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We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional
magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin
structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare
the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered
frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the
Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site
repulsion as small as U/t ~ 2-3, although ratios of peak intensities at different momenta continue evolving with
increasing U/t converging only slowly to the Heisenberg limit. We discuss the implications of these results for
neutron scattering experiments and we propose criteria to establish the values of U/t of quasi-one-dimensional
systems described by one-orbital Hubbard models from experimental information.
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I. INTRODUCTION

In recent years, we have witnessed a considerable im-
provement in the momentum and frequency resolution of
inelastic neutron scattering techniques, which have been
shown to be powerful tools to analyze the magnetic excitation
dynamics in low dimensional strongly correlated materials.
A typical example of the accurate agreement between theory
and experiment is given by the dynamical spin structure factor
of the one-dimensional spin-1/2 Heisenberg quantum magnet
KCuF; [1].

Strongly correlated materials are often described in terms
of model Hamiltonians where only spin degrees of freedom
are taken into account—typically the Heisenberg Hamiltonian,
which represents the main paradigm for quantum magnetism.
This is due to the presence of strong electronic correlations,
which energetically forbid the possibility of double occupation
of the outer shell orbitals. In these systems, charge degrees of
freedom are considered frozen (or gapped), and the low-energy
magnetic excitations can be understood in terms of the sole
spin degrees of freedom.

The idea of using a Heisenberg Hamiltonian as a “phe-
nomenological” model, even in cases when it is known that it
is not fully applicable, is not new. For instance, the description
of the spin waves in iron in the low-energy regime has been dis-
cussed in terms of the Heisenberg model [2,3] since the early
days of neutron scattering. Even though this system is clearly
itinerant, the Heisenberg model works because it captures the
essential features of the dispersion relation in this low-energy
regime. However, it was known that this model could not
explain the higher energy features of the magnetic excitation
spectrum, features requiring a more realistic treatment that
accounts for the itinerant nature of electrons in iron.

One-dimensional (1D) and quasi-one-dimensional Mott
insulators, such as spin chains and ladders, provide an exciting
playground for the study of strongly correlated quantum states
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of matter. In 1D, one can observe quasi-long-range order states,
known as Tomonaga-Luttinger liquids [4], or phases where
correlations between magnetic excitations are short range as
in the case of Haldane spin-1 chains [5]. In ladders, quantum
spin-liquid phases have properties quite different from those
of any conventional ferro- or antiferromagnet [6]. In particular,
for even number of legs—including the important case of
two-leg ladders—the decay of correlations is exponential due
to the presence of the spin gap [7-10]. The existence of this
spin gap has been confirmed experimentally in the copper
oxide SrCu,0j3 [11]. Spin ladders have applications ranging
from high-temperature superconductors [12—-15] to ultracold
atoms [16,17]. Recently, unusual and intriguing physical
phenomena were observed in spin systems, such as the Bose-
Einstein condensation of magnons [18], the fractionalization
of spin excitations [19,20], spinon attraction [21], and unusual
disorder effects [22]. Excellent agreement between theory
and experiment has been achieved without considering charge
dynamics effects in the study of the magnetic excitation
spectrum, as the example of KCuF; shows [1]. Yet the effects
of the charge degree of freedom cannot always be neglected,
as will be shown in this paper.

An example of the need to consider charge is provided by
the two-dimensional Mott insulating cuprate La,CuQO,, where
the experimentally observed magnetic dispersion departs
noticeably from the pure Heisenberg form [23]. Starting from
the Hubbard model, a perturbation theory in the electronic
hopping term has shown that ring exchange terms appear
beyond second order, and they are needed to understand the
unusual magnetic dispersion and thus restore the agreement
between theory and experiment. This is a direct manifestation
that electronic itinerancy or charge dynamics effects are
important to understand the magnetic excitation spectra of
strongly correlated materials.

A recent theoretical study [24] of the dynamical spin
structure factor in the 1D Hubbard model [25] has shown
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that there are significant charge dynamics effects (a transfer
of spectral weight) due to the coupling of the spin excitations
to charge fluctuations at low and intermediate values of the
Hubbard interaction. In this regime, the spin structure factor of
the Hubbard model differs from the spectrum of the Heisenberg
model, that is, the strong-coupling limit U/t of the half-
filled Hubbard model, where charge dynamics is suppressed
and electrons are completely localized. These results have
been confirmed in a density matrix renormalization group or
DMRG [26,27] study in Ref. [28].

Motivated by the mentioned work, this paper studies the
dynamical spin structure factor of the Heisenberg and the
Hubbard model at half-filling, not only for the case of chains,
but also for two-leg ladders. The aim of this paper is to
provide a quantitative criterion to determine when a Hubbard
model description of the material under consideration should
be preferred to the simpler Heisenberg description.

The paper is organized as follows. Section II provides
an introduction to the dynamical spin structure factor and
explains how it is computed with DMRG. Section III presents
calculations of the dynamical spin structure factor of the
Heisenberg, and of the Hubbard model on a chain. Section IV
extends the comparison between the two models studied above
in the case of a ladder geometry. The last section presents a
summary and conclusions.

II. DYNAMICAL SPIN STRUCTURE FACTOR

In this publication we compute spectral functions directly
in frequency. We follow closely the correction-vector method
proposed by Kuhner and White in Ref. [29], and calculate
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at each frequency w for all sites of the lattice, where |W)
is the ground state and E, is the ground state energy of
the time-independent Hamiltonian H. We consider quasi-one-
dimensional systems with two possible geometries: chains and
two-leg ladders. In the case of a chain, the index i is equal to the
only coordinate of the corresponding site of the chain. In the
case of a two-leg ladder, the index i = (ix,7,) corresponds to
the two coordinates of the site on the ladder; i, = 0 (i, = 1) for
the lower (upper) leg of the ladder. The center sitec = L/2 — 1
in the case of a chain, and ¢ = (L/4 — 1,0) in the case of the
L/2 x 2 ladder. The chain geometry has L sites, numbered
from Oto L — 1;the ladder has also L sites in total. The DMRG
correction-vector method [29] will be used throughout. Within
correction vector we use the Krylov decomposition instead of
conjugate gradient. A computational advantage [30] of Krylov
decomposition is that the main source of error is given by the
Krylov method used for the calculation of the correction vector.
Different frequencies can be computed in parallel, decreasing
the CPU time needed for the computation of the entire
spectrum. The constant n has the dimension of an energy, and
constitutes an external parameter for the DMRG simulations;
n controls the broadening of the spectral function peaks. The
above quantity is finally transformed to momentum space as
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where the quasimomenta k= 77 with n=1,...,L
are appropriate for open boundary conditions. The DMRG
implementation used throughout this paper has been discussed
in Ref. [30]; technical details are in the Supplemental

Material [31].

III. ONE-DIMENSIONAL CHAINS

A. Antiferromagnetic Heisenberg model

For a generic quasi-one-dimensional geometry, the Hamil-
tonian of the antiferromagnetic Heisenberg model is given by

Hieis = »_ 1115 - ). 3
iJ

with § = (5%,87,8%). For a chain with open boundaries, J; ; =
J if i and j are nearest neighbors, and 0 otherwise. J; ; will
be specialized for ladders in Sec. IV A.

The magnetic excitation spectrum of the antiferromagnetic
Heisenberg chain has been studied thoroughly in the literature,
using exact diagonalization [32], DMRG [28,29,33], and
analytical approaches [34,35]. The ground state energy
Ejy,), = LJ(1/4 —In2), and the asymptotic behavior of the
static correlation function is [36]
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resulting in a weakly diverging static structure factor at k ~~ 7,
S(k) o |In]k — 7|2 ®)

The Bethe ansatz shows that the manifold of the lowest
excited states consists of a continuum delimited by a lower
and an upper boundary, given by the des Cloiseaux-Pearson
(dCP) dispersions. The majority of the spectral weight is
concentrated in the lower boundary, o'(k) = (Jm/2)sin(k),
which is gapless for ¢ = 0 and ¢ = 7, and repeats itself in
the other half of the Brillouin zone. Its physical meaning
can be explained as follows: a flip of a single spin in the
antiferromagnetic chain creates a pair of spinons (block
domain walls in the lattice) having opposite momentum. The
spin-flip terms in the Hamiltonian (3) move the spinons by
two lattice spacings, giving to the dCP dispersion twice the
period. The upper boundary of the excitation manifold is
given by w" (k) = J|sin(k/2)|. The approximate expression

Stk,w) = Olw — o' (k)]10[w" (k) — w]  (6)

0? — ol (k)?
has been proposed by Muller ez al. in Ref. [35] to describe all
the features mentioned, where A is a normalization constant,
and 6 is the standard step function. This ansatz describes
very accurately the numerical results obtained with correction-
vector DMRG [30] and time-dependent DMRG [1]. A very
good agreement between theory (Bethe ansatz) and experiment
has been obtained using a spin-1/2 Heisenberg chain model
description for the compound CuSOj,-5D,0 [37]. In the
Supplemental Material [31] we have verified that the Krylov
method compares well with the spectra obtained using a two-
spinon exact calculation presented in Ref. [34] for a Heisen-
berg model. The two-spinon solution proposed in Ref. [34] has
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a similar behavior to the dynamical spectrum of the Haldane-
Shastry model [38], because the latter is in the same low-energy
universality class of the standard Heisenberg model.

From the Bethe ansatz solution of the Heisenberg model, it
follows that the S(k,w) diverges as

Stk,w) ~ [w — &'17V3/In[1/(w — &')]  fork # m,
S(r,w) ~ o /In(1/w), (7

as w approaches the lower boundary '(k) from above for
any k value. This divergence has its profound origin in the
Luttinger liquid characteristics of the ground state, describes
the instability of the model toward antiferromagnetic ordering,
and is expected to still be present for the Hubbard model on
a chain at finite U (see next section). For finite size systems,
one usually cuts off the divergences at w — o' ~ 1/L, so that
one has peaks of finite height

max[S(k,w)] ~ [L In(L)]"/?
max[S(,w)] ~ LIn(L)"/>.

for k # m,
(®)

Experimentally, it is not always possible to collect inelastic
neutron scattering data in the whole relevant range of k and
w, using a single instrument or a single configuration. This
is because the measurements at low energies require higher
energy resolution, and because of kinematical constraints of
the neutron scattering geometry. In these cases much care
needs to be exercised to make direct comparisons between the
calculated and measured S(k,w) over the whole range of k
and w.

B. Hubbard model and comparison to Heisenberg

This section reviews and studies the dynamical spin
properties of the Hubbard model with Hamiltonian

H=— Z t,',jcj_acj,g +U anni,u

ij.o i

®

where U > 0 represents the on-site Coulomb repulsion. In the
case of a chain with open boundaries, t; ; =t if i and j are
nearest neighbors, and 0 otherwise. ; ; will be specialized for
ladders in Sec. IV B.

Figure 1 shows the dynamical spin structure factor S(k,w)
calculated with DMRG for a chain of length L = 64 for
different values of the Coulomb repulsion U. In this figure,
the electronic hopping ¢+ = 1 is assumed as unit of energy, and
a broadening of the spectral peaks equal to n = 0.05 is used.

At U = 0, similarly to the case of the Heisenberg chain
analyzed in the previous section, the excitation spectrum is
enclosed between an upper boundary w, (k) = 4t|sin(k/2)|
and a lower boundary w;(k) = 2¢|sin(k)|. The boundaries
stem from the cosinelike noninteracting band structure of
the model. Panels (a) and (b) and (c¢) and (d) of Fig. 2
contain cuts at k = 7 and k = /2 of the spectra shown in
Fig. 1, respectively. For k = m, as opposed to the Heisenberg
case, the spectral weight is concentrated mostly at the upper
boundary w/(4t) ~ 0.95 ~ w,(0). Similarly, for k = /2 the
spectral weight is concentrated in the interval of frequencies
0.5 < w/(4t) < 0.8 with a peak at w/(41) ~ 0.65 >~ w, (7 /2).

When electron-electron interactions are turned on, the
charge dynamics manifests itself on the magnetic excitation
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FIG. 1. S(k,w) for a Hubbard model on a chain of L = 64 sites
at half-filling for different values of U, as indicated. The number of
states kept for the DMRG is m = 1000, n/t = 0.05, while the number
of sweeps is 4.

spectrum as a spectral weight redistribution to lower ener-
gies [24]. For U = 1.0, the dashed (red) curve in Fig. 2(a)
representing the cut of the spectrum at k = 7 shows two
weak peaks: at w/(4¢t) >~ 0.9 and at the lower energy of
w/(4t) >~ 0.05. A different behavior is observed for the cut at
k = /2 where the peak position is shifted to lower energies
w/(4t) >~ 0.55 with an asymmetric triangular shape.
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FIG. 2. Panels (a)—(c) show cuts of Fig. 1 as a function of w/(41).
Panels (b)—(d) show cuts of spectra obtained for larger values of
U, together with the Heisenberg case cuts. In panels (b) and (d),
on the x axis we have plotted frequencies in units of w/Je, where
Joie = 42/ U . Panels (c) and (d) show cuts of the spectrum atk = 7/2.
In panels (a) and (c), we have used Aw/t = 0.02 and n/t = 0.05.
In panels (b) and (d), for U = 8, we have Aw/ J. = 0.04, while for
U =12, Aw/Jg = 0.06. n/t = 0.05 for the Hubbard and n/J =
0.05 for the Heisenberg curves.
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For U = 2, the renormalization of the spectral weight has
already proceeded to lower frequencies and the high energy
peak characteristic of the noninteracting case at k = 7 has
almost disappeared: it is barely visible in our data at w/(4t) ~
0.8, as the short dashed (green) curve in Fig. 2(a) shows. For
k = m /2, the triangular shape spectral feature shows a peak at
w/(4t) >~ 0.45.

As noticed in Ref. [28], the spectral weight transfer to
lower energies is quite fast as a function of U, and for U = 3
most of the spectral weight is already concentrated very close
to the lower boundary of the dCP dispersion of the Heisenberg
model discussed in the previous section; notice the two very
well defined dashed-dotted (blue) line spectral features in
panels (a) and (b) of Fig. 2. In particular, notice the similarity
between the U = 3 data and the results obtained from the
Heisenberg model [1].

For larger values of U, shown in panels (b)—(d) of Fig. 2,
the spectral weight redistribution continues to approach the
Heisenberg-like limit. As can be inferred from Fig. 1, this
redistribution happens for all k values; we have shown them
only for k = m and k = w /2. The replicas of the main peak
at larger frequencies in panel (c) of Fig. 2 are artifacts due to
finite size effects and the use of a tiny broadening n = 0.05.

In these two panels, the cuts are plotted as a function of
the quantity w/Jeg. It is well known that, in the case of
half-filling and large U, charge fluctuations are suppressed
and the Hubbard model maps onto the antiferromagnetic
Heisenberg chain with an effective exchange coupling constant
Jug = 412 /U. The results compare very well with those
obtained by Benthien and Jeckelmann in Ref. [28], giving
a well-defined antiferromagnetic peak at 7.

Panel (a) of Fig. 3 shows the ratio of the peak maxima for
k = 647 /65 (closest to 7 for an open chain) and k = 317 /65
(closest to /2 for an open chain) as a function of U for the
Hubbard model. As also mentioned in the previous section,
the peak at 7 is difficult to observe experimentally, because
the interchain coupling is unavoidable in real materials [1,39].
Panel (b) shows another ratio between the peak maxima for
k = 567 /65 (close to 6;r/7) and k = 227 /65 (close to /3)
as a function of U. In both panels, for U/t > 2, the ratios of
the peaks maxima of the Hubbard model tend continuously to
the Heisenberg model ratio. The shaded (red) region indicates
the interval of values for the Heisenberg ratio compatible with
our resolution in momentum space Ak = 2w /L (due to finite
system size effects), the resolution in frequency Aw < 5, and
the extrinsic broadening 7 of the spectral function peaks. The
width of the shaded region has been estimated as follows.
The extrinsic broadening 1 and the system size of the lattice
leads to a choice in the mesh in momentum-frequency space.
Assuming that the peak in the S(k,w) for k = ko has been
determined numerically to be at w = wy, the half width of the
shaded region AS has been estimated as

1
AS =g >

m,m'=—1,0,1

|S(ky + mAk,wy + m' Aw) — S(ko,wp)].

(10)

We have studied chains L = 64 sites long, and for each model
have verified that the results do not depend significantly on the
system size. The purpose of Fig. 3 is to show that the Hubbard
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FIG. 3. Panel (a) shows peak-to-peak ratio S(647/65,0%)/
S(317/65,0*) as a function of U/t for the Hubbard model on a
chain of L = 64 sites. The ratio obtained for the Heisenberg model
is indicated by a dashed (red) region, compatible with the error
induced by the extrinsic broadening n/J = 0.05 and our resolution
in momentum space k (due to finite system size effects). w* is the
location of the peak maximum for k = 647 /65, »** for k = 317 /65.
Panel (b) shows peak-to-peak ratio S(64w/65,w*)/S(317/65,0™) as
a function of U/t. Here, »* is the location of the peak maximum for
k = 561 /65, w*™* for k = 227 /65. Panel (c) shows the peak-to-peak
ratio between the maxima in frequency of the spectrum max,,[S(k,w)]
and the maximum of the spectrum at kK = 7 as a function of k.
Hubbard chains of L = 64 sites and different U values are considered,
together with the same quantity obtained from the Heisenberg model.
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model ratios tend to the Heisenberg ratio. Panel (c) of Fig. 3
shows the ratio between the spectral peak maxima for each
value of k in half of the Brillouin zone and the same quantity
for k = . The results for U/(4t) < 1 show a broad peak
centered around k >~ 7/3, a peak not present in the Heisenberg
model, and that could thus help distinguish between the two
models in experimental measurements. This peak gets
suppressed by spectral weight renormalization at larger U/t.

To conclude this section on chains, a magnetic excitation
spectrum qualitatively resembling that of the Heisenberg
model is found for the Hubbard model already at U/t ~ 2,
which is the intermediate coupling regime considering that
the bandwidth is W = 4¢. However, Fig. 3 shows that the
ratio of intensities between the k = 57 /6 and k = 7 /3 peaks
continues evolving with increasing U/t and only slowly
converges to the Heisenberg limit. Figure 3 thus provides
a quantitative criterion to decide where a particular one-
dimensional material is located in parameter space with regard
to the strength of its Hubbard coupling.

IV. TWO-LEG LADDERS

This section describes the properties of S(k,w) for the
same models studied in the previous section but in a different
geometry—the two-leg ladder.

A. Antiferromagnetic Heisenberg ladder

This section addresses the magnetic excitation spectrum for
the spin-1/2 Heisenberg model on a two-leg ladder. In Eq. (3),
the intraleg coupling J; ; = J, if i and j are nearest neighbors
along the x (long) direction; J; ; = J, if i and j are neighbors
along the y (short) direction, with J, the interleg exchange
coupling. We assume that J,,/, > 0 and in particular J, =1
as our unit of energy. This model has attracted much attention
in the last 20 years because it represents one of the most im-
portant paradigms for low-dimensional quantum magnetism.

The Heisenberg model behaves completely different on the
ladder than on the chain. As seen in Sec. III A, the excitation
spectrum is gapless at k ~ & for the spin-1/2 single chain.
However, there exists a spin gap in the ladder [6,40-46]—a
gap that has been experimentally found [11,47].

Quantum magnetic systems on ladders have a behavior
that can be considered intermediate between the one
dimensional and two dimensional physics [8,48]. Indeed,
both one-dimensional and two-dimensional magnets have
been shown to be gapless. It has also been shown that the
physics of half-integer spin ladders depends on the parity of
the number of legs [7,8].

Figure 4 shows the dynamical spin structure factor for
the Heisenberg ladder calculated with the DMRG correction
vector method [29] for different values of the rung exchange
coupling Jy. In the case of the ladder, the dynamical structure
factor in momentum space has two components:

L/2—1

1 e .
S(ky0.0) = — Z; e®I[8(j,0,0) + S(j, 1),
J=
L/2—1 an
— iky j 7 7
Stke,,0) = — ZO e I[8(7,0,0) — S(j,1,w)],
Jj=
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FIG. 4. Left column panels, from top to bottom: S(k,,0,w) for
the Heisenberg model on a two-leg ladder with L = 48 x 2 sites
(Jy = 1), for different values of J, =0.1,0.5,1.0,2.0. As before,
m = 600 states are kept in the DMRG simulations. Right column
panels: S(k,,m,w) for the same set of parameters described above. In
the panel for J, = 1 the dashed line represents the function wgq,(k.)
in Eq. (12) obtained in Ref. [40]. The solid lines represent the gap
dispersion obtained in the plaquette basis in Ref. [54]. In the panel for
Jy = 2 the dashed line represents Eq. (12), while the solid line is the
gap expression to the fourth order in the strong-coupling perturbation
theory.

because the momentum in the y direction has only two possible
values: ky, =0ork, =m.

The dynamical spin structure factor of the Heisenberg
ladder has been calculated both numerically [40,43,49-52] and
analytically [42,53], both in the weak-coupling limit J, < 1
and in the strong-coupling limit J, > 1.

A simple description of the gap physics can be grasped
when the strong rung coupling limit J, 3> J, is considered.
Following Ref. [40], a finite spin gap equal to J, in the
spectrum of spin excitations obviously appears in the dimer
limit, when J, = 0. Spin excitations can only be produced by
promoting a rung singlet to a triplet at the energy cost J,.
These local excitations are able to propagate along the ladder
due to the perturbation given by the exchange coupling along
the legs. Using degenerate perturbation theory in the subspace
with one rung promoted to triplet and normal perturbation
theory on the nondegenerate ground state, one can calculate to
order O(J?/J,) the singlet-triplet dispersion relation

J, 300\
a)gap(kx) = Jy|:1 + J_y COS(kx) + Z(z) :|, (12)

where J, has been reintroduced for the expression to have
consistent energy units, and to show that the expansion is in
Jy/Jy. This gap implies that the spins show no long-range
order. They usually form singlets on the rungs and one verifies
numerically that the spin correlation decays exponentially with
distance along the legs [6,7].

Reference [54] carries out the strong-coupling expansion
analytically, including higher order terms, and comparing the
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dimer and plaquette bases. The authors of Ref. [54] calculate
the ground state energy and the spin gap to seventh order in
the parameter A = J,/J,, and the gap dispersion up to fourth
order. They estimate a radius of convergence A. = 0.8 for
the perturbative expansion by starting from a rung basis, and
conclude that perturbative expansions in the rung basis are
unsuitable for dealing with the physically interesting case
of isotropic ladders (A = 1). They have explored also the
perturbative expansion in a 2 x 2 plaquette basis, showing
that the radius of convergence of the perturbative series can
be extended to A, = 1.25, providing a reliable perturbative
approach for the isotropic case (A = 1). In the isotropic case,
Fig. 4 shows the gap dispersion obtained in Ref. [54] in
the plaquette basis. For J, =2, we have included a curve
indicating the dispersion obtained in Ref. [54] to fourth order
of perturbation theory in the rung basis.

Figure 4 shows that Eq. (12) describes very well the ky, = 7
component of the dynamical spin structure factor S(k,,m,w).
A strong-coupling calculation reveals that a spin S = 1 two-
particle bound state between two triplets is a possible excitation
of the system [53]. This leads to the presence of a band
in the spectrum S(k,,0,w) with a finite range of values of
momentum transfer k.. The dispersion of this band of bound
states is almost flat, in agreement with the analytic expression
@2 wiplet (k) of Ref. [55].

B. Hubbard model and comparison to Heisenberg

We now consider a Hubbard model on a two-leg ladder
geometry. In this case, the hopping interaction parameters
appearing in Eq. (9) for the two-leg ladder geometry are as
follows: the intraleg hopping #; ; = 1, i).(j,.i,) = fx is nonZero
if i, and j, are nearest neighbors on leg i, = 0 and i, = 1.
Furthermore, #;, o)1) =, is the rung hopping. Hubbard
ladders are considered as an easier starting point to study
the properties of the full two-dimensional Hubbard model [8].
According to a bosonization approach [42,56], the phases of
the model can be identified by the number of gapless spin and
charge modes, with the possibility of having up to two gapless
modes in each sector. It has been shown that at half-filling
the Hubbard model can be found in a “C0S0O” phase, where
all the charge and spin modes are gapped. It is, however, far
from obvious that a bosonization picture, which is strictly
valid when U < t, and at any value of the rung hopping
ty, could completely explain the physics of the problem.
A comparison between analytical and DMRG calculations
has been performed in Ref. [57]. Reference [58] studies the
ground state properties of the model with DMRG, and reports
that phase separation is not found in the Hubbard ladder. It
also provides evidence that the Hubbard model at half-filling,
n =1, is a spin liquid insulator for t, < 2 at any value of
U, while it is a band insulator for ¢, > 2. A sharp transition
between the two phases turns into a smooth crossover as U is
increased.

Unless otherwise stated, in this work we will consider
the symmetric #, =, =1 case at half electronic filling,
where the presence of the spin liquid insulator phase implies
that the spin-spin correlation function decays exponentially
from the center of the ladder, inducing a gap in the spin sector
of the theory. Away from half-filling, pairing or charge density
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wave correlations could be dominant. As suggested by the
early considerations on Heisenberg and #-J model ladders,
a DMRG study has recently confirmed that superconducting
correlations become dominant in the limit of very small
doping [59]. A recent study analyzed the ground state and
spectral properties of an asymmetric Hubbard ladder [60], of
interest in the context of superconducting chains deposited on
metallic surfaces. The dynamical properties of the model have
mostly been investigated in the half-filled case [44,61]. Away
from half-filling, less can be found in the literature. We should
mention a Monte Carlo study [62] and an exact diagonalization
study on a ¢-J ladder [63]. Reference [64] uses the connection
between the SO(6) Gross-Neveu model and doped Hubbard
ladder to study the spin dynamical structure factor. Moreover,
several low-energy analytic descriptions based on bosonization
and generalized symmetries can be found in the literature.
These studies have focused on the effect of umklapp processes
opening a gap in the excitation spectrum in the weak-coupling
undoped [65-68] and doped cases [69].

In the present paper we study the S(k,,k,,) of the Hubbard
ladder with the DMRG using the Krylov approach developed
in Ref. [30]. In the following, we shall consider 7, = 1 as
energy unit.

Panels (a) and (b) of Fig. 5 show the two components of the
dynamical spin structure factor of a 48 x 2 ladder with open
boundary conditions and U = 16. In the limit of large on-site
Coulomb repulsion, the magnetic excitation spectrum of the
Hubbard model is very similar to that of the Heisenberg; this
is true for any geometry and is the reason why the spectrum is
plotted as a function of the quantity w/ Jesr, where the effective
exchange coupling constant is Jegs = 4t)2, / U. For comparison,
panels (c) and (d) of the same figure show the S(k,,k,,w)
of an isotropic Heisenberg ladder with J, = J, of the same

S(k,,0,0) 8 S(k,,7,0) y
3] , 3 | Hubbard, U=16, Jo=0.25
6 L=48x2, n=0.02 120
N == - .« /=042 -
2‘”2 == - = 4 Q®2 ) 80
3 ] - - 3 3 ]
7 2 1(b 40
(@) 1 (b) 0
O 72 = a2z 2r’° %0 w2 =x a2 2on°
¢ Hei by J=1.0 &
eisenberg, J=1.
31 5 31 L=48x2, 1=0.02
— 4 /=05 -~ 40
14 2 1 20
O w2 =z a2 2r° %0 w2 x an2 on '
kX kX

FIG. 5. Left column: S(k,,0,w) component for two leg ladder
Hubbard (a) model with L = 48 x 2 sites at half-filling, for 7, =
t, = 1 and U = 16. Panel (c) shows the spectrum for a Heisenberg
ladder with L =48 x 2 sites and for J, = J, = 1. In the DMRG
simulations, 1 = Aw = 0.02 has been considered, and up to m =
1000 DMRG states have been kept in the numerical simulations.
Right column: S(k,,7,w) component of the spectrum for the same
parameter values of the left column.
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system size. Both the k, =0 and the k, = 7w branches of
the spectrum of the two models show a strong similarity,
especially at sufficiently low momenta, |k, — | < /2. The
ky = 0 component of the spectrum is dominated by an almost
flat band of two-triplet bound states, which has robust intensity
only for a finite range of momentum transfer k, [53,55]. The
deviations from a pure Heisenberg model behavior can be
appreciable mainly in the spectral weight distribution, which
is concentrated at lower momentum transfer in the Hubbard
case. In the k, = 7 component, the spin gap of the Heisenberg
model wgp 22 0.5 is well reproduced by the Hubbard result
wgap == 0.42. Even when U/(4t) = 4 > 1, deviations from a
pure Heisenberg behavior are noticeable at large momentum
transfers, |k,| > /2.

In order to verify the accuracy of our DMRG technique,
panel (a) of Fig. 6 shows the spin gap extracted from the
magnetic excitation spectra calculated with DMRG for a
Hubbard ladder of L = 32 x 2 sites as a function of U; very
good agreement with the ground stated DMRG results of
Ref. [58] is obtained.

Before presenting the results for the interacting Hubbard
ladder, it is instructive to analyze the properties of the
dynamical spin structure factor of a noninteracting Hubbard
ladder, U = 0. The spectrum of the Hamiltonian can be
described in terms of bonding (—) and antibonding (+) bands

6a/b(kx) = —2t, cos(ky) F ty, (13)

as shown in panel (b) of Fig. 6. At a given filling n both
bands are filled by electrons if the ratio t,/t, is less than
the critical value (¢,/t;). = 1 — cos(rn). At half-filling, n =
1, the system is a band insulator for f,/t, > 2, with a gap
equal to 2(t, — 2t,), and a two-band metal otherwise. There
are four Fermi points: £k, for the bonding, and £k, for the
antibonding bands [see panel (b) of Fig. 6]. At half-fillingn =
1, one has kp, + kp, = w with kg, = 7/3 and kg, = 27/3.

0.15 4
01} s 27 |
&L @0
0.05 | 1 ol |
(a) (b)
0 -4
0 4 8 12 16 -t -2 0 n/2 T
Uit ; ky 5
6 | S(ky.0,00) (©) 6 | Slkym,0) (d)
< 4 < 4
3 i 3 1
2 2
0 0 0 0
0 w2 wm 3m2 2=n 0 w2 wm© 32 2n
kX kX

FIG. 6. Panel (a): Spin gap as a function of the on-site Coulomb
repulsion U extracted from the dynamical spin structure factors for a
two leg Hubbard ladder with L = 32 x 2 sites at half-filling. Results
agree very well with those obtained in Ref. [58]. Panel (b): Non-
interacting band structure. Panels (c) and (d): analytical calculation
of the dynamical spin structure factor (n = 0.02) for a Hubbard ladder
with L = 48 x 2 sites at half-filling, fort, = ¢, = 1 and U = 0.0.
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Panels (c) and (d) of Fig. 6 show the S(k,,k,,w) for a
noninteracting isotropic ladder with L =48 x 2; ¢, =1, =1
is assumed as unit of energy. The right panel shows the
band structure with bonding and antibonding bands. When
the rung hopping is zero, t, = 0, then the 0 and = components
of the spin spectrum are equal to each other and kr, = kp,,
reducing to the case of a single chain. When the hopping ¢, is
increased, the 0 and 7w components of the spin spectrum behave
differently, because they encode different excitation processes
of the spins. Indeed, the processes described by the S(k,,0,w)
include intraband spin excitations, analogous to the single
chain S(k,w), with low-energy gapless contributions at k, >~ 0
and k; >~ 2kr, ,. In contrast, the processes described by the
S(ky,m,w) correspond to interband transitions between bond-
ing and antibonding bands and vice versa, with characteristic
low energy gapless contributions at k, >~ Ay, where Ay =
|kr,| £ |kF,|. Keeping in mind the above observation, panel
(c) in Fig. 6 is readily understood: low-energy spin excitations
at ky >~ 2kp, = 2(w — kp,), and k, =~ 2kp, = 2(w — kp,), to-
gether with the usual &k, >~ 0 contributions. Except for t, = 2,
where there are no possible intraband spin excitations, the
spectrum upper bound is independent of 7, being 4¢,. The
spectral weight of the S(k,,0,w) is concentrated at the upper
boundary, which follows a sinusoidal behavior equal to that
observed in the chain’s case.

We now discuss the 7 component of the spectrum, reported
inpanel (d) of Fig. 6. For t, > 0, the sinusoidal upper boundary
of the spectrum at ¢, = 0 splits into two arcs—arcs separated
in frequency by a quantity equal to the bonding-antibonding
gap, g = 2(t, — 2t,). Concurrently, characteristic low-energy
gapless contributions at k, ~ A appear in the spectrum. As
opposed to the k, = 0 case, the upper bound of the spectrum
increases proportionally to #,, because of processes exciting
spin and charges from the bottom of the bonding band to the
top of the antibonding band. As also observed in panel (c)
of Fig. 6, the spectrum of the noninteracting case, U = 0,
at (ky = m, k, = 0) is gapped up to wg,p/(4t) > 0.5, because
intraband excitations with momentum transfer k, = 7 are not
possible due to the band structure topology. For the same
reason, electronic interband excitations are possible instead,
and no gap is observed in the (k, = m, k, = m) cut of the
spectrum [see panel (d) of Fig. 6].

We are now ready to discuss the results for an interacting
Hubbard ladder, and compare the results to the Heisenberg
model. Figure 7 shows cuts of the k, = 0 and k, = 7 branches
of the magnetic excitation spectrum of a Hubbard ladder at
ky = 2m/3 as a function of U. The choice of k, = 27/3 is
motivated by the gapless behavior observed in the spectrum
at (27 /3,0) and (2w — 27 /3,0) for U = 0. Figure 7 shows a
redistribution of spectral weight to lower energy at those k
points that are gapless in the noninteracting case. We have
already seen this redistribution in the case of the chain.
The ky, = 0 branch of the spectrum, reported in panel (a) of
Fig. 7, shows exactly this behavior. The peak at w/(41) >~ 0.9
is gradually suppressed by spectral weight redistribution at
lower energy going from U = 0 to U = 2. The latter develops
a gapped low-energy peak around w/(4t) >~ 0.1. The cuts
obtained for U = 3 and U = 4 have already a pronounced
Heisenberg-like behavior, with a much suppressed high-energy
spectrum and the weight concentrated around w/(4¢) ~ 0.1.
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FIG. 7. Cuts of the spin dynamical structure factors S(27/3,0,w)
[panels (a) and (b)] and S(27 /3,7, w) [panels (c) and (d)] for a system
with L = 32 x 2 sites as a function of w/(4¢) [panels (a) and (c)] and
w/ Jegr [panels (b) and (d)], at different values of U. As in the chain
case, we have assumed Jo = 4t§ /U. In the DMRG simulations, n =
0.027 has been considered for the Hubbard model, while n = 0.02J
for Heisenberg, with Aw = 0.01 and with up to m = 1000 states kept
in DMRG.

The satellite spectral peaks are due to finite size effects and
to the choice of a small n = 0.02¢. The cuts obtained by
increasing even further the Hubbard repulsion U are shown
in panel (b) of Fig. 7. Here, one can clearly see that the results
approach a Heisenberg-like behavior, characterized by a single
peakatw/J =~ 2.4.Inthis panel, as in the case of the chains, the
cuts are plotted against the ratio w/ Jesr, where Jegr = 4t)2, /U.

Panels (c) and (d) of Fig. 7 show the cuts of the k, =7
branch of the spectrum for different values of U as in the
previous panels. The redistribution of spectral weight to low
frequency is also observed here increasing the Coulomb
repulsion from U =0 to U = 1. Again, the cut of the
spectrum for U = 2 presents a suppression of spectral weight
at large frequency and develops a spectral peak resembling a
Heisenberg-like behavior at w/(4t) >~ 0.25. The crossover to
a Heisenberg-like behavior is almost complete at U = 3 [see
the dashed-dotted (blue) curve in panel (c)]. The spectrum
approaches the Heisenberg limit for very large Coulomb
repulsion [see panel (d) of Fig. 7]. As in the chains case,
the width of the shaded region has been estimated as described
in Sec. III B before Eq. (10).

Figure 8 shows the ratio of spectral intensities between the
two branches of the spectrum at k, = 27 /3. Figure 8 provides
a quantitative criterion to decide where a particular quasi-
one-dimensional material with ladder structure is located in
parameter space with regard to the strength of its Hubbard
coupling. Similar to the case of chains studied in the previous
section, the peak ratio evolves continuously with increasing
U/t, and only slowly converges to the Heisenberg limit.
However, qualitatively a Heisenberg-like magnetic excita-
tion spectrum is found for the Hubbard model already at
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FIG. 8. Peak-to-peak ratio S(2rn/3,0,0*)/SQ2n/3,m,0*) as a
function of U/t for the Hubbard model on a ladder of L =32 x 2
sites. The ratio obtained for the Heisenberg model is indicated by
a dashed (red) region, compatible with the error induced by the
extrinsic broadening n/J = 0.02 and our resolution in momentum
space k (due to finite system size effects). w* is the location of the
peak maximum for (k,,k,) = (27/3,0), w** for (k. ,k,) = 2n/3,7).
Same parameters choice as in Fig. 7.

U/t ~ 2, which for ladders is a relatively small coupling
regime considering that the electronic bandwidth is W = 6¢.
In the Supplemental Material [31], we complement the
study of ladders reported in this section by analyzing the cuts
of the two branches of the magnetic excitation spectrum at the
special case k, = m, where similar results are obtained.

V. SUMMARY AND CONCLUSIONS

In this work, we have compared the dynamical spin struc-
ture factor of two well-known models of strongly correlated
materials, the Heisenberg and the Hubbard models. By evaluat-
ing the dynamical spectra we have shown that, both for chains
and ladders, it is possible to quantitatively identify the range
of the on-site repulsion strengths where the Hubbard model re-
sembles that of the Heisenberg model. Surprisingly, the spectra
of the Hubbard model shows qualitative features that resemble
Heisenberg behavior already at relatively small values of U,
in particular U/t >~ 2-3 for both chains and ladders. This ex-
plains the success of the Heisenberg model in describing such a
wide range of compounds, even including metals such as iron.
However, ratios of intensities at various momenta converge
slowly to the Heisenberg limit and provide an excellent criteria
to evaluate the precise value of U/t from neutron data.

In fact, current methods and tools of analysis of inelastic
neutron scattering data [70] allow for a quantitative evaluation
of the magnetic excitation spectrum that make possible a
direct comparison of the relative intensities of the magnetic
excitation spectra at different wave vectors, as proposed in this
paper. This comparison will bring considerable light about the
applicability of approaches based either on a Heisenberg or
a Hubbard model. This is in contrast to the earlier days of
neutron studies, when the information obtained from inelastic
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neutron scattering was largely limited to the peak energy of
an excitation, which was plotted against the wave vector in
order to present the corresponding dispersion relation (see, for
example, Ref. [2]). Additional important information that is
currently available in the neutron inelastic scattering spectra
is the “intrinsic” broadening of the excitations; this provides
essential information about the lifetime of the excitations. The
intrinsic broadening of the experimentally observed magnetic
excitations can be evaluated taking into consideration proper
corrections for the instrumental resolution. Future efforts in
calculations similar to those in this paper could, in principle,
account for the broadening mechanisms of the excitations, and
provide additional information that could be directly compared
to neutron scattering experiments.
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