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We analyze antiferromagnetism in f -electron superlattices. We show that the competition between the Kondo
effect and the RKKY interaction in f -electron materials is modified by the superlattice structure. Thus, the
quantum critical point which separates the magnetic phase and the Fermi-liquid phase depends on the structure of
the f -electron superlattice. The competition between the Kondo effect and the RKKY interaction is also reflected
in the magnetic interlayer coupling between different f -electron layers. We demonstrate that in the case of a
weak Kondo effect the magnetic interlayer coupling behaves similarly to other magnetic heterostructures without
the Kondo effect. However, close to the quantum phase transition, the dependence of the interlayer coupling on
the distance between the f -electron layers is modified by the Kondo effect. Another remarkable effect, which
is characteristic for an f -electron superlattice, is that the magnetic interlayer coupling does vanish stepwise
depending on the distance between different f -electron layers. As a consequence, the quantum critical point
depends also stepwise on this distance.
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I. INTRODUCTION

Recent experimental progress has made it possible to create
thin layers of f -electron materials and artificial superlattices,
which consist of a periodic structure of f -electron materials
such as CeCoIn5 and CeIn3 and metals without f electrons
[1–6]. Thus, it has become feasible to change the electronic
structure and tune the properties of f -electron materials. This
is particularly important when one thinks of the interesting
phenomena which can be observed in these materials, such as
magnetism, unconventional superconductivity, and quantum
criticality. Usually, a quantum critical point in f -electron
materials (if it exists) occurs at a certain pressure or mag-
netic field. These parameters are fixed by the electronic
structure. In an artificially created f -electron superlattice,
on the other hand, it is now possible to change the elec-
tronic structure of the material and thus tune the quantum
critical point. Furthermore, by combining layers of different
f -electron materials the competition/interplay between quan-
tum critical layers, superconducting layers, magnetic layers,
and metallic heavy-fermion layers can be studied, which
presents invaluable opportunities to study novel phenomena.

An example of an f -electron superlattice which has
recently been created in the laboratory is CeIn3(n)/LaIn3(4).
It has been experimentally shown that the Néel temperature in
CeIn3(n)/LaIn3(4) superlattices decreases to 0 when the Ce-
layer thickness n is reduced to n = 2, which is accompanied
by a linear temperature dependence of the resistivity [1].
This demonstrates the influence of the superlattice structure
on the magnetic state in f -electron material and the ability
to tune the quantum critical point. In other experiments,
using the heavy fermion CeCoIn5 and the conventional
metal YbCoIn5, superconductivity has been observed in thin
CeCoIn5 layers [2].
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The properties of f -electron materials are determined by
the competition of the RKKY interaction and the Kondo effect.
While the RKKY interaction favors a magnetically ordered
state, the Kondo effect screens the magnetic moments of
strongly interacting f electrons, which results in a param-
agnetic Fermi-liquid state. This competition is described and
visualized in the Doniach phase diagram [7], which contrasts
the energy scales of both effects; the RKKY interaction
depends quadratically on the coupling between conduction
electrons and f electrons and the Kondo effect exponentially.
Therefore, for weak coupling the RKKY interaction is stronger
than the Kondo effect, while for strong coupling the Kondo
effect prevails. When both effects are equal in strength, quan-
tum criticality accompanied by non-Fermi-liquid behavior can
frequently be observed [8–10].

While the dependence of the RKKY interaction and the
Kondo effect on the coupling between conduction electrons
and f electrons is well understood [7], it is unclear how the
competition of both depends on the superlattice structure.
In this paper we analyze the influence of the superlattice
structure on the RKKY interaction and the competition with
the Kondo effect and, furthermore, study the dependence of the
magnetic interlayer coupling on the distance between different
f -electron layers and how it is modified by the Kondo effect.
We find that especially close to the quantum critical point,
there are large modifications in the dependence on the distance
between the f -electron layers compared to non-f -electron
superlattices. The magnetic interlayer coupling vanishes step-
wise when the distance between different f -electron layers is
increased. Thus, the quantum critical point changes stepwise
when the number of spacer layers changes.

The remainder of this paper is organized as follows: In the
next section we describe the model and methods which we
use to analyze the f -electron superlattice. This is followed by
Sec. III, where we analyze the magnetization dependence in
f -electron superlattices. Thereafter, we analyze the interlayer
coupling in Sec. IV and the spectral functions in Sec. V.
Conclusions finish the paper (Sec. VI).
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II. MODEL AND METHOD

Similarly to our previous paper, in which we analyze the
Kondo effect in f -electron superlattices [11], we study a
system consisting of a periodic structure made of Kondo lattice
layers [7,12,13], described by HKLL, and normal metallic
layers, described by HNL. We use the notation of a (N,M)
superlattice, where N Kondo lattice layers are separated by M

normal metal layers, but focus only on (1,M) superlattices. We
model each layer as a square lattice. The model Hamiltonian,
which is visualized in Fig. 1, thus reads

H = HNL + HKLL + Hinter,

HNL = tNL

∑

〈i,j〉σ
c
†
izσ cjzσ ,

HKLL = tKLL

∑

〈i,j〉σ
c
†
izσ cjzσ + J

∑

i

�Siz · �siz,

Hinter = tz
∑

i

∑

〈z1,z2〉σ
c
†
iz1,σ

ciz2σ .

The operator c
†
izσ creates an electron at lattice site (i,z) with

spin direction σ = (↑ , ↓), where i is an index describing
the x and y direction. tNL and tKLL are hopping constants
within the normal metallic layers and the Kondo lattice layers,
respectively. tz describes the hopping between layers. In our
calculation we study only isotropic electron hopping, t =
tNL = tKLL = tz. J describes the spin-spin interaction between
the magnetic moments and the conduction electrons in the
Kondo lattice layers. Throughout this paper we assume an
antiferromagnetic coupling, J > 0. Furthermore, we take the
hopping t as the unit of energy. All calculations in this study are
performed for half-filled lattices, 〈n↑〉 + 〈n↓〉 = 1. The doped
case is left for future studies.

We use the real-space dynamical mean-field theory
(RDMFT) [14] to calculate the magnetic properties of this
system. The RDMFT approximates the self-energy for each
lattice site as local; the self-energy vanishes between different
atoms, thus nonlocal fluctuations are not included in this
framework. This approximation becomes exact in infinite
dimensions. Because the self-energy can depend on the lattice
site and spin direction, this approach is suitable for analyzing
the competition of the Kondo effect and magnetism in
f -electron superlattices. In order to calculate the self-energy,
each lattice site is mapped onto its own impurity model. This is

FIG. 1. Visualization of the Hamiltonian.

done by calculating the local Green’s function for each lattice
site, which can be written as

Gizσ (ω + iη) = 1

ω + iη − �izσ (ω + iη) − �izσ (ω + iη)
,

where �izσ (ω + iη) is the self-energy for this lattice site. The
hybridization function �izσ (ω + iη) describes the coupling
between an impurity and conduction electrons. The resulting
impurity model for each lattice site is then solved using the
numerical renormalization group (NRG) [15–18].

III. MAGNETIZATION

As stated above, the properties of f -electron materials are
strongly influenced by the competition between the RKKY
interaction and the Kondo effect. A similar competition will
also occur in an f -electron superlattice. However, while in
an ordinary f -electron material the strength of the RKKY
interaction and the energy scale of the Kondo effect are fixed,
in an f -electron superlattice they depend on the width of the
layers used in the superlattice.

Thus, we start our analysis by showing the magnetization
of the conduction electrons within the f -electron layers for
different superlattice structures at T = 0 (see Fig. 2). In the
strong-coupling region, J/t > 2.6, all magnetization curves
vanish independently of the superlattice. In this region all
layers of the superlattice become paramagnetic, i.e., the
localized spins are screened by the Kondo effect. In this phase
the density of states vanishes exactly at the Fermi energy in all
f -electron layers due to the formation of a Kondo insulating
state, while the spacer layers remain metallic.

The critical interaction strength, at which the magnetization
vanishes, depends therefore on the superlattice structure. The
three-dimensional (3D) Kondo lattice without any spacer
layers (red curve in Fig. 2) has the highest critical interaction
strength, J 3D

C /t ≈ 2.6. We observe that the magnetization
of the (1,1) superlattice vanishes at nearly the same critical
interaction strength as the 3D lattice. Increasing the number
of spacer layers further, the maximum value of the magne-
tization as well as the critical interaction strength decreases.

FIG. 2. Magnetization of the conduction electrons plotted against
the coupling strength, J , for different superlattices, (1,M). The
magnetization curves interpolate between a single layer embedded
in a 3D metallic host, (1,∞), and the 3D Kondo lattice model, (1,0).
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Remarkably, we find that the (1,2) and (1,3)-superlattices and
the (1,4) and (1,5) superlattices exhibit similar magnetization
curves. The same behavior can also be observed for larger
distances between f -electron layers; (1,2n) and (1,2n + 1)
superlattices exhibit similar magnetization curves. Thus, the
quantum critical point in the f -electron superlattice changes
stepwise. We elucidate this point below after presenting more
data.

We find that even a single f -electron layer, (1,∞) in Fig. 2,
which is embedded in a 3D metallic host, shows magnetism
for J/t < 1.6. This system corresponds to a superlattice with
infinitely many spacer layers.

As mentioned before, DMFT does not include nonlocal
fluctuations. It can be expected that the inclusion of nonlocal
fluctuations will further reduce this critical value. However,
a finite critical coupling strength, J/t > 0, even for a single
f -electron layer embedded in a 3D metallic host is consistent
with studies of (isolated) two-dimensional Kondo lattices
including nonlocal fluctuations [19,20], which indeed show
a finite critical coupling strength.

Different superlattices interpolate between the 3D Kondo
lattice model and a single f -electron layer within a 3D metallic
host. We note that a two-dimensional Kondo lattice, without
any coupled metallic layers, exhibits a different magnetization
curve with a larger maximal magnetization than the (1,∞)
superlattice and cannot be directly compared to a superlattice.

The coupling between the f -electron layer and the metallic
spacer layers induces a magnetization into the spacer layers,
which we show in Fig. 3. Due to a Fermi-surface nesting of
(π,π ), the sign of the magnetization oscillates from layer to
layer. Thus, depending on the distance between f -electron
layers, these layers are coupled either ferromagnetically
or antiferromagnetically, which has also been found in a
weak-coupling study of the periodic Anderson model for
superlattices [21].

FIG. 3. Top: Local magnetization of the conduction electrons of
an f -electron layer embedded in a 3D metal, (1,∞) superlattice, for
different distances from the f -electron layer. Bottom: Magnetization
of the conduction electrons plotted against the layer for (1,3) and
(1,2) superlattices and J/t = 1.6. The f -electron layers of both
superlattices are shown by circles.

Naturally, the magnetization in a spacer layer decreases
with increasing distance to the f -electron layer. The mag-
netism in the superlattice is purely due to the interaction of
the localized spins and conduction electrons in the f -electron
layer. We show the absolute value of the magnetization of
the conduction electrons as a function of the distance of
an f -electron layer in the top panel in Fig. 3. We see
that the induced magnetization behaves as |n↑ − n↓| ∼ 1/D,
where D is the distance from the conduction electron to
the f -electron layer. We note that these data could also
be fitted by different power laws, because the DMFT data
include only short distances. However, an analysis of the
electron susceptibility and a test calculation using 100 layers
predict behavior as 1/D. The prefactor of the 1/D law
depends therefore on the coupling between the conduction
electrons and the magnetic moments; for weak coupling the
prefactor first increases, while for strong coupling the prefactor
deceases and finally vanishes when the whole superlattice
becomes nonmagnetic. In the bottom panel in Fig. 3, we show
the magnetization of the conduction electrons in different
layers in the (1,2) and the (1,3) superlattices. We have
marked the f -electron layers in both superlattices with circles.
We observe that in the (1,2) superlattice f -electron layers
are coupled antiferromagnetically, while in the (1,3) superlat-
tice they are coupled ferromagnetically. As mentioned above
the magnetization curves of the (1,2) and (1,3) superlattices
lie very close together. In Fig. 3, we see that the magnetization
is similar not only in the f -electron layer, but also in the next
layer (see, e.g., layer 1).

IV. INTERLAYER MAGNETIC COUPLING

The induced magnetization leads to a magnetic coupling
between different f -electron layers, which corresponds to the
RKKY interaction between different magnetic layers. Such
a magnetic coupling between different layers is well known
from magnetic heterostructures. While in the general case the
magnetic interlayer coupling behaves as 1/D2, it has been
shown that for a nested Fermi surface, as in our model, it
behaves as 1/D [22]. In an f -electron superlattice, however,
this magnetic interlayer coupling is modified by the Kondo
effect. Such a competition is absent in ordinary magnetic
heterostructures without f electrons. We, therefore, analyze
the influence of the Kondo effect on this interlayer magnetic
coupling.

To determine the interlayer coupling we prepare the
following setup:

(1) We start with a fully converged magnetic solution of
an f -electron superlattice.

(2) We select a single f -electron layer and set the self-
energies of this layer to 0.

(3) For all other layers, we use the self-energies of the
converged solution.

(4) We apply a staggered magnetic field to the selected
f -electron layer, which points opposite to the original magne-
tization of the layer.

We perform DMFT calculations for this setup and study
the magnetization of the selected layer as a function of
the magnetic field. The self-energy of the selected layer is
thereby updated during the DMFT iterations and calculated

205142-3



ROBERT PETERS, YASUHIRO TADA, AND NORIO KAWAKAMI PHYSICAL REVIEW B 94, 205142 (2016)

self-consistently. In these calculations, there are two compet-
ing effects. On the one hand, due to the magnetic interlayer
coupling, the f -electron layers of the superlattice without an
applied magnetic field try to restore the original solution.
On the other hand, the magnetic field has a tendency to
stabilize a solution where the magnetization of the selected
layer is flipped. Thus, without an applied magnetic field the
solution for this calculation will be identical to the input.
Furthermore, if there is only the f -electron layer with an
applied magnetic field, an infinitesimally small magnetic
field will be sufficient to stabilize a solution with flipped
magnetization. The strength of the magnetic field at which
the magnetization flips corresponds to the magnetic coupling
of the selected layer to all other f -electron layers in the
superlattice.

We show the magnetic interlayer coupling, determined
by the above procedure, in Fig. 4. The top panel shows
the magnetic-field dependence of the magnetization for an
(1,2) superlattice with coupling strength J/t = 1.6. For a
weak magnetic field, we observe that the magnetization of
the probed layer points in the same direction as in the initial
solution. When the strength of the magnetic field is increased,
the magnetization is reduced and flips at a critical strength
of the magnetic field. This flipping of the magnetization is
clearly visible as a jump. We take the value of this critical
magnetic field strength as the magnetic interlayer coupling for
this superlattice and interaction strength.

In the middle and bottom panels in Fig. 4, we show
this interlayer coupling plotted against 1/D, where D is the
distance between the f -electron layers. Thus, the distance in
a (1,M) superlattice is D = M + 1. We find that for weak
coupling between the magnetic moments and the conduction
electrons, J/t = 1.2, the magnetic interlayer coupling can
be well described as 1/D. This agrees with the behavior
of the magnetization shown in Fig. 3. Thus, there is a
long-range interlayer coupling between different f -electron

FIG. 4. Interlayer magnetic coupling calculated by applying a
small magnetic field. Top: Magnetization of the chosen layer as a
function of the magnetic field for a (1,2) superlattice with J/t = 1.6.
Middle and bottom: Interlayer coupling strength plotted against 1/D

for weak coupling and strong coupling, respectively.

layers. Only for D → ∞ does the interlayer coupling vanish
completely. For a low coupling strength, J , the Kondo effect
is exponentially weak and does not play an important role. All
the calculations have been performed for a half-filled system
so that the noninteracting Fermi surface is nested. Our results
thus agree for weak coupling with the magnetic interlayer
coupling of usual magnetic heterostructures.

For strong coupling (see bottom panel in Fig. 4) the
determined interlayer coupling cannot be fitted as 1/D. The
magnetic interlayer coupling clearly deviates from 1/D behav-
ior and vanishes already for 1/D > 0, where the superlattice
becomes nonmagnetic. This results from the competition
between the RKKY interaction and the Kondo effect and
is, thus, a characteristic of f -electron superlattices. The
Kondo effect screens the magnetic moments arising from
the interacting f electrons and, thus, affects the magnetic
interlayer interaction. A remarkable effect can be observed
for strong coupling; the magnetic interlayer couplings for
1/D = 0.2 (M = 3) and 1/D = 0.25 (M = 2) are nearly
identical. The interlayer coupling vanishes pairwise for an
increasing number of spacer layer. We have thus included
separate least-squares fits (dashed lines) for an even number
and an odd number of spacer layers in Fig. 4. Even for weak
coupling we see that superlattices with even and odd numbers
of spacer layers have slightly different least-squares fits. The
difference between these two lines corresponds qualitatively
to the strength of the Kondo effect in the superlattice.

The reason for this even-odd effect, i.e., pairwise vanishing
of the interlayer coupling, is that the Kondo temperature and
the RKKY interaction change, but the two effects cancel
each other. Not only the RKKY interaction, but also the
Kondo effect and the Kondo temperature depend on the
superlattice [11]. The Kondo temperature shows even-odd
oscillations in f -electron superlattices depending on whether
the number of spacer layers is even or odd. This effect becomes
important when analyzing the competition between the RKKY
interaction and the Kondo effect. The Kondo effect becomes
weaker when the number of spacer layers is changed from even
to odd. Thus, the magnetic moments are less screened, which
effectively increases the magnetic interlayer coupling. On the
other hand, increasing the distance between the f -electron
layers leads to a decrease in the interlayer coupling. As a
result, the observed magnetic interlayer coupling, which takes
into account both RKKY and Kondo effect, does not change.
This explains the stepwise decrease in the interlayer coupling
and the existence of two different superlattices with similar
magnetization curves in Fig. 2.

Taking the results of the magnetic interlayer coupling,
we can now understand the competition between the RKKY
interaction and the Kondo effect in f -electron superlattices.
We can distinguish different situations, which we qualitatively
show in Fig. 5. The interlayer RKKY interaction behaves as
1/D in the superlattice. Furthermore, there is a magnetic
intralayer coupling between the localized moments within
the same layer, which does not depend on the structure
of the superlattice. For weak coupling (see bottom panel
in Fig. 5) the Kondo temperature is exponentially low and
even the magnetic intralayer coupling is stronger than the
Kondo effect. In this situation, we find a magnetic ground
state independent of the number of spacer layers. Furthermore,
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FIG. 5. Visualization of the competition between the Kondo
effect and the RKKY interaction. We model the strength of the Kondo
effect as an oscillating function in accordance with our previous
study. The strength of the RKKY interaction decreases as 1/D with
increasing distance. Top: For large J , the Kondo effect is stronger
than the RKKY for any superlattice. Middle: For intermediate J ,
the RKKY interaction is stronger than the Kondo effect for small
M but becomes weaker for large M . Bottom: For the weak-coupling
J , the RKKY interaction is stronger than the Kondo effect for any
superlattice.

because the Kondo effect is negligible, we observe the 1/D

dependence of the interlayer coupling as for usual magnetic
heterostructures. For strong coupling between magnetic mo-
ments and conduction electrons, as shown in the top panel
in Fig. 5, the Kondo effect is stronger than the RKKY
interaction in any superlattice. In this situation we can only find
paramagnetic ground states. There is no magnetic interlayer
coupling, because all magnetic moments are completely
screened by the Kondo effect. The most interesting case occurs
when the intralayer RKKY coupling is smaller than the Kondo
temperature, but the sum of intralayer and interlayer RKKY
interactions is larger (see middle panel in Fig. 5). Increasing
the number of metallic spacer layers then leads to a reduction in
the RKKY interaction, which finally becomes weaker than the
Kondo effect and therefore leads to a vanishing of the magnetic
order. For this intermediate coupling strength, the Kondo effect
and the RKKY interaction strongly influence each other. The
Kondo effect becomes slightly weaker when the number of
spacer layers increases from even to odd. However, because
at the same time also the strength of the RKKY interaction
decreases, the two effects may cancel each other out.

V. SPECTRAL FUNCTIONS

Finally, we discuss the spectral functions in the ordered
phase, shown in Fig. 6. In the top panel, we show the spectral
functions of the conduction electrons in the f -electron layer
for J/t = 1.6 and different superlattices. At this interaction
strength, the magnetic order persists for the superlattices
shown and the spectral functions of the conduction electrons
form a gap at the Fermi energy, ω = 0. This gap is partly due
to the magnetic order and partly due to the Kondo effect which
appears in this layer. Due to the absence of f electrons in the

FIG. 6. Spectral functions of the conduction electrons in the
f -electron layer in the ordered phase. Solid lines and dashed lines
correspond to the majority and minority spin direction at the analyzed
lattice site, respectively. Top: Spectral functions for six different
superlattices and J/t = 1.6. (We have shifted the origin of the
spectral functions of the upper curves for clarity.) We always show
the spectral functions of two superlattices with similar magnetization
together. Middle: Integrated spectral weight

∫
(A↑ − A↓) for the

spectral functions in the top panel. Bottom: Spectral functions for
different superlattices and J/t = 2. For M > 3 the magnetization of
the superlattice vanishes.

spacer layer, the spectral functions in the spacer layer remain
metallic, although they are magnetically ordered. Besides the
gap, the most prominent features in the spectral functions are
a van Hove singularity close to the gap and an excitation at
ω = 2t . The strength of the van Hove singularity decreases
with an increasing number of spacer layers M , which might
be related to the decrease in the magnetization. In the middle
panel we show

∫
(A↑(ω) − A↓(ω))dω, which corresponds to

the magnetization, for the superlattices shown in the top panel.
We observe again the stepwise change in the magnetization
when the number of spacer layers is increased, i.e., for M > 3
these magnetizations are nearly equal for superlattices (1,4)
and (1,5) as well as for (1,6) and (1,7). In the top panel we
demonstrate that not only is the magnetization similar in these
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superlattices, but also the spectral function. Excitations lie
approximately at the same energies and have the same strength.
In the bottom panel in Fig. 6, we show the spectral functions
for J/t = 2. The magnetization vanishes when the number of
spacer layers M is increased, although the coupling between
localized moments and conduction electrons is constant.

VI. CONCLUSIONS

We have analyzed the magnetic order in f -electron su-
perlattices and have demonstrated that the quantum critical
point of the f -electron material can be tuned by changing
the superlattice structure similarly to experimental results on
CeIn3(n)/LaIn3(4) superlattices [1]. We have focused in this
study on the influence of the superlattice on the competi-
tion between the RKKY interaction and the Kondo effect.
Besides the RKKY interaction and the Kondo effect also the
reduced dimensionality of the f -electron material will become
important, especially when the number of f -electron layers
becomes small as in the experiments on CeIn3(n)/LaIn3(4)
superlattices. Increased magnetic fluctuations due to the
reduced dimensionality can further reduce the critical coupling
of the magnetic order. An analysis of the interplay of RKKY
interaction, Kondo effect, and nonlocal fluctuations is left

for a future study using cluster extensions of the dynamical
mean-field theory.

Furthermore, we have studied the competition of the Kondo
effect and the RKKY interaction in superlattices. We have
demonstrated that while the magnetic interlayer coupling
between different f -electron layers behaves as 1/D for a weak
Kondo effect, as in non-f -electron superlattices, it differs
strongly from this behavior for a strong Kondo effect. In
this case the magnetic interlayer coupling vanishes already
for a finite number of spacer layers. Furthermore, due to
the interplay between the Kondo effect and the RKKY
interaction, the interlayer coupling vanishes stepwise when
the number of spacer layers is increased. As a consequence,
two superlattices with different numbers of spacer layers show
similar magnetization curves.
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