as the eigensystem

ωα = −ic2∇ × β + i
[κγ ]T

ε0
, (14)

ωβ = i∇ × α, (15)

ωγ = i
η

ρ
, (16)

ωη = iκ c2∇ × β − iρω2
Lγ . (17)

We have thus transformed the operator-valued Eq. (12) into a
set of equations, equivalent to Maxwell equations in matter,
over the Hopfield coefficients. Such a system can be formally
solved, yielding discrete eigenmodes

|�n〉 = (αn,βn,γ n,ηn), (18)

and the relative eigenfrequencies ωn. Bamba and Ogawa
showed that polarizable matter is stable against superradiant
phase transitions both in the homogeneous and inhomoge-
neous cases [45], implying that Eqs. (14)–(17) do not present
zero energy solutions. In particular, they proved that, under
suitable continuity conditions, an inhomogeneous system is
stable if the condition of stability for the corresponding point-
wise homogeneous system is verified. In the homogeneous
case, by evaluating Eqs. (14) and (17) for ω = 0, we infer
the stability condition ωT > 0. In the following we will thus
consider a transverse frequency everywhere positive, although
possibly arbitrarily small. From direct inspection we can verify
that if |�n〉 in Eq. (18) is solution of Eqs. (14)–(17), then

|� n̄〉 = (ᾱn,β̄n,γ̄ n,η̄n) (19)

is also a solution with eigenvalue ωn̄ = −ωn, that is, for each
positive energy solution there exist a negative energy one such
that K

†
n = Kn̄. This is a general feature that remains valid

also if we chose a different representation for the polaritonic
operators (e.g., representing them as linear superpositions of
creation and annihilation operators), even if in this case the
coefficients of the negative energy solutions will in general
not be the complex conjugate of the positive energy ones. This
bipartition of the solutions into positive and negative energy
subspaces is fundamental for our interpretation of the positive
(negative) energy polariton operators as annihilation (creation)
operators for the relative excitations.

In order to determine the eigenmodes of Eqs. (14)–(17) it
is convenient to introduce the variable

θ = α + i
[κγ ]L

ωε0
, (20)

where L denotes the longitudinal component that allows us to
restate Eqs. (14)–(17), as the wave equation

∇ × ∇ × θ = ω2ε(ω)

c2
θ , (21)

where

ε(ω) = ω2
L − ω2

ω2
T − ω2

(22)

is the (generally space-dependent) dielectric function of a
lossless dielectric composed of Lorentz oscillators with ωL

and ωT as longitudinal and transverse resonant frequencies. We
recognize in Eq. (21) the electromagnetic wave equation in an
inhomogeneous, nonmagnetic medium that allows us to solve
the differential problem in terms of θ with the usual methods
employed in classical electromagnetism. The coefficients of
the polariton operator can then be calculated from Eq. (20)
and Eqs. (14)–(17) as

α = θT, (23)

β = i

ω
∇ × θ, (24)

γ = i
κω

ρ
(
ω2

T − ω2
)θ , (25)

η = κω2

ω2
T − ω2

θ . (26)

We notice that Eq. (21) is generally not in the form of an
eigenvalue problem, due to the simultaneous frequency and
position dependence of the dielectric function, making it
simpler to reason using the eigensystem in Eqs. (14)–(17).
Once the eigenmodes have been determined, they can be
normalized requiring the polariton operators to obey

[Km,K†
n] = δm,n sgn(ωn), (27)

where sgn(ω) = ω
|ω| is the sign function. Such an equation

reduces to the standard bosonic commutation relation if we
restrict the indexes m and n only over the positive energy
solutions. In terms of the Hopfield coefficients, Eq. (27) reads

i�

∫
dr

1

μ0
αm · ∇ × β̄n − 1

μ0
∇ × βm · ᾱn

+ ηm · γ̄ n − γ m · η̄n

= �ε0

∫
dr

ε(ωm)ω2
m − ε(ωn)ω2

n

ωm − ωn

θm · θ̄n = δm,n sgn(ωn),

(28)

that in the case m = n may conveniently be expressed as

�ωnε0

∫
dr ε(ωn)ν(ωn)θn · θ̄n = sgn(ωn), (29)

where the function ν(ω) is given by

ν(ω) = 1 + 1

ε(ω)

∂[ε(ω)ω]

∂ω
= vG(ω)

vP(ω)
, (30)

which is equivalent to the ratio of the local group and phase
velocities vG(ω) and vP(ω) [46].
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B. Expressions of the microscopic fields

We can now express the microscopic light and matter fields
as linear combinations of the polaritonic modes

D =
∑

n

fD
n Kn =

′∑
n

[
fD
n Kn + f̄D

n K†
n

]
, (31)

H =
∑

n

fH
n Kn =

′∑
n

[
fH
n Kn + f̄H

n K†
n

]
, (32)

P =
∑

n

fP
nKn =

′∑
n

[
fP
nKn + f̄P

nK†
n

]
, (33)

X =
∑

n

fX
n Kn =

′∑
n

[
fX
n Kn + f̄X

n K†
n

]
, (34)

where the primed sums are intended to be only on positive
energy solutions. Expansion coefficients for the positive
energy solutions can be calculated using the expansion of the
polariton operators in Eq. (11) and the commutator relations
in Eqs. (8)–(10) as

fD
n = [D,K†

n] = −i
�

μ0
∇ × β̄n, (35)

fH
n = [H,K†

n] = i
�

μ0
∇ × ᾱn, (36)

fP
n = [P,K†

n] = −i�η̄n, (37)

fX
n = [X,K†

n] = i�γ̄ n. (38)

C. Orthonormality and completeness

It remains to verify that our procedure yields a complete
set of solutions in the form of Eq. (11), satisfying Eq. (27).
The polariton normalization in Eq. (28) offers the natural
inner product over the space of Hopfield coefficients |�〉 =
(α,β,γ ,η), as orthonormality would assure the different
polariton modes respect the required commutator relations.
We thus define the inner product between two wave functions
|� ′〉 and |�〉 as

〈〈� ′|�〉〉 = i�

∫
dr

[
1

μ0
α · ∇ × β̄

′ − 1

μ0
∇ × β · ᾱ′

+ η · γ̄ ′ − γ · η̄′
]
. (39)

From Eq. (28) such an inner product is not positive definite
and thus the vector space of the |�〉 does not form an Hilbert
space over the scalar product in Eq. (39). Still, it forms a Kreı̆n
space [47] with signature operator

η =
′∑
n

[|�n〉〉〈〈�n| − |� n̄〉〉〈〈� n̄|], (40)

allowing us to recover the structure of an Hilbert space over
the inner product

〈� ′|�〉 =〈〈� ′|η|�〉〉. (41)

Recasting the eigensystem in Eqs. (14)–(17) in operatorial
form as

B0|�〉 = ω|�〉, (42)

we have to impose B0 to be self-adjoint with respect to an
inner product defined in Eq. (41), that is,

〈� ′|B0�〉 − 〈B0�
′|�〉 = 0. (43)

Using Eqs. (14)–(17) and Eqs. (39)–(41) we can transform
Eq. (43) into∫

dr[α · ∇ × ∇ × ᾱ′ − ᾱ′ · ∇ × ∇ × α] = 0. (44)

Imposing the condition ∇ · α = 0, that from Eq. (35) is just
the transversality of the electric displacement field ∇ · D = 0,
and using Green’s second identity, we can put Eq. (44) in the
form ∫

∂V

dS[α · (n · ∇)ᾱ′ − ᾱ′ · (n · ∇)α] = 0, (45)

where ∂V is the surface of the quantization volume V, dS the
infinitesimal surface element, and n the unit vector normal
to it. It is possible to satisfy Eq. (45) imposing proper
homogeneous boundary conditions for α on ∂V and under
such conditions the system in Eqs. (14)–(17) is self-adjoint,
allowing us to find a complete set of solutions in the form of
the polaritonic operators defined in Eq. (11) respecting bosonic
commutation relations in Eq. (27). We can at this point write
the completeness relation that, for arbitrary |�〉 and |� ′〉, reads

〈�|
[∑

n

|�n〉〈�n|
]
|� ′〉 = 〈�|� ′〉, (46)

leading to expressions between the Hopfield coefficients of the
form

′∑
n

[αn(r′) · ∇ × β̄n(r) − ᾱn(r′) · ∇ × βn(r)]

= i
μ0

�
δT(r − r′), (47)

allowing us to verify the consistence of our procedure by
explicitly calculating the commutators we used to quantize
the theory

[D(r),H(r′)] = �
2

μ2
0

′∑
n

[∇ × β̄n(r) · ∇′ × αn(r′)

−∇ × βn(r) · ∇′ × ᾱn(r′)]

= �
2

μ2
0

′∑
n

∇′ × [∇ × β̄n(r) · αn(r′)

−∇ × βn(r) · ᾱn(r′)]

= i
�

μ0
∇′ × δ(r − r′), (48)

with equivalent expressions arising for the other coefficients
and leading to the other commutators between the microscopic
fields. The Hamiltonian in Eq. (7) can thus be put in the
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diagonal form

H0 =
′∑
n

�ωn K†
nKn. (49)

III. APPLICATION: PHONON POLARITONS
AT A PLANAR INTERFACE

In order to illustrate the method developed in the previous
section, we will apply it to the well-known case of a planar
interface between vacuum and a polar dielectric described
by the Lorentz dielectric function, where the coupling of the
electromagnetic field with the transverse optical phonons gives
rise to both bulk and surface phonon polariton excitations
[44]. Assuming the surface to lie in the x-y plane, the air-
dielectric interface, sketched in Fig. 1(a), will be described by
the dielectric function

ε(ω,z > 0) = 1,
(50)

ε(ω,z < 0) = εL(ω) = ω2
LO − ω2

ω2
TO − ω2

,

where ωLO and ωTO are the longitudinal and transverse optical
phonon frequencies, linked between them by the Lyddane-

FIG. 1. Dispersions of the different classes of solutions of a planar
interface between vacuum and a polar dielectric. The dispersion
of photons in vacuum (red) and of bulk phonon polaritons in the
dielectric (blue) are plotted as a function of the three-dimensional
wave vector k, while the dispersion of the surface modes (yellow)
is plotted as a function of the two-dimensional in-plane wave vector
k‖. Representative schemes of the modes are shown as insets: On
the top the propagative TM solutions with wave vector k = (k‖,kz),
incident from the vacuum side of the interface, on the center the
surface solution propagating along the interface with wave vector
k‖ and its evanescent field profile from Eq. (55), and on the bottom
the propagative TM solutions with wave vector k = (k‖,kz), incident
from the dielectric side of the interface, and belonging either to the
lower or to the upper polariton branch.

Sachs-Teller relation [48]. The eigenmodes and the relative
eigenfrequencies can be calculated solving Eq. (21) with
the dielectric function in Eq. (50), leading to both bulk and
surface solutions. The bulk, propagative ones, impinging upon
the surface from each side, are indexed by their polarization
(TM or TE) and three-dimensional wave vector in the medium
of origin, k = (k‖,kz), with kz > 0 for waves coming from
vacuum (v) and kz < 0 for waves coming from the dielectric.
The latter ones need also an extra index over the two bulk
phonon polariton branches, lower (l) and upper (u) polaritons,
existing in the dielectric for each value of k. Those propagative
modes are described, in the dielectric, by a linear superposition
of transverse photonic and phononic resonances, becoming
more photonlike near the free photon dispersion and more
matterlike close to the frequency of the optical phonon
resonance. The surface solutions instead form a single branch
of surface phonon polaritons, indexed by the two-dimensional
in-plane wave vector k‖, and they only exist for ck‖ � ωTO.
The dispersion of the surface mode can be found by postulating
an evanescent solution to Eqs. (14)–(17). This mode is confined
at the interface as schematically shown in the inset to Fig. 1,
with its degree of confinement increasing for larger k‖, as
the mode becomes more matterlike. The dispersions of the
different modes are shown in Fig. 1. We can thus write the
general expression of polariton operators

Kσ
kσ =

∫
dr

[
ασ

kσ · D + i

ωkσ

∇ × ασ
kσ · H

+ i
κωkσ

ρ
(
ω2

TO − ω2
kσ

)ασ
kσ · P + κω2

kσ(
ω2

TO − ω2
kσ

)ασ
kσ · X

]
,

(51)

where σ = [TMv,TMl,TMu,TEv,TEl,TEu,S] indexes the
different classes of solutions, and kσ is the relative two-
or three-dimensional wave vector. In the following we will
explicitly consider only the surface phonon polariton modes
(σ = S) and a single kind of bulk propagative solution (σ =
TEv, the TE polarized modes incident from the vacuum side
of the interface), as the other solutions lead to very similar
expressions. Introducing the orthogonal basis vectors êz, ê‖,
and ê⊥, oriented along the z axis and in the x-y plane
respectively parallel and perpendicular to k‖, we can write
the positive energy solutions of Eq. (21) for the TEv modes as

θTEv
k (r‖,z > 0) = NTEv

k e−ik‖·r‖
(
eikzz + rTEv

k e−ikzz
)
ê⊥,

(52)
θTEv

k (r‖,z < 0) = NTEv
k tTEv

k e−ik‖·r‖ei
√

εL(ωk)k2−k2
‖zê⊥,

where the Fresnel coefficients read

rTEv
k =

kz −
√

εL(ωk)k2 − k2
‖

kz +
√

εL(ωk)k2 − k2
‖
, (53)

tTEv
k = 2kz

kz +
√

εL(ωk)k2 − k2
‖
. (54)
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For the S modes we have instead

θS
k‖(r‖,z > 0) = NS

k‖

[
1√

εL
(
ωk‖

) ê‖ + êz

]

×e−ik‖·r‖e
−k‖

√
−1

εL(ωk‖ ) z

, (55)

θS
k‖(r‖,z < 0) =

NS
k‖

εL
(
ωk‖

)[
−

√
εL

(
ωk‖

)
ê‖ + êz

]

×e−ik‖·r‖e
k‖
√−εL(ωk‖ )z

. (56)

In Eqs. (52) and (55) the Nσ
kσ coefficients are the normalization

of the different modes that can be fixed by plugging the relevant
coefficients into Eq. (51), and then using Eq. (29). This yields

NTEv
k =

√
1

2ε0�ωkV
, (57)

NS
k‖ =

√
k‖

ε0�ωk‖A

[
1 − νL

(
ωk‖

)
εL

(
ωk‖

)]− 1
2

×
[

1√
−εL

(
ωk‖

) +
√

−εL
(
ωk‖

)]− 1
2

, (58)

where A is the area of the quantization surface and νL(ω) the
function obtained using εL(ω) into Eq. (30). This expression
can be recast in the form calculated by Archambault by
expansion of the function νL(ω) [18].

We can finally recover the expressions of the micro-
scopic fields by inverting the Hopfield transformation using
Eqs. (31)–(34), allowing us not only to calculate physical
observables, but also to naturally express nonlinear interac-
tions in terms of scattering between polariton operators. In
the specific example we are considering here, nonlinearities
can arise due to phonon anharmonicity, leading to N th-order
nonlinear interaction Hamiltonians that can be written in the
general form

HNL =
∫

dr
3∑

j1···jN=1

�j1···jN

N∏
l=1

Xjl
, (59)

where the j ’s index space coordinates and values of the
nonlinear tensor � for some reference structure can be found
in the literature at least up to the fourth order [49]. Inverting
Eq. (51) and using Eq. (26) we can express the matter field as

X =
∑

σ

∫
dkσ κ�ωkσ

ρ
(
ω2

TO − ω2
kσ

) θ̄
σ

kσ K
σ
kσ + H.c., (60)

where σ runs over all the different classes of solutions as in
Eq. (51). Substituting Eq. (60) into the nonlinear Hamiltonian
in Eq. (59), we thus obtain the interaction Hamiltonian written
as scattering terms between the polaritonic operators

HNL =
∑

σ1···σN

N∏
l=1

[∫
dkσl

]



σ1···σN

kσ1 ···kσN

N∏
l=1

K
σl

kσl , (61)

where the scattering coefficients 
 are obtained performing
the relevant integrals over the space variables.

As an example, we will calculate the χ (2) nonlinearity for
mutually orthogonal field components

Hxyz =
∫

dr �xyzXxXyXz, (62)

where �xyz is the contributing part of the nonlinear dielectric
tensor. Introducing the linear susceptibility

χ (ω) = κ2

ρε0
(
ω2

TO − ω2
) (63)

into Eq. (60), we can write such a Hamiltonian as

Hxyz =
(

�ε0

κ

)3 ∑
σ1,σ2,σ3

∫
dr �xyz

∫ ∫ ∫
dkσ1dkσ2dkσ3

×
[

3∏
l=1

ωkσl χ (ωkσl )
[
θ

σl,l
kσl K

σl†
kσl + θ̄

σl ,l
kσl K

σl

kσl

]]
, (64)

where θ
σ,l
k is the lth Cartesian component of θσ

k . In Eq. (64) we
can recognize the mechanical contribution to the third-order
anharmonic dielectric susceptibility [50]

χ
(2)
M (ωkσ1 ,ωkσ2 ,ωkσ3 ) = �xyz

3∏
l=1

ε0

κ
χ (ωkσl ). (65)

IV. EXTENSION TO THE DISSIPATIVE CASE

The model described in Sec. II can be extended to include
dissipative effects on the same line of the original Huttner and
Barnett paper [23]. This is achieved by coupling the matter
field to a continuum bath of harmonic oscillators modeling the
continuum in which the matter energy can be dissipated. Given
the continuous character of the resulting spectrum, this will
come at the cost of renouncing to the simple modal solution of
Eq. (21) and we will have to solve instead a nonhomogeneous
wave equation. Still, it is important to show that in this case
our method remains viable, effectively recovering a result
equivalent to Ref. [25], and reducing to Ref. [23] in the
homogeneous case.

We thus consider the total Lagrangian L = L0 + LB where
L0, from Eq. (1), describes the nondissipative system and

LB =
∫ ∞

0
dζ

[
ρẎ2

ζ

2
− ρζ 2Y2

ζ

2
− υζ X · Ẏζ

]
, (66)

the bath of harmonic oscillators Yζ , indexed by their frequency
ζ , and coupled to the matter mode by the coupling υζ .
Analogously to what was done in Sec. II, we will assume
that all the integrals over the bath degrees of freedom extend
only in the regions where ρ �= 0. The canonical momenta for
the bath operators are found as

Qζ = δLB

δẎζ

= ρẎζ − υζ X.

(67)
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The corresponding total Hamiltonian will thus be given by
H = H0 + HB with

HB =
∫

dr
∫ ∞

0
dζ

[
ρζ 2Y2

ζ

2
+ Q2

ζ

2ρ
+ υζ

ρ
Qζ · X + υ2

ζ X2

2ρ

]
,

(68)

where the last term in Eq. (68) can be included into H0

introducing the renormalized longitudinal frequency

ω̃2
L = ω2

T + κ2

ε0ρ
+

∫ ∞

0
dζ

υ2
ζ

2ρ2
(69)

that includes the static shift from coupling to the bath. The full
Hamiltonian H is quantized by imposition of commutation
relations whose nonzero elements are those in Eqs. (8)–(10),
in addition to

[Yζ (r),Qζ ′(r′)] = i�δ(r − r′)δ(ζ − ζ ′). (70)

The polaritonic operators are now defined as

K =
∫

dr
[
α · D + β · H + γ · P + η · X

+
∫ ∞

0
dζ

(
χ ζ · Qζ + ξ ζ · Yζ

)]
, (71)

and solving the Heisenberg equation

[K,H] = �ωK, (72)

we obtain the system of equations

ωα = −ic2∇ × β + i
[κγ ]T

ε0
, (73)

ωβ = i∇ × α, (74)

ωγ = i
η

ρ
, (75)

ωη = iκ c2∇ × β − iρω2
Lγ + i

υζ

ρ
ξ ζ , (76)

ωχ ζ = i
ξ ζ

ρ
− i

υζ

ρ
γ , (77)

ωξ ζ = −iρζ 2χ ζ . (78)

Such a system may be solved using the method originally due
to Fano [51], by using Eq. (78) to eliminate χ ζ and then writing
the bath operator ξ ζ as a function of γ as

ξ ζ = P

[
υζ ζ

2

ζ 2 − ω2
γ

]
+ y(ω)δ(ζ − ω), (79)

where P refers to the principal part and y(ω) is a frequency-
and space-dependent function to be determined. Analogously
to what done in Sec. II, we can restate the system in Eqs. (73)–
(78) as an inhomogeneous wave equation

∇ × ∇ × θ − ω2ε̃(ω)

c2
θ = iω j(ω), (80)

where

ε̃(ω) = ω̃2
L − ω2 − F(ω)

ω2
T − ω2 − F(ω)

(81)

is the complex dielectric function with

F(ω) = P

[∫ ∞

0
dζ

υ2
ζ ζ

2

ρ2(ζ 2 − ω2)

]
, (82)

which is of the form derived by Wubs and Suttorp [25], and
the source current j(ω) relates to the function y(ω) as

j(ω) = υω

κρc2
[ε̃(ω) − 1]y(ω). (83)

Solutions of Eq. (80) can now be determined for any value of
ω, leading to a continuous spectrum of solutions indexed by
the frequency ω where the function y(ω) takes the role of the
normalization factor. In order to fix such a function we impose
again the bosonic commutation relation for the polaritonic
operators, in a continuous version of Eq. (27),

[Kω,K
†
ω′] = δ(ω − ω′)sgn(ω′). (84)

Following exactly the same steps as in Sec. II, extending it to
wave vectors of the form

|�̃〉 = (α,β,γ ,η,χ ζ ,ξ ζ ), (85)

we can write the total Hamiltonian in diagonal form as

H =�

∫
ω>0

dω K†
ωKω, (86)

where the integral extends over the positive energy spectrum
of Eqs. (73)–(78). Notice that our derivation proves the
completeness of the solutions of Maxwell equations in an
inhomogeneous, dissipative medium without free charges. To
the best of our knowledge the proof of this result, normally
assumed to be true, had not been explicitly reported in the
literature.

V. CONCLUSION

We introduced a real-space Hopfield approach to the
diagonalization of polarizable media, able to extend to
inhomogeneous materials the standard machinery used in
the field of quantum polaritonics. Our approach allows us
to obtain explicit expressions for the quantum light and
matter microscopic fields as a function of the polaritonic
operators. Natural applications of this method are in the
study of quantum nonlinear processes in inhomogeneous
systems, where the microscopic nonlinearity, usually known
as a nonlinear function of the matter fields, can be expressed as
scattering terms between polaritonic operators. We thus expect
our theory will be an important tool in the developing field
studying quantum properties of plasmons and other surface
excitations, where extremely small mode volumes can lead to
strong nonlinear effects.
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