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Universality classes of order parameters composed of many-body bound states

A. M. Tsvelik
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

(Received 9 July 2016; published 28 November 2016)

This theoretical paper discusses microscopic models giving rise to special types of order in which conduction
electrons are bound together with localized spins to create composite order parameters. It is shown that composite
order is related to the formation of a spin liquid with gapped excitations carrying quantum numbers that are a
fraction of those of an electron. These spin liquids are special in the sense that their formation necessarily
involves spin degrees of freedom of both the conduction and the localized electrons and can be characterized
by nonlocal order parameters. A detailed description of such spin-liquid states is presented with a special care
given to a demonstration of their robustness against local perturbations preserving the Lie group symmetry and
the translational invariance.

DOI: 10.1103/PhysRevB.94.205141

I. INTRODUCTION

This paper puts forward a theoretical description of
composite order parameters (COPs). Such order parameters
emerge as a result of condensation of many-body bound states
of conduction electrons with collective modes of interacting
magnetic moments. On the formal level, the COPs are
expressed as products of spin operators of localized electrons
and various density operators of conduction electrons. The
latter may include multiple products of charge, spin, and
pair densities. Being related to many-body bound states, a
formation of the COP’s requires strong correlations and their
study will take us to hitherto unexplored areas of physics. The
first example of such COP was found in the Kondo-Heisenberg
chain model by Zohar and the author [1]; it included a bound
state of the staggered magnetization with the pair density,
an analog of the Fulde-Ferell-Ovchinnikov-Larkin (FFLO)
state, but created without a magnetic field. It also included
the bound state with a charge density wave with a wave
vector proportional to the total electron density (including
the density of localized electrons). Although one-dimensional
models can support only quasi-long-range order, a real order is
possible in arrays of chains provided one manages to couple the
corresponding COPs. This may be a problem since they usually
carry finite wave vectors, so that a coupling between COPs with
different wave vectors is suppressed due to the momentum
conservation. This suppression mechanism was invoked in
Ref. [2] to explain the exotic two-dimensional superconductiv-
ity found in a layered compound La1.875Ba0.125CuO4 [3,4]. It
has been suggested that the superconducting order parameters
belong to the staggered pair density COPs and the COPs from
neighboring layers do not couple since their wave vectors are
perpendicular to each other.

Although the concept of composite order is a general one,
to achieve a better understanding, we need to consider models
that allow reliable and controlled calculations. I suggest that
Kondo-Heisenberg models provide ideal platforms for these
kind of studies. The core physics of Refs. [1,5] is the following.
The Kondo-Heisenberg model brings together conduction
electrons in the form of one-dimensional electron gas (1DEG)
and antiferromagnetically correlated localized spins. Taken by
themselves both electron and spin subsystems are quantum
critical. In a quasi-one-dimensional setting, this means that

(i) the low-energy modes are chiral and (ii) the spin and charge
degrees of freedom of the 1DEGs are separated. These two
facts suggest a possibility of a highly entangled state where
right moving spinons from the 1DEG pair to left moving ones
from the antiferromagnet and vice versa. As a result, two
independent spin liquids are formed, each one uniting spin
degrees of freedom of opposite chirality from the 1DEG and
the spin chain; the charge sector of the 1DEG is left gapless
and is populated by the Goldstone modes. Such a state has a
hidden order associated with pairing of spinons from different
chains and hence is robust with respect to local perturbations.
The realization of such a spin liquid is possible when the band
filling of the 1DEG is far from 1/2 so that the Kondo exchange
cannot generate backscattering. Then the relevant coupling is
between the spin currents of opposite chirality from the 1DEG
and the spin chain. As I have said, the resulting spin liquid is
a sum of two liquids formed by spinons of opposite chirality
hence being mirror images of each other. The corresponding
excitations carry fractional quantum numbers. Since such
pairing takes place not between electrons, but between the
spinons, this process cannot be treated perturbatively or via
any kind of mean field making it even more interesting.

In Refs. [1,5] we studied the simplest version of the
Kondo-Heisenberg (KH) model where the localized spins have
magnitude 1/2 and there is one electronic chain per each spin
one. In this paper, I demonstrate that this is just one possibility
out of many. One can construct entire universality classes
of KH models corresponding to different representations of
Lie groups with different topological orders, different gapped
excitations and different COPs and generically a particular
model may have several COPs.

Below, I consider two types of models. Both of them
describe arrays of one-dimensional Kondo-Heisenberg wires.
In the models of the first type, the wires are arranged in
“cables,” such that each one-dimensional unit consists of a
chain of localized spins S = n/2 surrounded by a bunch of n

conducting chains with incommensurate band fillings. In fact,
to call this spin chain the Heisenberg one is an abuse of the
term since the spin-spin interaction I consider includes higher
powers of (SnSn+1). It would be more appropriate to call it
generalized Heisenberg chain, but I will not do it for the sake
of brevity.
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In the suggested construction, the gapped fractionalized
excitations are able to propagate only along a single cable
even when the chains are connected into arrays. I will
argue, however, that the three-dimensional coupling does not
destroy these excitations, although it creates their bound states
which carry quantum numbers of electrons and can propagate
between the cables. A similar construction has been recently
used in Ref. [6] in the context of fractional quantum Hall effect.
The models of another type are SU(N ) generalizations of the
Kondo-Heisenberg ladders considered in Ref. [5].

The paper is organized as follows. In Secs. I–IV, I will
consider one-dimensional models. In Sec. V, I will discuss
their arrays. In Sec. II, I derive the continuum limit description
for both types of models mentioned above. This continuum
description is given by integrable field theories whose spin
sector is gapped and has fractionalized excitations. For the
cable model n � 2, their statistics is non-Abelian, for the
SU(N )-symmetric ladder model it is Abelian. In Sec. III,
I will construct the composite order parameter operators.
There is a separate universality class for each symmetry group
representation. The construction can be easily generalized for
nonunitary Lie groups. In Sec. IV, it will be shown that the
composite order and fractionalized excitations are robust with
respect to group symmetry preserving perturbations around
the integrable point. I will analyze in detail the perturbations
breaking the symmetry between the exchange couplings
and the perturbations driving the spin chain away from the
criticality. In Sec. V, I will consider the physics of arrays of the
KH cables. The paper has Conclusion and Acknowledgment
sections and several appendices.

II. THE CORE MODELS

The core models of the present paper are of two kinds.
One type of the model called the Kondo-Heisenberg cable
(KHC) consists of a critical antiferromagnetic spin S = n/2
Takhtajan-Babujian chain (TBC) coupled by an antiferromag-
netic exchange interaction to n conducting chains containing
a one-dimensional electron gas (1DEG):

H =
∑

k

n∑
a=1

εa(k)ψ+
k,aσψk,aσ + 1

2

∑
k,q

J abψ+
k+q,aασ αβψk,bβSq

+ JH

∑
l

Pn(SlSl+1), (1)

where ψ+
a ,ψa are creation and annihilation operators of the

1DEG on chains a = 1, . . . ,n, σb are the Pauli matrices, Sl

is the spin S = n/2 operator on site j , and Sq is its Fourier
transform. Pn(x) is the polynomial of degree n whose exact
form is fixed by the integrability requirements [7,8]. For
instance, P1(x) = x,P2(x) = x − x2, etc. It is assumed that
J ab � JH and the 1DEGs have band fillings incommensurate
with the TBC: |2kF,aa0 − π | ∼ 1. Under these assumptions
one can formulate the low-energy description of (1), taking into
account that the backscattering processes between excitations
in the TBC and the 1DEGs are suppressed by the above
incommensurability. The effective theory is valid for energies
much smaller than both the average Fermi energy εF,a and the
exchange interaction JH of the model (1).

The reader should not remain under the impression that the
obtained results require a fine tuning of the spin sector to the
integrable point. It will be shown in Sec. IV that they remain
robust against those perturbations around the integrable point,
which preserve the translational and the SU(2) symmetry.

Another core model is a SU(N ) symmetric generalization
of the Kondo-Heisenberg chain:

H =
∑

k

N∑
a=1

ε(k)ψ+
k,aψk,a + 1

2

∑
k,q

J lψ+
k+q,aτ

l
abψk,bT

l
q

+ JH

∑
n

(
T l

n+1T
l
n+1

)
, (2)

where T l,(l = 1, . . . ,N2 − 1) are generators of the su(N )
algebra in the single-box representation.

The KHC model (1) is a one-dimensional version of the spin
fermion (SF) model frequently used to study violations of the
Landau-Fermi liquid theory in the vicinity of quantum critical
points. As has been demonstrated in Ref. [5], an array of KH
chains can be used as a quasi-1D SF model. Here the electrons
also interact with a critical insulating subsystem. However, the
interacting regime I am going to study is different from what
is usually assumed. In the standard treatment of the SF model,
the quantum character of the spin fluctuations is not important,
it is suggested that the quantum features are generated by the
conduction electrons. In the quasi-1D version of the SF model
considered here, this is not the case: the quantum nature of
the spins is responsible for creation of the spin gap and the
formation of the spin liquid.

A. Continuum limit of model (1)

As usual I start with the linearization of the spectrum of the
1DEG:

εa(k) ≈ ±vF,a(k ∓ kF,a), (3)

and introduce the right- and the left-moving fermions R

and L:

ψa(x) = e−ikF,axRa(x) + eikF,axLa(x). (4)

In the rest of my paper, I will employ the formalism of non-
Abelian bosonization most adequate for the task. Although
this version of bosonization is not as widely known as the
Abelian one, it has a venerable history and has been discussed
in literature. The most recent review can be found in Ref. [6].

The continuum limit of the TBC chain is described by the
SUn(2) Wess-Zumino-Novikov-Witten (WZNW) model. This
is a critical theory whose primary fields transform in the spin
S � n/2 representations of the SU(2) group. The excitations
are gapless with linear spectrum ω = vH |q|, vH = πJH /2. In
the continuum limit, the spin operators are approximated as
[9,10]

Sl = [jR(x) + jL(x)] + i(−1)lTr[σ (h − h+)] + . . . , (5)

(x = la0) where the dots stand for less relevant operators, a0

is the lattice distance, h is the WZNW SU(2) matrix field.
The current operators ja

L,ja
R satisfy the SUn(2) Kac-Moody
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algebra:

[
ja
R(x),j b

R(x ′)
] = iεabcj c

R(x)δ(x − x ′) + in

4π
δabδ

′(x − x ′),

(6)

with the same commutation relations for the left cur-
rents ja

L. The electron spin FR = 1
2

∑n
a=1 R+

a σRa, FL =
1
2

∑n
a=1 L+

a σLa satisfy the same algebra. The remarkable fact
is that the WZNW Hamiltonian describing the low-energy part
of the TBC can be expressed solely in terms of the currents:

HWZNW = 2πvH

n + 2

∫
dx(: jRjR : + : jLjL :), (7)

The double dots denote normal ordering.
Due to the incommensurability of the Fermi wave vectors

in the continuum limit the Kondo term in (1) is reduced to the
interaction of the currents [11] (see also Ref. [12]):

Vex = JK

2

∫
dx(jR + jL)(R+

a σRa + L+
a σLa), (8)

where JK = J aa (all diagonal elements are taken to be equal).
At vF,1 = vF,2 the sum of the electronic currents adds up to a
single SUn(2) current

FR =
n∑

a=1

R+
a σRa, FL =

n∑
a=1

L+
a σLa. (9)

Further simplification comes from the fact that the relevant
part of (8) contains only products of the currents of different
chirality so that the marginal interaction Vmarg = JK (FRjR +
FLjL) can be dropped as the first approximation. Hence only
the SUn(2) part of the 1DEGs is involved in the interaction.

Below, I will use the fact that the Hamiltonian of n copies
of spin-1/2 noninteracting fermions with identical Fermi
velocities (I will assume this to simplify the calculations) can
be written as a sum of the U(1) Gaussian model and SU2(n) and
SUn(2) WZNW models [12,13]. The resulting Hamiltonian is

Heff = Horb + vF

2
[(∂x�c)2 + (∂xc)2] + Hspin, (10)

Horb = 2πvF

n + 2

n2−1∑
A=1

(
: IA

R IA
R : + : IA

L IA
L :

)
, (11)

Hspin = 2πvF

n + 2
(: FRFR : + : FLFL :), (12)

where IA ,A = 1, . . . ,n2 − 1 are SU2(n) currents.  and � are
mutually dual bosonic fields. Both the charge part and model
(11) are critical, the spectrum is linear: ω = vF |k|.

Now, we will put the relevant part of (8), (12), and (7)
together and rearrange the terms in such a way to obtain two
commuting Hamiltonians:

Hspin + Vex + HWZNW = H(Rl)
s + H(Lr)

s , (13)

H(Rl)
s = 2πvF

n + 2
: FRFR : +2πvH

n + 2
: jLjL : +JKFRjL, (14)

H(Lr)
s = 2πvF

n + 2
: FLFL : +2πvH

n + 2
: jRjR : +JKFLjR. (15)

FIG. 1. The dispersion of the solitons in the KH chain (16). e =
E/�, q = kx(vH vF )1/2/�, and vF /vH = 1/4.

Here, vF ,vH = πJH /2 are the Fermi velocity of the 1DEGs
and the spinon velocity of the TBC, respectively. This
factorization of the spin sector into two part with one being a
mirror image of another is the key feature of the KHC model (1)
from which everything else will follow. Such factorization can
be easily generalized for any other Lie group symmetry besides
SU(2) and any other representation of the spin operators.

Models (14) and (15) are strongly interacting and integrable
[14]. These are WZNW models perturbed by a marginally
relevant current-current interaction. Their Bethe ansatz so-
lution has many common features with the solution of the
multichannel Kondo model [15–17] with the difference that in
the case when the spins are represented by a single impurity
the spectral gaps cannot be formed. At JK > 0, the spectrum
consists of gapped non-Abelian solitons. Each soliton carries a
zero mode of Zn parafermion. The further details are provided
in Sec. IV B and Appendix A. The dispersion relations
E(k)Lr = E(−k)Rl = E(k) are (see Fig. 1)

E(k) = k(vH − vF )/2 +
√

k2(vF + vH )2/4 + �2, (16)

where � = �g exp(−π/g), g = JK/(vF + vH ), with � being
the ultraviolet cutoff, is the spin gap. Hence they describe
spin liquids. Since these models are mirror images of each
other, under open boundary conditions the many-body wave
functions of the two copies coincide at the boundaries.

B. Continuum limit of model (2)

The derivation here is very similar to the one given in
the previous subsection. Therefore I will concentrate on
differences. The first one is that the continuum limit of the
SU(N ) spin chain is now given by the SU1(N ) WZNW model.
The SU(N ) spin operators are expressed as

T l
n = [

j l
R(x) + j l

L(x)
] +

N−1∑
q=1

e2πnq/N Tr(τ l : hq :) + . . . ,

(17)

where h is the SU(N ) matrix field of the SU1(N ) WZNW
model and τ l are generators of the su(N ) algebra. The primary
fields : hq : are obtained by fusion of the fundamental one their
scaling dimensions are dq = q(N − q)/N .
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The resulting continuum limit Hamiltonian density is

H = vF

2
[(∂x�c)2 + (∂xc)2] + H(Rl)

s + H(Lr)
s , (18)

H(Rl)
s = 2πvF

N + 1
: F l

RF l
R : + 2πvH

N + 1
: j lLj l

L : +J l
KF l

Rj l
L, (19)

H(Lr)
s = 2πvF

N + 1
: F l

LF l
L : + 2πvH

N + 1
: j l

Rj l
R : +J l

KF l
Lj l

R. (20)

Models (19) and (20) can be written is a more familiar
fermionic form. One can take advantage of the fact that SU1(N )
currents can be written in terms of fermionic bilinears and write
the currents of the spin chain in terms of the auxiliary right-
and left-moving fermions ρ,λ. The resulting model constitutes
the spin sector of the SU(N ) chiral Gross-Neveu model so that
for (19), we have

H(Rl)
s = −ivF R+

a ∂xRa + ivHλ+
a ∂xλa + J l

K (R+τ lR)(λ+τ lλ),

(21)

where a = 1,2, . . . ,N with a similar expression with x → −x

and R replaced by L and ρ replaced by λ.
When all coupling constants are equal J l

K = JK models
(19) and (20) are integrable [18], but now the spectrum contains
N − 1 branches of gapped excitations with spectral gaps �j :

�j = �1
sin(πj/N )

sin(π/N )
, j = 1,2, . . . ,N − 1,

�1 ∼ exp[−π (vF + vH )/NJK ]. (22)

These excitations transform according to single column j -box
irreducible representations of the SU(N ) group. So they are
fractional number particles. The spectrum of each branch is
given by (16) with � replaced by �j . When J l

K are different
the picture remains qualitatively the same since the SU(N)
symmetry is restored in the low-energy limit [19].

III. COMPOSITE ORDER PARAMETERS

In D = 1, critical points are located at T = 0 and there is
only quasi long range order. Hence by order parameter (OP)
operators I mean the operators whose susceptibilities diverge at
T = 0. At T = 0, their correlation functions have a power-law
decay in space and time, at T = 0, they decay exponentially
with the correlation length ∼1/T . In the core cable models,
such quasi-long-range order is expressed in term of OPs, which
include delocalized and localized fermions—composite order
parameters (COPs). Ones 1D cables are arranged in a three-
dimensional array real long-range order will be established.
This will be discussed in more detail in Sec. V.

A. COPs in model (1)

For simplicity, I will consider the case n = 2 in detail
and discuss other cases briefly. I will use the remarkable
fact established in Ref. [20] that two noninteracting 1DEG
with equal Fermi velocities can be described by the theory of
eight Majorana fermions with O(8) symmetry. At the same
time, the SU2(2) WZNW is equivalent to the theory of three
noninteracting Majoranas. So the O(8) theory can be factorized
into 5+3 Majoranas: O1(8) = O1(5) ⊕ O1(3).

Remarkable properties of the SU2(2) WZWN model has
been first studied in Ref. [21]. The reader can also find details
in Refs. [12,13]. The SU2(2) currents can be represented as
products of Majorana fermions:

ja = i

2
εabcκbκc, F a = i

2
εabcχbχc. (23)

As a consequence, the two independent Gross-Neveu models
(14,15) become the O(3) Gross-Neveu models of Majorana
fermions:

H(Rl)
s =− ivF

2
χa

R∂xχ
a
R + ivH

2
κa

L∂xκ
a
L

+ JK

∑
a>b

(
κa

Lχa
R

)(
κb

Lχb
R

)
, (24)

H(Lr)
s = ivF

2
χa

L∂xχ
a
L − ivH

2
κa

R∂xκ
a
R + JK

∑
a>b

(
κa

Rχa
l

)(
κb

Rχb
l

)
.

(25)

The gapless sector given by the sum of (11) and the U(1)
Gaussian model can be described as a model of five gapless
Majoranas:

Hcharge-orb = i

2

5∑
a=1

(−ηa
R∂xη

a
R + ηa

L∂xη
a
L

)
. (26)

For convenience we can group these fermions as follows: η1,2

will correspond to fermionization of the charge sector, the
other three η’s will describe the orbital sector.

At criticality, the SU2(2) WZNW model can also be
represented as a sum of three critical quantum Ising models.
This representation is particularly useful since the spin S =
1/2 primary field (the matrix h) can be expressed in terms
of order σa and disorder μa parameter fields of the Ising
models [21]:

ĥ = τ̂ 0σ1σ2σ3 + i(τ̂1μ1σ2σ3 + τ̂ 2σ1μ2σ3 + τ̂ 3σ1σ2μ3).

(27)

Here, τ a, a = 0,1, . . . ,3 are unit and Pauli matrices.
As is clear from (14) and (15), the spectral gaps are

generated by pairing of Majoranas of a given chirality from the
1DEG with their partners of opposite chirality from the TBC.
To clarify this, it is instructive to do the Hubbard-Stratonovich
transformation for, for instance, model (24). For JK > 0, the
interaction is decoupled as

JK

∑
a>b

(
κa

Lχa
R

)(
κb

Lχb
R

) → �2

2JK

+ i�
(
κa

Lχa
R

)
. (28)

Integration over the fermions creates a double-well potential
for field �. The minima of the potential correspond to
degenerate vacua for the Majorana fermions where 〈(κa

Lχa
R)〉 �=

0. As far as the operators of the original model (1) are
concerned, the structure of the vacuum is more subtle since the
local operators of this model are expressed not just in terms
of the Majorana fermion bilinears, but also in terms of Ising
model operators (see Appendix B). A vacuum with one sign
of � corresponds to the disordered phase of the Ising models
where 〈σa〉 = 0, the other one corresponds to the ordered phase
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where 〈σa〉 �= 0 and may have any sign. Therefore the vacuum
has a triple degeneracy. I will talk more about it in Sec. IV.

The important point is that since the Majoranas from the
1DEGs do not pair to each other, there are no order parameters
formed solely from the electronic operators or spin operators.
Instead, there are composite order parameters (COPs) whose
correlation functions have a power law decay.

As a preliminary step towards formulation of the COPs, I
will organize the fermions into Nambu spinors:

�aσ =
(

ψσ,a

εσσ ′ψ+
σ ′,a

)
. (29)

This reflects the orthogonal symmetry of the low-energy
sector. The spinor has 8 components; their quantum numbers
include charge q = ±1, spin σ = ±1 and chain index p = ±1.
Products of the Nambu spinor components with the right and
left chiralities give rise to 8 × 8 real matrix with 64 entries:

�(q,p,σ ),(q ′,p′,σ ′) = r̄(q,p,σ )l(q ′,p′,σ ′). (30)

Fusing it with the 4 × 4 h-matrix spin field of the WZNW
model one is left with the matrix COP containing 16 real
entries:

O(q,p),(q ′,p′) = r̄(q,p,σ )hσσ ′ l(q ′,p′,σ ′). (31)

As it is discussed in Appendix B, this operator can be
factorized into the part which condenses, acquiring a finite
vacuum expectation value, and the part which fluctuates. The
former one constitutes an amplitude of the fluctuating COP.
The fluctuating part is a primary field of the critical O1(5)
theory with a scaling dimension 5/8. COP (31) contains
charge density wave (q = −q ′) and superconducting (q = q ′)
components. A given matrix element carries the wave vector

Q(q,p),(q ′,p′) = qkF,p − q ′kF,p′ + π/a0. (32)

Operators (31) constitute a reducible representation of the
SO(5) group. This representation consists of an SO(5) scalar,
vector, and antisymmetric tensor representations. To obtain
the latter representations, one has to define five Dirac �a

(a = 1, . . . ,5) matrices, for instance,

�1 =
(

0 iI
−iI 0

)
, �2,3,4 =

(
σ 0
0 −σ

)
,

(33)
�5 =

(
0 −I

−I 0

)
,

where unit and Pauli matrices I,σ act on the chain in-
dices. Then the ten SO(5) generators are defined as �ab =
− i

2 [�a,�b]. The corresponding COPs are defined as TrO (with
wave vector π/a0), Tr�aO, and Tr�abO. Notice that besides
the scalar COP, which carries wave vector π/a0, all others
contain components with different wave vectors. The vector
components with a = 1,5 contain CDW order parameters
with wave vectors ±[π/a0 + 2(kF,1 + kF,−1)] (mod[2π/a0])
corresponding to the total electron density (which includes
the density of localized electrons). The same vector mul-
tiplet contains the a = 2 component corresponding to the
SC COP with π/a0 wave vector and a = 3,4 components
corresponding to CDWs with incommensurate wave vectors
±[kF,1 − kF,−1 + π/a0].

The above COPs (31) are not the only ones. One can make
COPs by fusing products of fermionic bilinears with the higher
spin primary fields of the SUn(2) WZNW. For general n, these
are the fields with spin J � n/2. For n = 2, there are two such
primary fields with J = 1/2,1 and hence there is only one
extra operator:

ab = iκa
Rκb

L. (34)

As I have pointed out, the trace of this operator describes a
smooth part of (SlSl+1) lattice field. One can fuse (34) with
either of the two operators

(R+
1 σL1)(R+

−1σL−1) ∼ ei
√

4πc
(
ξa
Rξa

L − 3η5
Rη5

L

)
,

(35)
(R+

1 L1)(R+
−1R−1) ∼ ei

√
4πc

(
ξa
Rξa

L + η5
Rη5

L

)
to get

OCDW[2(kF,1 + kF,2)] = (SlSl+1)(ψ+
1 σψ1)(ψ+

−1σψ−1)

× e−2i(kF,1+kF,2)x ∼ ei
√

4πc , (36)

or with the product of two SC order parameter operators

(R1σ
yL1)(R−1σ

yL−1) ∼ ei
√

4π�c
(
ξa
Rξa

L + η5
Rη5

L

)
, (37)

to get a charge-4 “bipairing” operator

OSC = (ψ1σ
yψ1)(ψ−1σ

yψ−1)(SlSl+1) ∼ ei
√

4π�c , (38)

which existence of in four-leg ladders was discussed in
Refs. [22,23]. This operator carries zero momentum. To get
other products one fuse, for instance,

(R+
1 σL−1)(L+

−1σR−1), (R+
1 L1)(L+

−1R−1)

∼ ei
√

4πf
(
ξa
Rξa

L + η5
Rη5

L

)
. (39)

This operator carries zero charge and momentum 2(kF,1 −
kF,−1).

All operators (36), (38), and (39) have scaling dimension
1. They are components of the SO(5) symmetric tensor
representation; in the Majorana language they are biproducts
of right and left Majorana fermions ηa

Rηb
L.

For higher n, one can fuse 2J fermionic bilinears with
J � n/2-spin primary field of the spin chain to get operators
with scaling dimension

dJ = 2

[
J − J (J + 1)

n + 2

]
, (40)

some of which will carry charge Q = 4J . However, for J > 1,
these operators have nonsingular susceptibilities.

B. COPs in model (2)

Below, I will discuss only the case N > 2, since the case
N = 2 is discussed at length in [5]. The primary fields of
the SU1(N) WZNW model are tensors in the antisymmetric
representations described by a single column Young tableau
with q � N boxes. They can be considered as products of
fermion bilinears with the charge sector being factored out:

(q) = ρ+
a1

. . . ρ+
aq

λbq
. . . λb1 eq

√
4π/Nψ, (41)

where ρ,λ are right- and left-moving Dirac fermions with
velocity vH and ψ is a real Gaussian bosonic field. Its
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correlation functions cancel the correlators of the charge field
of the fermions. The scaling dimensions of (41) are

dq = q(N − q)

N
, (42)

and they carry wave vectors Qq = ±2πq/Na0.
The COPs are SU(N ) singlets and carry wave vectors Q =

(2kF + 2π/Na0)q:

Oq = (
R+

a1
Lb1

)
. . .

(
R+

aq
Lbq

)


(q)
a1,...,aq ;b1,...,bq

= [(
R+

a1
λa1

)(
ρ+

b1
Lb1

)]q
eq

√
4πψ = Aeiq√

4π/Nc . (43)

The wave vector (2kF + 2π/Na0) includes the density of
localized and delocalized electrons in agreement with the
Oshikawa theorem [24]. Ones the spin gaps are formed the
amplitude A is finite. The scaling dimensions are

dq = q2/N. (44)

Notice that for N > 2, the COPs are of the charge density
wave type and do not include the superconducting ones.

IV. ROBUSTNESS AGAINST PERTURBATIONS

The spin-liquid states described above represent only a
part of the Hilbert space of the original models (1) and
(2). The rest of it belongs to gapless excitations. Hence the
current models describe conducting states. Nevertheless, since
the spin sector is decoupled from the gapless modes [the
charge and orbital ones for (1) and the charge one for (2)],
it is instructive to find out how robust are its fractionalized
excitations against various perturbations. Below I will consider
several perturbations concentrating mostly on model (1) and
show that the fractionalized gapped excitations are robust
against perturbations, which do not violate the SU(2) [for
model (1)] and the SU(N ) [for model (2)] symmetry of the
spin chain and do not break the translational invariance.

Such perturbations fall into several categories which will be
considered below. First, there are electron-electron interactions
of the band electrons. Away from half filling they generate
only current-current interactions. In Sec. IV A, it will be
demonstrated that such interactions together with current-
current interactions in the spin sector will need to exceed some
critical value to radically modify the spin-liquid state. Second,
there are perturbations in the spin chain which would destroy
the SUn(2) critical point of an isolated chain. They will be
analysed in Sec. IV B. If not too strong such perturbations are
ineffective since ones the spin liquid is formed its stability is
protected by the spectral gap. Third, there are perturbations
corresponding to channel anisotropy J 11 �= J 22 which will
be discussed in Sec. IV C. At last, there is external magnetic
field, but the spin liquid is protected against it by the spin
gap. These four categories exhaust the list of the symmetry
preserving perturbations.

A. Electron-electron interactions of the band electrons

It is instructive to find out whether the gapped state de-
scribed in the previous section can be adiabatically connected
to a topologically trivial state of decoupled band electrons and
a gapped TBC. To show this, I introduce a deformation of the

original model adding to it the additional interaction

V = γ (FRFL + jRjL), (45)

and consider a trajectory in the JK -γ plane from (JK,0)
to (0,γ ). Since the charge-orbital sector remains decoupled,
the trajectory lies entirely inside of the spin sector which
remains gapped except, as we will see, at one critical point
separating the two phases. One of those is the phase of
interest and the other one is phase where TBC and 1DEGs
are disconnected. The spin excitations are gapped; at JK = 0
and γ > 0, both the band electrons and the TBC are perturbed
by the marginally relevant products of the currents. These are
integrable perturbations of the same kind as in (14) and (15);
they generate spectral gaps. For the spin chain, there is also
OP local in the spin operators:

O = 〈(Sj Sj+1)〉 ∼ 〈TrhTrh+〉, (46)

which describes a spontaneously generated deviation from the
integrable point. On the other hand, the phase γ = 0 has no
local OPs, there is only a quasi-long-range order (see Sec. III).
As we will see, the two phases are separated by a quantum
critical point.

For simplicity, I set vF = vH . Let us introduce new
operators:

J = F + j, K = F − j. (47)

The operators JR,L are SU2n(2) Kac-Moody currents. Then the
total interaction becomes

Vex + V = 1
2 (JK + γ )JRJL + 1

2 (γ − JK )KRKL. (48)

The part of the Hamiltonian describing the critical point
can be represented as the sum of the SU2n(2) WZNW and
the SUn(2) × SUn(2)/SU2n(2) coset theory. At γ = JK , the
product of the K operators vanishes and the latter theory
decouples and becomes critical; so the entire theory has a
critical point. At this point, only SU2n(2) part of the spin Hilbert
space is gapped, the remaining SUn(2) × SUn(2)/SU2n(2) one
is gapless. Hence the phase with small γ is separated from the
topologically trivial phase with JK = 0 by a quantum critical
point described by the SUn(2) × SUn(2)/SU2n(2) coset theory.

In my opinion, it is possible that the gapped spin state
described above is topologically nontrivial. Indeed, it has
nonlocal OP of the string type and is likely to have zero
modes located on a boundary with the topologically trivial
phase γ > JK . However, in order to determine a place of this
model in the general classification of topological phases [25],
I have to consider the edge zero-energy modes. I leave this
problem for future studies.

B. Deviations from the SUn(2) critical point

In this section, I demonstrate that the deviations of the
spin chain from the TBC integrable point do not confine the
non-Abelian massive excitations. For simplicity, I do it for
the n = 2 KHC model. If the perturbation is not too strong, it
just creates bound states of the non-Abelian solitons, but these
particles still remain in the spectrum.

I start with the unperturbed model for n = 2. The spin sector
is described by a sum of two copies of the O(3) Gross-Neveu
model (24) and (25). The exact solution of the O(3) GN
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model was first found in Ref. [26] as a particular limit of the
supersymmetric sine-Gordon model and was later analyzed in
detail in Refs. [27,28]. The reader can find an excellent and
pedagogical analysis of (1+1)-dimensional supersymmetric
theories in a recent paper by Mussardo [29]. As I have stated
above [see the text around (16)], the excitations are massive
and non-Abelian. Their nature can be visualized with a help
of Hubbard-Stratonovich transformation (28). Then, as I have
mentioned above, the integration over the Majorana fermions
creates a double-well potential for field �. The Majorana
fermions have zero-energy modes on the kinks of � field;
the kinks with attached zero modes constitute excitations
of the O(3) GN model, the so-called Bohomol’nyi-Prasad-
Sommerfield (BPS) solitons [27]. A multikink state is a highly
entangled one and cannot be factorized into a product of states
even when the kinks are far from each other. This becomes
clear when one considers a Hilbert space of Majorana zero
modes. These modes γa obey the Clifford algebra

{γa,γb} = δab, (49)

and the Hilbert space of N kinks have 2[3N/2] states.
According to the exact solution [26–28], the excitation

spectrum does not contain vector particles. Hence the Ma-
jorana fermions themselves do not survive as coherent excita-
tions; this fact is important for the survival of the fractionalized
particles.

For the following analysis, it will be convenient to use the
relativistic parametrization of the soliton spectrum (16):

Ep = �

2
(
√

vF /vH epθ +
√

vH/vF e−pθ ),
(50)

P = �(vHvF )−1/2 sinh θ,

where parameter θ is called rapidity. Different signs corre-
spond to different copies of the O(3) GN model: p = + for
(24) and p = − for (25).

In description of the excitations I will follow Ref. [30]. The
ground state of a single O(3) GN model is triple degenerate.
The excitations are solitons interpolating between different
vacua. A soliton with rapidity θ interpolating between the
vacua a and b is created by operator Kσ

ab(p,θ ) with σ =
±1/2 for soliton and antisoliton (sz = ±1/2), respectively.
The vacuum indices a,b take values 0, 1/2, and 1 with
|a − b| = 1/2. The latter restriction is responsible for the fact
that a multisoliton state cannot be disentangled into a product
of single-particle states even if solitons are far from each other.
Multisoliton state of a given model with total spin projection
Sz = ∑

j σj is given by∣∣Kσ1
a0a1

(p,θ1)Kσ2
a1a2

(p,θ2) . . . KσN

aN−1aN
(p,θN )

∣∣0aN

〉
, (51)

where θ1 > θ2 > . . . > θN for an in and θ1 < θ2 < · · · < θN

for an out state. The two-particle scattering process

K
σ1
ab(p,θ1) + K

σ2
bc (p,θ2) → K

σ ′
2

ad (p,θ2) + K
σ ′

1
dc(p,θ1), (52)

is described by the scattering matrix

SSUSY

(
a d

b c

∣∣∣∣θ1 − θ2

)
× S

σ ′
1,σ

′
2

σ1,σ2 (θ1 − θ2), (53)

where SSUSY is described in Ref. [30] and the other S matrix
is the one of the SU(2) Thirring model:

S
σ ′

1,σ
′
2

σ1,σ2 (θ ) = −S0(θ )

(
θδσ1,σ

′
1
δσ2,σ

′
2
+ iπδσ1,σ

′
2
δσ2,σ

′
1

)
θ + iπ

,

(54)
S0(θ ) = �(1/2 − θ/2π )�(1 + iθ/2π )

�(1/2 + θ/2π )�(1 − iθ/2π )
.

The relevant operators of the SU2(2) WZNW model include
spin S = 1/2,1 primary fields and the product of the left and
right currents. As is obvious from (5), the S = 1/2 operator
breaks the translational invariance. If we do not allow this, the
most relevant perturbation is the S = 1 primary field which is
local in the Majorana fermions:

Vpert = imκa
Rκa

L. (55)

For JK = 0, this perturbation would lead to a confinement of
the fractionalized excitations of the TBC [31,32]. However, as
I am going to show, for finite JK > 0, this is no longer the case
provided |m| � �.

For the following, we will need to obtain some information
about matrix elements of the perturbing operator (55). Leaving
a complete calculation for the future, I will just establish the
properties necessary to resolve the problem of confinement.
This can be done on the basis of Lorentz invariance and
crossing symmetry.

From the exact solution, we know that the Majoranas are
not coherent particles. Hence operator κR (κL) has matrix
elements between a vacuum and states of even number of
solitons of model (25) [respectively of (24)]. The minimal
matrix elements corresponding to annihilation of two solitons
are

〈0a|κl
R(τ,x)|Kσ1

ab(−,θ1)Kσ2
ba(−,θ2)|0a〉

= exp{−τ [ELr (θ1) + ELr (θ2)] − ix[P (θ1) + P (θ2)]}
×�1/2e(θ1+θ2)/4ga(θ1 − θ2)Cl

σ1σ2
, (56)

〈0a|κl
L(τ,x)|Kσ1

ab(+,θ1)Kσ2
ba(+,θ2)|0a〉

= exp{−τ [ERl(θ1) + ERl(θ2)] − ix[P (θ1) + P (θ2)]}
×�1/2e−(θ1+θ2)/4ga(θ1 − θ2)Cl

σ1σ2
, (57)

where C is the Klebsh-Gordon factor and ga(θ ) is a dimen-
sionless function to be determined. This form is dictated by
the fact that (i) κl has spin 1 under the SU(2) group and the
solitons have spin 1/2, (ii) κR,L are components of a spinor,
that is, they have Lorentz spin ±1/2. The latter fact explains
the presence of the exponential factors: under a Lorentz boost
θi → θi + α the matrix elements must acquire a factor e±α/2.

We can extract more specific information about the matrix
elements from the crossing symmetry. It allows one to extract
another matrix element:

〈0a|K−σ1
ab (p; θ2)

∣∣κl
R(0,0)

∣∣Kσ2
ab(p; θ1)|0a〉

= �1/2iep(θ1+θ2)/4ga(iπ − θ1 + θ2)Cl
σ1σ2

. (58)

As we shall see, the issue of the soliton confinement is decided
by the behavior of this matrix element at θ1 → θ2. The solitons
are confined if the function g(θ ) has a pole at θ = iπ . In
that case, the effective potential between the kinks grows
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with distance (see below). However, according to the general
theorem (see, for instance, Ref. [29]) at the pole, we have

ga(iπ − θ ) ∼ 〈0a|κl
R,L|0a〉
θ

, (59)

and the residue is zero since κR,L are fermion operators
and cannot have a nonzero vacuum average. This conclusion
is also supported by the semiclassical calculation for the
supersymmetric sine-Gordon model done in Ref. [29] [see
Eqs. (43) and (44)], which gives an explicit expression for
ga(θ ).

Now we can use all this accumulated information to write
down the Schrödinger equation for two solitons belonging to
the sectors with different parity. Their wave function is

Bσ1,σ2

∫
dθ1dθ2�ab;cd (θ1,θ2)Kσ1

ab(+; θ1)Kσ2
cd (−; θ2)|0b,0d〉.

Acting on this state by (55), we create a two-soliton state plus
multisoliton states. Since the latter ones lay higher in energy,
we can neglect them when m � �.

In the reference frame with the total zero momentum, we
have

(−E + 2M cosh θ )�(θ,−θ ) + (m�/M)P̂S=1

×
∫

du

cosh u
e(θ+u)/2|g(iπ + θ − u)|2�(u,−u) = 0, (60)

where M = �(vH + vF )/
√

vHvF and P̂S=1 is a projector to
spin S = 1 space which sets the spins of the solitons into a
triplet configuration.

For m � M , one can expand the kernels in small rapidities
and obtain the Schrödinger equation:[

−E + 2M − 1

4M

∂2

∂x2
+ V (x)P̂S=1

]
�̃(x) = 0,

V (x) = (m�/M)
∫ ∞

−∞

du

2π
e2iMux |g(u + iπ )|2,

�̃(x) =
∫ ∞

−∞

du

2π
e2iMux�(u,−u). (61)

The potential V (x) decays at large distances unless function
g(θ ) has a pole at iπ . As we have already established, there is
no pole. For m < 0, the potential is attractive and there is at
least one bound state below the two-particle continuum. Bound
states do not kill the fractionalized excitations, they remain in
the spectrum. The topologically nontrivial state survives.

C. Asymmetry of the Kondo exchange

The asymmetry of the Kondo couplings is a marginally
irrelevant perturbation which dies out under renormalization.
This is the case for both types of models. The renormalization
group dynamics of the KHC model (1) is identical to the
one of the Kondo impurity. For the impurity problem, it has
been well known from the late 70s (see [33]) that the stable
exchange configuration is the one when the impurity spin
is completely screened. This means that when the impurity
spin S interacts with several screening channels with different
exchange integrals, the renormalization selects 2S channels
with strongest couplings, which become identical under the

RG flow and suppresses all weaker ones. Likewise, the SU(N )
symmetry is restored in strong coupling limit for model (2), as
was shown in Ref. [19].

V. THE KONDO-HEISENBERG ARRAYS

In this section, I will discuss a generalization of the “wire
construction” of Kondo-Heisenberg arrays developed in my
previous publication [5]. Namely, I briefly consider an array
of parallel KHC models connected by interchain electron
tunneling and exchange interactions.

As it was discussed in Ref. [5], the effect of these
interactions is twofold. First, they couple the COPs which
eventually leads to a real long range order. Second, the
interchain tunneling and exchange create coherent excitations.
In particular, the tunneling create bound states of holons and
spinons (quasiparticles) whose dispersion is located inside
of the spinon gap. When the tunneling matrix elements
are sufficiently large (of order of the spinon gap) the quasipar-
ticle dispersion crosses the chemical potential and a Fermi
surface appears in the form of electron and hole pockets
[5] and formation of Fermi liquid. Likewise, the interchain
exchange interaction leads to the creation of bound states from
fractionalized spin excitations which can propagate in the bulk.
The fractionalized particles themselves remain confined to the
chains, at least in the model I consider. I will not discuss
these subjects further not to distract attention from the main
subject of this paper which is composite order. Instead, I will
construct several possible Ginzburg-Landau (GL) functionals
for the COPs.

Model (2) provides the simplest example due to the sim-
plicity of the order parameters (43). Here they are just bosonic
exponents with U(1) symmetry. Hence the GL Hamiltonian
for the array of (2) cables is

H =
∑

r

∫
dx

{
vF

2
[(∂x�r )2 + (∂xr )2]

+
∑

q

∑
r ′

J
(q)
r,r ′ cos[q

√
4π/N (r − ′

r )]

}
, (62)

where indices r,r ′ mark positions of different chains. As was
noticed in Ref. [5], the interchain couplings J are generated
not just by the electron hopping, but also by the interchain
spin exchange. This feature may lead to some interesting
consequences as far as the ordering is concerned. For example,
due to the composite nature of the OP it will not be so easy to
pin the phase by disorder. Indeed, the pinning operator must
simultaneously act on the spins located on the central chains
and on the electrons located on their own chains.

For model (2), the situation is reacher due to the presence
of the orbital degrees of freedom related to spatial position of
the 1DEGs around the central spin chain. Hence the coupling
of the cables will in general break all symmetries except of the
U(1) charge.

It would be too tedious to discuss here all possible
Ginzburg-Landau theories. I will just discuss one which
is sufficiently exotic and interesting, namely, the theory of
charge-4 “biparing” superconductivity related to condensation
of COP (38). This is the only relevant COP which has zero
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momentum. To suppress coupling between all other COPs,
one should arrange the cables in such a way that their mutual
positions prevent a coupling of COPs with finite wave vectors.
An example of such arrangement is a pyroclore lattice where
all chains intersect each other at finite angles. The resulting
GL Hamiltonian is

H =
∑

r

∫
dx

{
vF

2
[(∂x�r )2 + (∂xr )2]

+
∑
r ′

Jr,r ′ cos[
√

4π (�r − �r ′ )]

}
, (63)

where �r is 4e charged phase field on chain r .

A. Influence of perturbations on the ordering

The presence of various perturbations can generate addi-
tional couplings between COPs from different cables. For
instance, since the fusion of operator (55) with four conduction
electron operators gives rise to COPs [(36) and (38)], the
deviation from the quantum critical point of the spin model
helps to establish an interchain coupling of the quartic
operators. In the presence of such perturbation, these COPs
couple by the interchain hopping alone. On the other hand, the
perturbations which break the translational invariance of the
spin chain generate operators Tr(h + h+) or iTr[σ (h − h+)]
and hence through (31) generate a coupling between the
conventional CDW and superconducting order parameters.
Here it is again enough to have the interchain hopping to
generate the coupling.

VI. CONCLUSIONS

In this paper, I have shown that the models which combine
conduction and localized electrons provide a platform for
very intricate types of order where the conduction electrons
bind to slow collective modes of the spin subsystem. As a
result, the localized spins and the conduction electrons together
create spin liquids with gapped fractionalized excitations.
The local order parameters (COPs) include bound states of
more than two electrons and are not amenable to analysis
based on perturbative methods. The discussion has rotated
around quasi-one-dimensional models (the ones I dubbed
Kondo-Heisenberg cable arrays) where these fractionalized
excitations remain one-dimensional even when different KH
cables are coupled in D > 1 array.

Composite orders naturally give rise to rich order parameter
manifolds, which include various types of density waves, in-
cluding those of pairs and quartets of electrons. The formation
of the spin liquid is accompanied by a simultaneous formation
of the order parameter amplitudes, but the phase coherence
is established only by three-dimensional interactions in the
cable array. As a consequence, the magnitudes of the transition
temperatures are not related to the spin gaps.

If the electron hopping matrix elements between different
cables exceed the spin gap, pockets of quasiparticle Fermi
surface appear. As it has been pointed out in Ref. [5], KHC
model reproduces many features found in the pseudogap phase
of the cuprates.

It remains to be seen whether the present ideas can be
generalized for isotropic models in D > 1. As we know
from the literature on spin liquids, to propagate in D > 1
dimensions fractional particles need to have companions in
the form of visons. For instance, in the exactly solvable Kitaev
model [34] of spin liquid, the role of visons for propagating
Majorana fermions is played by static Z2 gauge field fluxes.
They facilitate a propagation of the Majorana fermions in all
lattice directions. As far as I can see there are no visons in
the present construction and the fractional particles remain
one-dimensional.
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APPENDIX A: EXACT SOLUTION OF THE WZNW
MODEL PERTURBED BY THE CURRENT-CURRENT

INTERACTION

The exact solution of the WZNW model perturbed by the
current-current interaction can be derived from the relativistic
limit of the fermion model

H =
∫

dx

(
− 1

2m
ψ+

jα∂2
xψjα − μψ+

jαψjα

− Uψ+
jαψ+

jβψiβψiα

)
, (A1)

where j,i = 1, . . . ,n, α,β = 1,2, and U > 0. This model is
exactly solvable by the Bethe ansatz [14]. The relativistic limit
is obtained by the spectrum linearization (3) and (4). The
interaction then becomes

− Uψ+
jαψ+

jβψiβψiα → UFRFL − UJa
RJ a

L, (A2)

where Fa
R,F a

L are SUn(2) and J a
R,J a

L (a = 1, . . . ,n2 − 1) are
SU2(n) currents. The latter interaction is marginally irrelevant
and can be discarded. As a result the only gapped sector is
the one described by the SUn(2) WZNW perturbed by the
current-current interaction.

The solution can be also extracted from the following Bethe
ansatz equations:

[en(ua − vF /JK )]L[en(ua + vH/JK )]L

=
M∏

b=1

e2(ua − ub), Sz = nL/2 − M,

E = 1

2i

∑
a

[vF ln en(ua − vF /JK ) − vH ln en(ua + vH /JK )],

(A3)

where

ej (x) = x − ij/2

x + ij/2
.
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The thermodynamic Bethe ansatz equations in the continuum
limit are [14]

εj (θ ) = T s ∗ ln[1 + eεj−1(θ)/T ][1 + eεj+1(θ)/T ] − δj,nE(θ ),

j = 1,2, . . . , (A4)

F/L = E0 − T

∫
dP (θ )

2π
ln[1 + eεn(θ)/T ], (A5)

s ∗ f (x) =
∫

dy

π cosh(x − y)
f (y), (A6)

where E(θ ) and P (θ ) are given by Eq. (50). Expanding at
T � �, one obtains

F/L = −TQ
∫

dP

2π
e−E(θ)/T , Q = 2 cos

(
π

n + 2

)
, (A7)

with Q being the so-called quantum dimension. This number
indicates that the state of N � 1 particles with energy E is
degenerate and the degeneracy is approximately QN . The fact
that Q is not an integer is an indication of the non-Abelian
nature of the excitations.

APPENDIX B: USEFUL FACTS ABOUT n = 2 KHC MODEL

In classification of fermionic fields of the n = 2 1DEG, I
follow the scheme described in [20]. Namely, one introduce
four bosonic holomorphic fields

ϕc, ϕf , ϕs, ϕsf , (B1)

with their antiholomorphic counterparts ϕ̄a (a = c,f,s,sf ) to
bosonize the fermions:

Rp,σ = λpσ√
2πa0

exp[i
√

π(ϕc + pϕf + σϕs + pσϕsf )],

Lp,σ = λpσ√
2πa0

exp[−i
√

π (ϕ̄c + pϕ̄f + σ ϕ̄s + pσ ϕ̄sf )],

(B2)

where λpσ are anticommuting Klein factors. Then right-
moving the Majorana fermions are

η1 = ξc√
2πa0

cos(
√

4πϕc), η2 = ξc√
2πa0

sin(
√

4πϕc),

η3 = ξf√
2πa0

cos(
√

4πϕf ), η4 = ξf√
2πa0

sin(
√

4πϕf ),

η5 = ξsf√
2πa0

cos(
√

4πϕsf ), (B3)

where ξa are anticommuting Klein factors and

χ1 = ξs√
2πa0

cos(
√

4πϕs), χ2 = ξs√
2πa0

sin(
√

4πϕs),

χ3 = ξsf√
2πa0

sin(
√

4πϕsf ). (B4)

It is assumed that the bosonic fields are governed by the
Gaussian action.

The Ising order and disorder parameters are related to  =
ϕ + ϕ̄, � = ϕ − ϕ̄ fields. If one takes two copies of the critical
Ising model, I have [35]

σ1σ2 = 1

(πa0)1/4
sin(

√
π), μ1μ2 = 1

(πa0)1/4
cos(

√
π),

σ1μ2 = 1

(πa0)1/4
sin(

√
π�), μ1σ2 = 1

(πa0)1/4
cos(

√
π�).

(B5)

The most convenient and economic way to establish a
correspondence between different representations of the two-
leg problem is to use the SUs

2(2) × SUf

2 (2) basis and employ
the non-Abelian bosonization. One SU(2) group represents
rotations generated by currents of total spin and the other by
chain currents. Transition from chain to band representation
can be viewed as a rotation basis in SUf (2) space. To make
sure this approach is sound, I will make a crosscheck with the
Abelian bosonization.

There is one subtlety discussed in Ref. [13]. Namely,
the group we are dealing with is not really SU(2), but its
complexification SU(2,C).

Below, there are examples of OPs which are spin singlets.
Being fused with the spin matrix h, they will leave

e±i
√

πG, e±i
√

π�G (B6)

as the fluctuating COPs. All this can be expressed as products
of five Ising fields, which constitutes the 16-dimensional
spinor representation of the SO(5) group. An important
qualitative difference with the single chain case is that the
COPs include pairs with momentum �= π .

Using the standard bosonization rules I derived the follow-
ing formulas. The s-wave CDW order parameter. In the chain
representation, we have

R+
1σL1σ + R+

2σL2σ

= 2iei√πc [ei√πf cos
√

π (s + sf )

+ e−i√πf cos
√

π (s − sf )]

= 4iei√πc (cos
√

πf cos
√

πs cos
√

πsf

+ i sin
√

πf sin
√

πs sin
√

πsf )

= −4ei√πc (M1M2M3μ1μ2μ3 + i�1�2�3σ1σ2σ3)

= − 1
4 ei√πc [Tr(G + G+)Tr(g + g+)

− iTr(G − G+)Tr(g − g+)]. (B7)

Here, M,μ are disorder and �,σ order parameter fields of the
Ising models describing the flavor and spin sectors, G and g are
matrices from the flavor and spin sectors, respectively. In the
band representation, the expression in terms of fermions looks
the same with chain indices 1,2 being replaced by band indices
a,b. Naturally, the expression in terms of matrices looks the
same, as it should be.
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Now let us consider a more general CDW OP:

Oa
CDW = R+

jσ τ a
jkLkσ . (B8)

The simplest member of this family is

O3 = 2iei√πc [ei√πf cos
√

π (s + sf )

− e−i√πf cos
√

π (s − sf )]

= 4ei√πc (− sin
√

πf cos
√

πs cos
√

πsf

− i cos
√

πf sin
√

πs sin
√

πsf )

= −4ei√πc (�1�2M3μ1μ2μ3 + iM1M2�3σ1σ2σ3)

= 1

4
ei√πc{Tr(g − g+)Tr[τ 3(G − G+)]

+ iTr(g + g+)Tr[τ 3(G + G+)]}. (B9)

The superconducting SCd (λ2↑λ1↓ = λ1↑λ2↓ = i):

�d = R1↑L2↓ + R2↑L1↓ − (↑→↓)

= λ1↑λ2↓[ei
√

4π (ϕ1↑−ϕ̄2↓) + ei
√

4π (ϕ2↑−ϕ̄1↓)]

+ λ2↑λ1↓[ei
√

4π (ϕ1↓−ϕ̄2↑) + ei
√

4π (ϕ2↓−ϕ̄1↑)]

= 2ei√π�c [ei√πf cos
√

π (s + �sf )

+ e−i√πf cos
√

π (s − �sf )]

= 4ei√π�c (M1M2�3μ1μ2μ3 + i�1�2M3σ1σ2σ3)

× 1

4
ei√π�c{Tr(g + g+)Tr[τ 3(G − G+)]

+ iTr(g − g+)Tr[τ 3(G + G+)]}. (B10)

APPENDIX C: THE DETAILED DESCRIPTION OF THE
COMPOSITE OPs

In this appendix, I discuss the formation of the simplest
COP (31) for the case n = 2. As the first step of the proof, I
recast the products of the OPs of the 1DEGs and the TBC in
terms of the operators of the GN models (24) and (25). More
precisely, we have to express the order and disorder parameters
of the band fermions and the TBC antiferromagnet (they carry
labels F and H , respectively) in terms of the corresponding
operators of models (24) and (25) labeled R and L. I will
use the Abelian bosonization formulas (B5). Consider, for
instance, the product

(σ1σ2)F (σ1σ2)H ∼ 2 sin(
√

πF ) sin(
√

πH )

= cos[
√

π (ϕF + ϕ̄F − ϕH − ϕ̄H )]

− cos[
√

π (ϕF + ϕ̄F + ϕH + ϕ̄H )]

= cos[
√

π (�L − �R)] − cos[
√

π (L + R)]

= (μ1σ2)L(μ1σ2)R − (σ1μ2)L(σ1μ2)R − (μ1μ2)L(μ1μ2)R

− (σ1σ2)L(σ1σ2)R. (C1)

Hence it is plausible that the product of F and H OPs contains
products

(μ1μ2μ3)L(μ1μ2μ3)R, (σ1σ2σ3)L(σ1σ2σ3)R. (C2)

Such products have nonzero expectation values at least in some
of the degenerate vacua of (14) and (15). These expectation
values may have a different sign in different vacua, but this
does not affect the correlation functions of the COPs, since the
two-point functions contains only squares of the amplitudes:

〈0j |(σ1σ2σ3)L(1)(σ1σ2σ3)L(2)|0j 〉 = [〈0j |(σ1σ2σ3)L(0)|0j 〉]2.

(C3)

[1] O. Zachar and A. M. Tsvelik, Phys. Rev. B 64, 033103 (2001).
[2] E. Berg, E. Fradkin, E. A. Kim, S. A. Kivelson, V. Oganesyan,

J. M. Tranquada, and S. C. Zhang, Phys. Rev. Lett. 99, 127003
(2007).

[3] Q. Li, M. Hucker, G. D. Gu, A. M. Tsvelik, and J. M. Tranquada,
Phys. Rev. Lett. 99, 067001 (2007).

[4] J. M. Tranquada, G. D. Gu, M. Huecker, Q. Jie, H. J. Kang,
R. Klingeler, Q. LI, N. Tristan, J. S. Wen, G. Y. Xu, Z. J. Xu,
J. Zhou, and M. van Zimmermann, Phys. Rev. B 78, 174529
(2008).

[5] A. M. Tsvelik, Phys. Rev. B 94, 165114 (2016).
[6] P.-H. Huang, J.-H. Chen, P. R. S. Gomes, T. Neupert, C. Chamon,

and C. Mudry, Phys. Rev. B 93, 205123 (2016).
[7] L. A. Takhtajan, Phys. Lett. A 87, 479 (1982).
[8] H. M. Babujian, Phys. Lett. A 90, 479 (1982).
[9] I. Affleck and F. D. M. Haldane, Phys. Rev. B 36, 5291 (1987).

[10] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A 22,
511 (1989).

[11] V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. 247, 83
(1984).

[12] P. Di Francesco, P. Mathieu, and D. Sénéshal, Conformal Field
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[28] A. Hegedüs, F. Ravanini, and J. Suzuki, Nucl. Phys. B 763, 330

(2007).
[29] G. Mussardo, J. Stat. Mech. (2015) P12003.
[30] Z. Bajnok, C. Dunning, L. Palla, G. Takacs, and F. Wagner,

Nucl. Phys. B 679, 521 (2003).

[31] A. M. Tsvelik, Phys. Rev. B 42, 10499 (1990).
[32] D. G. Shelton, A. A. Nersesyan, and A. M. Tsvelik, Phys. Rev.

B 53, 8521 (1996).
[33] A. Blandin and P. Nozieres, J. Physique (Paris) 41, 193

(1980).
[34] A. Kitaev, Ann. Phys. 321, 2 (2006).
[35] J. B. Zuber and C. Itzykson, Phys. Rev. D 15, 2875

(1977).

205141-12

https://doi.org/10.1103/PhysRevD.65.025001
https://doi.org/10.1103/PhysRevD.65.025001
https://doi.org/10.1103/PhysRevD.65.025001
https://doi.org/10.1103/PhysRevD.65.025001
https://doi.org/10.1016/j.nuclphysb.2006.11.006
https://doi.org/10.1016/j.nuclphysb.2006.11.006
https://doi.org/10.1016/j.nuclphysb.2006.11.006
https://doi.org/10.1016/j.nuclphysb.2006.11.006
https://doi.org/10.1088/1742-5468/2015/12/P12003
https://doi.org/10.1088/1742-5468/2015/12/P12003
https://doi.org/10.1088/1742-5468/2015/12/P12003
https://doi.org/10.1016/j.nuclphysb.2003.11.036
https://doi.org/10.1016/j.nuclphysb.2003.11.036
https://doi.org/10.1016/j.nuclphysb.2003.11.036
https://doi.org/10.1016/j.nuclphysb.2003.11.036
https://doi.org/10.1103/PhysRevB.42.10499
https://doi.org/10.1103/PhysRevB.42.10499
https://doi.org/10.1103/PhysRevB.42.10499
https://doi.org/10.1103/PhysRevB.42.10499
https://doi.org/10.1103/PhysRevB.53.8521
https://doi.org/10.1103/PhysRevB.53.8521
https://doi.org/10.1103/PhysRevB.53.8521
https://doi.org/10.1103/PhysRevB.53.8521
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevD.15.2875
https://doi.org/10.1103/PhysRevD.15.2875
https://doi.org/10.1103/PhysRevD.15.2875
https://doi.org/10.1103/PhysRevD.15.2875



