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The role of exchange defects on the band structure of ZnGeN2 is investigated. Exchange defects are defined
through the exchange of cations Zn and Ge starting from the ideal Pna21 crystal structure, which obeys the
local octet rule. Each such exchange creates several nitrogen-centered tetrahedra which violate the local octet
rule, although overall charge neutrality is preserved. We study several distributions of exchange defects, some
with all antisites making up the exchange defect close to each other and with increasing numbers of exchange
defects, and others where the two types of antisites ZnGe and GeZn are kept separated from each other. We also
compare the results for these models with a fully random distribution of Zn and Ge on the cation sites. We show
that for a single-nearest-neighbor exchange defect, the band gap is narrowed by about 0.5 eV due to two effects:
(1) the ZnGe antisites form filled acceptor states just above and merging with the valence-band maximum (VBM)
of perfect crystal ZnGeN2 and (2) the GeZn antisites form a resonance in the conduction band which lowers
the conduction-band minimum (CBM). When more exchange defects are created, these acceptor states broaden
into bands which can lower the gap further. When tetrahedra occur surrounded completely by four Zn atoms,
states even deeper in the gap are found localized all near these tetrahedra, forming a separate intermediate band.
Finally, for phase-segregated ZnGe and GeZn, the gap is significantly more reduced, but no separate band is found
to occur. The ZnGe acceptorlike states now form a percolating defect band which is significantly wider and hence
reaches deeper into the gap. In all cases, the wave functions near the top of the new VBM remain, to some extent,
localized near the ZnGe sites. For a fully random case, the gap is even more severely reduced by almost 3 eV.
The total energy of the system increases with the number of octet-rule-violating tetrahedra and the energy cost
per exchange defect of order 2 eV is quite high.

DOI: 10.1103/PhysRevB.94.205201

I. INTRODUCTION

Recently, there has been significant new interest in het-
erovalent ternary nitrides, such as ZnGeN2 and ZnSnN2 [1–8].
These materials can formally be thought of as derived from
the binary III-N nitrides by replacing the group III by,
alternatingly, a group-II element, such as Zn, and a group-IV
element, such as Ge or Sn. These heterovalent ternaries
have properties both similar to and complementary to the
well-studied III-N semiconductors. However, the additional
degree of freedom of having two different valence cations leads
to new questions and additional complexity. Most notable is
the question of the ordering of the cations.

While the most stable crystal structure found so far for
most of these materials has the β-NaFeO2 structure with space
group Pna21, disordered wurtzitelike phases, sometimes
identified as having monoclinic structure, have also been
reported [2,3,9,10]. Besides the 16-atom unit-cell Pna21

structure, another 8-atom cell with space group Pmc21 was
proposed by Lahourcade etal. [4]. Both of these structures
are unique in that within the overall wurtzite lattice they
preserve the octet rule locally in each tetrahedron. That is,
each tetrahedron surrounding an N has exactly two group-II
and two group-IV elements such that the charge neutrality is
conserved locally. In a recent paper, Quayle etal. [8] showed
that these are the only two small unit cells that satisfy this rule.
Moreover, these authors showed that these two structures can
be viewed as simply a different stacking of rows of alternating
group-II and group-IV atoms in the basal plane. This result then
suggested that random stackings could also occur and led to
a new model for disordered structures which are constrained
to preserve the charge neutrality, as opposed to completely

random placement of the II and IV atoms on the wurtzite
lattice, which would only preserve neutrality globally but not
locally. This means, for instance, that some tetrahedra would
have one group-II and three group-IV atoms, which we will call
a (1,3) tetrahedron, and be compensated by the opposite (3,1)
tetrahedra elsewhere in the structure. In principle, in a fully
disordered structure, even (0,4) and (4,0) tetrahedra would
occur. In Quayle etal. [8], it was shown that a structure with
only (1,3) and (3,1) tetrahedra had a significantly higher total
energy and lower band gap, and that both structures Pna21 and
Pmc21, with only (2,2) tetrahedra, had almost the same energy
and band gap. On the other hand, it was recently proposed by
Feldberg etal. [6] that for ZnSnN2, a significantly lower band
gap was obtained for “fully” disordered material as compared
to the ideal Pna21 structure. However, what constitutes “fully
disordered” was not identified, and statistics on the number of
each type of tetrahedron in the structure was not provided.

In previous work [8], we hypothesized that the origin of the
decrease of the band gap in disordered structures is related to
“wrong” tetrahedra, i.e., tetrahedra other than (2,2) that violate
the local charge neutrality. In this paper, we further pursue
this question by considering so-called exchange defects. These
consist of a swap of a group-II and a group-IV atom, which
we call an exchange defect. First of all, we analyze how many
“wrong” tetrahedra such an exchange defect produces. Second,
we model a large supercell in which we make a number of
exchange swaps. We study the behavior of the gap and states in
the gap as functions of the distribution of the exchange defects
and also compare these results with those of a fully random
structure, as more specifically defined later. Finally, we relate
these results to those of the individual antisite defects which
were recently studied [11]. In this study, we focus on ZnGeN2
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because it has a larger gap than ZnSnN2. In the local density
approximation, the gap of ZnSnN2 becomes very small and
this makes it difficult to study the defect-related bands in the
gap. However, the essential physics should be similar, so the
main conclusions will transfer to the case of ZnSnN2 as well.

II. METHODS AND MODELS

The calculations were done within the local density ap-
proximation (LDA) to density functional theory [12–14]. The
full-potential linearized muffin-tin orbital method [15,16] was
used for the solution of the Kohn-Sham equations and the
band structures. The basis sets used and other details of the
computation are the same as those reported in Ref. [11]. Each
structure was relaxed by a conjugate gradient method to find
the closest local minimum for a given configuration.

We studied several supercells, each consisting of 128 atoms,
which is a 2 × 2 × 2 supercell of the 16-atom primitive
unit cell of ZnGeN2, with various arrangements of exchange
defects. While in a 128-atom cell there may still be significant
defect-defect interactions, especially when considering these
somewhat extended defect complexes, we emphasize that in
this study, it is not our purpose to exclude such defect-defect
interactions but precisely to include them. We are not focused
on the dilute limit of such defect complexes, but on their
effect on the overall band gap of the system, including the
defect-defect interaction effects.

In Fig. 1, we illustrate the structure of a single exchange
defect. One can see that in the perfect crystal structure, each
horizontal row has alternating blue (Zn) and pink (Ge) atoms.
The single exchange defect shown in Fig. 1(a) corresponds
to a swap of two nearest-neighbor cations (connected to the
same N) in the basal plane, as indicated by the red line. As
explained in the figure caption, this exchange defect leads
to three (1,3) and three (3,1) “wrong” tetrahedra. A slightly
different exchange defect can be made by swapping two atoms
in neighboring planes, as illustrated in Figs. 1(b)–1(d). As
the caption explains, this defect also has three (1,3) and
three (3,1) tetrahedra. The same is true for more distant
atom swaps. Once we start adding more exchange defects,
the defective regions may start overlapping and the number
of wrong tetrahedra per swap may be reduced. Specifically,
we used three different structures each with two exchange
defects, which have, respectively, four, five, and six (1,3) and
(3,1) tetrahedra. These structures are shown in Fig. 2 and the
statistics of their tetrahedra are listed in Table I, along with
other models and calculated properties.

FIG. 1. (a) Single exchange defect between atoms in the same
basal plane. The blue and pink spheres indicate Zn and Ge; the small
white spheres indicate N. The red line indicates the swapped atoms.
The yellow spheres indicate N surrounded by 3 Ge and 1 Zn (1,3)
tetrahedron; the red spheres indicate N surrounded by 3 Zn and 1 Ge
(3,1) tetrahedron. Additional (1,3) and (3,1) tetrahedra occur above
each antisite. (b) Single exchange defect between near-neighbor Zn
and Ge in adjacent planes (B and C). In (b), showing layers B on top
of C, one can see two (1,3) tetrahedra indicated by the yellow N. In
(c) (layers A on top of B), one can see a third (1,3) tetrahedron. In
(d), showing layers C on top of D, one can see three (3,1) tetrahedra
indicated by red N spheres.

Next, we used two different distributions of three swaps:
one in which they were all close neighbors and the second in
which we kept the ZnGe separated from the GeZn. The latter was
made by first occupying sites according to a random number
generator, and next we swapped atoms by hand to keep the
antisites from being near neighbors.

Finally, we also study a more fully random system. The
latter is defined in terms of the special quasirandom structures
(SQS) approach [17]. In the SQS approach, one constructs an
ordered structure such that various pair-correlation functions
and higher-order correlation functions between spins a certain
distance from each other agree as closely as possible with
the fully random distributions. Instead of considering pairs

TABLE I. Numbers of tetrahedra of different types in various models, their LDA band gaps, and energies of formation. The type of
tetrahedron is indicated as (nZn,nGe) with nZn (nGe) the number of Zn (Ge) neighbors to each N.

Model (2,2) (1,3) (3,1) (0,4) (4,0) Egap (eV) Efor (eV) Comment

1-swap 58 3 3 0 0 1.39 2.8 defect level close to VBM
2-swaps (a) 56 4 4 0 0 1.58 2.3
2-swaps (b) 54 5 5 0 0 1.26 2.9
2-swaps (c) 52 6 6 0 0 1.01 4.7
3-swaps 47 9 7 0 1 0.50 7.4 intermediate band
separated 3 ZnGe and 3 GeZn 41 10 12 0 0 0.44 10.5 reduced gap, raised VB
random 24 16 16 4 4 0.33a 20.0

aLDA+U gap
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FIG. 2. Three different models with two exchange defects each
and, respectively, four, five, and six wrong tetrahedra in cases (a)–(c).
The blue spheres indicate Zn, the pink spheres indicate Ge, the small
spheres are N, with the yellow ones indicating a (1,3) and the red
ones indicating a (3,1) tetrahedron.

on the cation lattice, we consider the five possible tetrahedra
around each N, i.e., (0,4), (1,3), (2,2), (3,1), (4,0), which in
the fully random case should occur according to the binomial
distribution, which for equal concentrations of the two cations
means in the ratio 1/16, 4/16, 6/16, 4/16, 1/16. Using a search
among various models with the 64 cation sites populated
according to a random-number generator, we found several
cells that obey this distribution of tetrahedra and used a few
of these as representative examples of a random system. This
approach is equivalent to considering correlation functions
with k = 0,1,2,3,4 up to nearest neighbors only. One could
further improve on this SQS by requiring higher distance pairs,
etc. to have vanishing pair correlations.

We note that the charge neutrality is always conserved
overall because we start from a stoichiometric sample and
only make exchanges; we do not add or delete atoms of a
given kind. So, the question now is how do these defects affect
the band structure? In the following, we define the band gap as
the difference between the lowest empty state and the highest
occupied states. For a disordered system, one also considers
defect-state tails below the band edges in the gap region. In
amorphous systems, one often distinguishes a mobility gap, a
gap above which states contribute actually to transport from
a optical gap. We thus clarify that the gaps we consider here
are related to optical absorption gaps and do not represent
a mobility gap. On the other hand, we will also study the
localization behavior of the states tailing into the nominal
perfect crystal gap.
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FIG. 3. Band structure and density of states for single nearest-
neighbor swap exchange defect.

III. RESULTS

First, let us consider a single swap between nearest-
neighbor atoms in the same basal plane. The band structure
and density of states for this case is shown in Fig. 3. We
can see that some defectlike bands occur in the gap close to
the valence-band maximum (VBM). These bands are filled
because we consider the neutral charge state. This result is
consistent with expectations from the individual defects [11].
In fact, a ZnGe antisite was shown to behave as an acceptor
defect, while a GeZn antisite behaves as a very shallow donor,
essentially producing only a resonance in the conduction band
with potentially a hydrogenic Coulomb tail bound state. The
latter, however, is not reproduced in supercell calculations
because of the limited size of the cell. In the present case, the
donor electrons are transferred to the acceptor so the donor is
in the positive state, compensating the negative acceptor.

Hence the defect levels due to the ZnGe acceptor are all
filled. Because the ZnGe acceptor is still relatively shallow
(<0.1 eV binding energy), although less shallow than the GeZn

donor, one would expect the gap to be only slightly reduced
from the perfect crystal value. However, we find that the gap is
reduced from 1.93 eV in the perfect crystal to 1.39 eV. These
are LDA gaps and are thus underestimated, but are sufficient to
explore the changes in the gap upon introducing the exchange
defects. The reason for the gap lowering becomes clear on
closer inspection of the band structure and comparing it to the
case of a single ZnGe antisite in Fig. 11 of Ref. [11]. In the
present case, there is a resonance in the conduction band due to
the GeZn antisite, which pushes the conduction-band minimum
(CBM) down. Of course, in the dilute limit, one would not
expect this resonance to lower the conduction band, but here
we are concerned with the band structure of a 128-atom cell
which has 32 Zn sites, so 1/32 = 3.125% concentration of
GeZn defects. Furthermore the GeZn occurs close to the ZnGe

site and, in fact, as mentioned earlier, there are actually six
wrong tetrahedra, which already has a significant effect on
both the VBM and CBM.

Inspection of the wave functions shown in Fig. 4 corre-
sponding to the defect levels just above the VBM shows that
their wave functions are indeed localized near the ZnGe antisite
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FIG. 4. Wave-function modulo squared for (a) the highest valence
band and (b) the conduction-band resonance in the model with one
exchange defect. The gray and purple spheres indicate regular lattice
sites Zn and Ge, respectively, while the red indicates ZnGe and the
green indicates GeZn. The small green spheres indicate N surrounded
by three Ge and one Zn, while the small red spheres indicate N
surrounded by three Zn and one Ge.

and are similar to those for an isolated antisite defect. Figure 4
also shows the conduction-band resonance near GeZn.

The energy of formation of this single exchange defect is
2.8 eV compared to the perfect crystal. This is comparable
to the energy of formation of the ZnGe isolated defect. The
latter depends on chemical potential conditions, but here we
compare only systems with the same number of Zn and
Ge atoms, so we can directly compare the energy of the
crystal with the exchange defect to that of the perfect crystal,
without considering equilibrium with different reservoirs.
Furthermore, we consider the system to be overall neutral
and this condition fixes the Fermi level at the highest occupied
band.

For the alternative single swap defect considered in
Fig. 1(b), we found essentially identical results and therefore
we do not show them here. Next, we consider several systems
with two swaps, as indicated in Fig. 2. These show similar band
structures with some variation in the width of the distribution
of ZnGe defect states near the VBM, as indicated by the gap
shown for each structure in Table I. We also see from this table
that the energy of formation tends to increase with the number
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FIG. 5. Band structure and density of states for three nearest-
neighbor exchange defects for the model containing a (4,0)
tetrahedron.

of octet-rule-violating tetrahedra. Remarkably, however, the
model with two swaps, shown in Fig. 2(a), has a lower
energy of formation than the one-swap model. In view of the
opposite charges of the Zn−2

Ge and Ge+2
Zn , we may note that this

configuration contains two nearby oppositely pointing dipoles,
which helps to lower its energy. Still, it is remarkable that this
arrangement would lower the energy enough to compensate
for the fact that we have one more exchange defect.

Next, we consider a system with three exchange defects,
all of them occurring between near-neighbor Zn and Ge. As
shown in Table I, in this case there occurs a (4,0) tetrahedron;
in other words, an N surrounded by four Zn atoms. The
band structure and density of states, shown in Fig. 5, now
exhibit a defect band, filled with electrons, well separated
from the valence-band maximum. Nominally, one could say
that the gap is now significantly reduced because it corresponds
to the gap between the defect band and the CBM. We will refer
to this defect band as an intermediate band.

However, the flat dispersion and hence high effective mass
will probably result in poor hole transport in this defect band.
Inspection of the wave function (Fig. 6) shows that all three
bands in the middle of the gap have states localized near the N
surrounded by four Zn. This result is understandable because
the defect states of ZnGe are mostly N-p like and the localized
states of the N surrounded by all Zn will be more pushed up
by the Zn-3d states than the other for N. The usual valence
band below the separated intermediate band still has states
near its maximum that are localized near ZnGe, but not on the
N surrounded by four Zn.

As an aside, an intermediate-band situation like this one has
been suggested to be possibly useful for photovoltaics. The
idea is that if such a band is partially filled, optical transitions
can occur between the VBM and this intermediate band, as well
as between this intermediate band and the CBM. In addition
to the usual VBM-CBM transitions, one could thus absorb
photons of lower energy. If, at the same time, one can maintain
the quasi-Fermi level of the n- and p-type sides of an interface
near the nominal CBM and VBM, then one could maintain an
open-circuit voltage close to the value of the large band gap of
the unperturbed material. However, this intermediate band can
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FIG. 6. |ψ |2 for the wave functions of a few selected states at
k = 0 in the three-swap model. (a) The highest occupied or HOMO
state of the model which lies at the top of the defect band. The bonds
to Zn are indicated and show the wave function to be localized near
an N surrounded by four Zn (dark red), two of them ZnGe (in red)
and two of them regular lattice Zn. (b) The HOMO-3 or the highest
valence-band state below the intermediate band. This state is still
localized near ZnGe, but not on the N with four Zn. (c) The second
conduction-band level, which is a resonance located near the three
GeZn (green).

also act as a carrier trap. Thus, good transport in this band, and
optimal balance between these different absorption and capture
processes, is essential to make such a concept work for a more
efficient solar cell. In the present case, the intermediate band
is filled, although this situation could of course be changed by
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FIG. 7. Band structure and DOS for ZnGeN2 with three exchange
defects with the ZnGe antisites spatially separated from the GeZn

antisites.

p-type doping or by going slightly off-stoichiometry toward
a Zn-rich situation. However, more importantly, this structure
seems to cost a substantial energy of formation. We do not
have a decomposition of the total energy of formation in terms
of different types of wrong tetrahedra, but the N surrounded
by four Zn could play a significant role in this. In any case,
this kind of defect seems rather unlikely to occur.

Next, we consider a 128-atom cell also with three ZnGe and
three GeZn, but with the antisites placed in a phase-separated
manner in the structure. The statistics of different types of
tetrahedra is again summarized in Table I. The band structure
and density of states are shown in Fig. 7. In this case, we
now see that the gap between the defect band and the VBM
has completely filled in and the gap is significantly reduced to
0.44 eV. This result means a lowering of the gap by 1.49 eV.
Taking into account the corrections beyond LDA, and a gap of
3.4 eV for perfect crystal Pna21 ZnGeN2, the gap would now
be reduced to 1.9 eV.

The highest occupied molecular orbital (HOMO) wave
function for this “phase-separated” case is displayed in Fig. 8.

FIG. 8. Wave-function modulo squared for highest occupied band
at � for the model with three swaps and “phase-separated” ZnGe, GeZn.
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One can indeed see that the ZnGe (indicated by red spheres) are
separated spatially from the GeZn (indicated by green spheres)
in this model. The result shows again localization near the ZnGe

defects, but in contrast to the previous three-swap model, the
wave function now looks more extended. Its state percolates
along a chain across the whole cell, connecting various ZnGe

sites. This percolation clearly would increase the bandwidth
of such defect bands and explains why the gap between the
defect bands and the VBM fills in. Similar extended states can
be seen for the HOMO-1 and HOMO-2 states. The CBM and
CBM+1 states, on the other hand, have more weight near the
GeZn sites.

From the energies of formation in Table I, we can see
that this model has significantly higher energy than the
near-neighbor exchange models with three swaps. Because
these defects are of opposite charge in an overall neutral
situation where the charge is transferred from the donors
to the acceptors, one indeed expects this segregation to be
unfavorable in total energy.

Finally, we consider a “fully” random system represented
by a SQS constructed in the way discussed in the previous
section. The structure of this model is shown in Fig. 9. Its band
structure is shown in Fig. 10. We found that in this model, the
gap is zero in LDA. This means the gap is reduced by at least
1.9 eV. Therefore, we use the LDA+U model used in Skachkov
etal. [11], which in pure ZnGeN2 in the Pna21 structure opens
the gap to 3.4 eV. After relaxation of the structure, this results
in a gap of 0.33 eV. This is a remarkable lowering of the gap by
about 3.1 eV compared to the Pna21 structure. This, in some
sense, confirms the similar results obtained for ZnSnN2 by
Feldberg etal. [6], who studied a special quasirandom structure
(SQS) supercell to simulate the completely random placement
of the Zn and Sn atoms and also found a significant reduction
of the gap. The gap reduction found here is even more severe.
Unfortunately, we have no detailed information on the statistics
of the different types of tetrahedra in that previous study.

On the other hand, we find this structure to have an energy
cost relative to Pna21 of 20 eV per 128-atom cell after
relaxation. This large energy cost corresponds to the large
number of antisites in this model. To put this in perspective,

FIG. 9. Structure of a 128-atom random-placement model: the
nitrogen atoms are colored according to their nearest neighbors (nZn,
nGe): (2,2) gray, (3,1) green, (4,0) dark green, (1,3) red, and (0,4) dark
red.
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FIG. 10. Band gap in relaxed random SQS 128-atom model for
ZnGeN2 in LDA+U .

the 20 eV/128-atom cell corresponds to 0.625 eV/formula unit
or 60 kJ/mole or 14 kcal/mole. For comparison, the energy
of formation of ZnGeN2 relative to the elemental solids Zn
and Ge and N2 molecules is −2.43 eV/formula unit. It shows
that such structures are very unlikely or at least very far from
equilibrium.

IV. CONCLUSIONS

We studied various models and degrees of randomness
of ZnGeN2. We found that a single exchange defect, i.e.,
exchanging a near-neighbor Zn and Ge, causes several charge-
neutrality-violating tetrahedra and leads to a band structure
which is characterized by a defect band close to the VBM and
corresponding essentially to the ZnGe antisite acceptor levels
broadened somewhat into a band. However, the CBM is also
lowered by the occurrence of a GeZn-related resonance in the
conduction band. This single exchange defect already reduces
the gap by about 0.5 eV. We found that when several such
exchange defects occur, they interact and tend to push the
defect band deeper into the gap, resulting in some cases in a
distinct “intermediate-band” situation. In particular, we found
this situation to occur when an N surrounded by four Zn atoms
occurred in the structure. In a structure with three exchange
defects per 128-atom cell, corresponding to a concentration of
9.375% phase separated from each other, already no separated
defect bands were found but instead a reduction of the gap by
a raising of the valence band. The gap was reduced by about
1.5 eV. Finally, in a completely random structure with a
binomial distribution of the five different types of nearest-
neighbor tetrahedra, the gap was found to be reduced even
further, by as much as 3 eV. We remind the reader that these
are optical band gaps, not mobility gaps. On the other hand,
it is also clear from our study of the localization of the states
that for the more isolated exchange defects, the states in the
band-gap tail above the valence-band edge are rather localized
and hence conduction of holes in such states is only expected
to proceed by a hopping model. A detailed study of transport
properties and an actual determination of the mobility gap is
beyond the scope of this paper.
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On the other hand, the total energy of the system signif-
icantly increases with the number of exchange defects. The
energy cost is of the order of 2.8 eV per exchange defect.
When doubling the number of exchange defects, the energy of
formation roughly doubles if the defects occur independent of
each other [case 2-swaps (c) in Table I], but can be significantly
reduced when these exchange defects occur close to each other
so that the total number of octet-rule violations is reduced. The
model with three swaps has indeed about three times the energy
of the formation of one swap, but when the antisites are kept
phase separated, the energy of formation is higher. The energy
increases from 2.5 eV per swap if they are kept close to each
other, and to 3.5 eV if they are kept apart in the three-swap
model. A fully random structure has even higher energy of
formation, of the order of 0.625 eV per formula unit.

In our previous paper [11], we found that antisite defects
ZnGe and GeZn are the most energetically favorable point
defects in ZnGeN2 and compensate each other, thereby pinning
the Fermi level. Because of their opposite charge, they will also
attract each other and therefore one might expect them to form
near-neighbor exchange defects. However, the equilibrium
concentration of the antisite defects is low, of the order
of 1016 cm−3. Here we find that when such defects occur
in pairs in large concentrations, they can lower the band
gap. For a 3% concentration of exchange defects, which
is of the order of 0.7 × 1021 cm−3, the gap is reduced by
about 0.5 eV. For higher concentrations of order 9% (or
2.1 × 1021 cm−3), the gap may be reduced by as much as
1.5 eV. We find that the exchange defects will tend to cluster
rather than phase separate, as the antisites forming them have

opposite charge and attract each other. Nonetheless, we can see
that the defect concentrations considered here are quite high
compared to equilibrium concentrations. Thus we expect such
band-gap lowering due to disorder only when the growth is
significantly perturbed and far from equilibrium. Under highly
nonequilibrium circumstances, it is unlikely that high-quality
crystallinity can be maintained.

Although we primarily focused on ZnGeN2, we also
performed some calculations for ZnSnN2 and found also very
strong gap reductions under similar circumstances. Because
in LDA the gap is very small to begin with, the ZnSnN2 gap
with exchange defects essentially closes and this makes it
difficult to study the effects in detail without going beyond
LDA. Nonetheless, we anticipate the general conclusions to
be applicable also to ZnSnN2.

ACKNOWLEDGMENTS

This work was supported primarily by the U.S. National
Science Foundation under Grant No. DMREF-1533957. D.S.
was supported by the U.S. Department of Energy, Office
of Science, Basic Energy Sciences under Grant No. DE-
SC0008933. The point-defect methodology development and
computational aspects are supported by the U.S. Department
of Energy, while the analysis of the results for this particular
system are funded by the NSF grant. P.C.Q. and K.K. were
supported by the U.S. National Science Foundation under
Grant No. DMR-140-9346. The calculations were performed
at the Ohio Super Computer Center under Project No.
PDS0145.

[1] W. R. L. Lambrecht and A. Punya, in III-Nitride Semiconductors
and their Modern Devices, edited by B. Gil (Oxford University
Press, Oxford, 2013), Chap. 15, pp. 519–585.

[2] L. D. Zhu, P. H. Maruska, P. E. Norris, P. W. Yip, and L. O.
Bouthillette, MRS Internet J. Nitride Semicond. Res. 4, 149
(1999).

[3] K. Du, C. Bekele, C. C. Hayman, J. C. Angus, P. Pirouz, and K.
Kash, J. Cryst. Growth 310, 1057 (2008).

[4] L. Lahourcade, N. C. Coronel, K. T. Delaney, S. K. Shukla, N.
A. Spaldin, and H. A. Atwater, Adv. Mater. 25, 2562 (2013).

[5] N. Feldberg, B. Keen, J. D. Aldous, D. Scanlon, P. A. Stampe,
R. Kennedy, R. Reeves, T. D. Veal, and S. Durbin, in 38th IEEE
Photovoltaic Specialists Conference (PVSC), Austin, Texas
(IEEE, Piscataway, NJ, 2012), pp. 2524–2527.

[6] N. Feldberg, J. D. Aldous, W. M. Linhart, L. J. Phillips, K.
Durose, P. A. Stampe, R. J. Kennedy, D. O. Scanlon, G. Vardar,
R. L. Field, T. Y. Jen, R. S. Goldman, T. D. Veal, and S. M.
Durbin, Appl. Phys. Lett. 103, 042109 (2013).

[7] P. C. Quayle, K. He, J. Shan, and K. Kash, MRS Commun. 3,
135 (2013).

[8] P. C. Quayle, E. W. Blanton, A. Punya, G. T. Junno, K. He, L.
Han, H. Zhao, J. Shan, W. R. L. Lambrecht, and K. Kash, Phys.
Rev. B 91, 205207 (2015).

[9] M. Maunaye and J. Lang, Mater. Res. Bull. 5, 793
(1970).

[10] E. Blanton, K. He, J. Shan, and K. Kash, in Symposium
E/H Photovoltaic Technologies, Devices and Systems Based on
Inorganic Materials, Small Organic Molecules and Hybrids,
MRS Online Proceedings Library (Cambridge University Press,
New York, 2013), Vol. 1493, pp. 237–242.

[11] D. Skachkov, A. Punya Jaroenjittichai, L.-y. Huang, and W. R.
L. Lambrecht, Phys. Rev. B 93, 155202 (2016).

[12] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).

[13] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[14] U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629

(1972).
[15] M. Methfessel, M. van Schilfgaarde, and R. A. Casali, in

Electronic Structure and Physical Properties of Solids. The
Use of the LMTO Method, Lecture Notes in Physics, Vol.
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