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The local density approximation (LDA) constructed through quantum Monte Carlo calculations of the
homogeneous electron gas (HEG) is the most common approximation to the exchange-correlation functional in
density functional theory. We introduce an alternative set of LDAs constructed from slablike systems of one, two,
and three electrons that resemble the HEG within a finite region, and illustrate the concept in one dimension.
Comparing with the exact densities and Kohn-Sham potentials for various test systems, we find that the LDAs
give a good account of the self-interaction correction, but are less reliable when correlation is stronger or currents
flow.
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I. INTRODUCTION

Density functional theory [1] (DFT) is the most widely
used method to perform ground-state electronic structure
calculations of many-electron systems in condensed matter
physics and many areas of materials science. In the Kohn-
Sham (KS) approach [2] to DFT the real many-electron
system, which is governed by the often unsolvable many-body
Schrödinger equation, is replaced by a fictitious system of
noninteracting electrons with the same density. The absence
of interaction allows the system to be described by several
single-particle Schrödinger equations (KS equations) in which
the electrons are moving in an effective local potential VKS.
While in principle an exact theory, in practice the accuracy
of DFT depends on its ability to approximate the unknown
exchange-correlation (xc) part of the KS functional [2].

The local density approximation [2] (LDA) is the most
common approximation to the xc potential Vxc. The LDA
is traditionally based on knowledge of the energy of the
infinite three-dimensional (3D) homogeneous electron gas
[3] (HEG), in which the electrons are commonly viewed as
delocalized. Although local approximations have had major
success in many cases [4,5], they fail in other situations. A
notable failing is the inability to correctly cancel the spurious
electron self-interaction [6–8], an error introduced by the
Hartree potential. Also, the xc potential far from a finite
system decays exponentially in an LDA [6,9], rather than
following the Coulomb-like −1/r decay present in the exact
Vxc [9,10]. These failings lead to errors in the KS orbitals [11].
Many time-dependent DFT (TDDFT) [12,13] calculations are
performed by applying the LDA adiabatically (ALDA), which
further ignores the dependence of Vxc on a system’s history
and initial state, focusing instead on the instantaneous electron
density. Local approximations are known to break down in a
number of cases [14–24], in particular where there is strong
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correlation in ground-state systems and/or strong current flow
when extended to time-dependent systems.

In this paper we introduce a set of LDAs constructed from
systems of one, two, and three electrons. In contrast to a
conventional LDA which is constructed through accurate (but
not exact) quantum Monte Carlo (QMC) simulations of the
HEG approaching the thermodynamic limit [3], our approach
is to obtain a set of LDAs constructed from exact finite systems
resembling the HEG. We refer to these finite systems as “slabs”
to emphasize that the electron density is dominated by a region
of homogeneity, but decays exponentially to zero near the
edges. We compare these LDAs with one another and with
conventional HEG-based LDAs. We illustrate our approach
in one dimension (1D), complementing other 1D LDAs that
have been constructed through QMC calculations, either with
a softened Coulomb interaction [25] or a specified transverse
confining potential [26,27], or through other approaches
[28,29].

We employ our iDEA code [30] which determines the
exact, fully correlated, many-body wave function for a finite
system of electrons interacting via the appropriately softened
Coulomb repulsion [31] (|x − x ′| + 1)−1. We then find the cor-
responding exact KS system through our reverse-engineering
algorithm [30]. The electrons are treated as spinless to more
closely approach the nature of exchange and correlation in
many-electron systems [32]. We then apply the LDAs to a va-
riety of ground-state systems and find that they yield accurate
densities for systems dominated by either the exchange energy
or by the self-interaction correction. We demonstrate that the
LDAs break down as correlation becomes strong, including
when applied adiabatically to a time-dependent system.

II. CONSTRUCTING THE LDAs

A. The finite model homogeneous systems

We choose a set of finite locally homogeneous systems
in order to replicate the HEG from which traditional LDAs
are usually constructed. To generate these slab systems we
use our optimization code which finds the correct external
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FIG. 1. (a) The exact many-body electron density (solid lines) for
a selection of the two-electron slab systems. The density is of the form
n(x) = n0 exp[−10−11(mx)12], to generate a uniform plateau region
that decays exponentially at the edges. (b) The optimized external
potential (dashed green line) for a typical two-electron slab system
[middle density in (a), n0 ≈ 0.33].

potential Vext for a target system with a desired electron density
nT(x). After making an initial guess for the system, the exact
many-body wave function is calculated and Vext is refined
iteratively, following the method used for the KS potential in
Ref. [30].

The slab systems are chosen such that the majority of the
density is approximately uniform over a plateau region of
value n0 with the edges of the system decaying rapidly to zero
[Fig. 1(a)]. We therefore choose a target density of the form
nT(x) = n0 exp[−10−11(mx)12], where m is a scaling factor
chosen so that the density integrates to the appropriate number
of electrons (2 or 3). The external potential required to obtain
the desired density profile has a nontrivial spatial dependence
[Fig. 1(b)]. Sets are created from both two- and three-electron
slab systems and the densities cover a typical range (up to
0.6 a.u. [33]) that will be encountered when the LDAs are
applied to test systems.

B. Generating the LDAs

Having characterized the many-electron slab systems we
then find the corresponding KS systems through our reverse-
engineering code. By calculating the exact xc energy Exc for
each slab system we obtain a set of data points for the exact
xc energy per electron εxc = Exc/N in terms of the electron
density of the plateau regions, i.e., at this stage neglecting the
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FIG. 2. The exact εxc (red crosses) for the 2e slab systems with
the assigned values for the electron density being that of the plateau
region n0. The fit applied (solid green line) is of the form εxc =
(A + Bn + Cn2)nD , where A,B,C, and D are constants. This initial
LDA is subsequently refined by applying it to the slabs themselves
(see text).

inhomogeneous regions of the slab systems. We then apply a fit
to determine a functional form of εxc(n) for the two-electron
(2e) (shown in Fig. 2) and three-electron (3e) slab systems
[34]. These initial LDAs are refined below.

To approximate the xc energy of an inhomogeneous system
the LDA focuses on the local electron density at each point in
the system:

ELDA
xc [n] =

∫
n(x)εxc(n)dx, (1)

where εxc(n) is the xc energy per electron of a HEG of density
n in a traditional LDA. This approximation becomes exact in
the limit of the HEG, i.e., the systems from which an LDA is
constructed. In the same spirit, we require our LDAs that have
been constructed from finite slab systems to yield the exact xc
energies when applied to those same slab systems.

We apply the initial LDAs to the 2e and 3e slab systems.
Small errors in the xc energy �Exc are found due to the
inhomogeneous regions of the slab systems being ignored
when the LDAs were originally constructed. We use the
calculated errors to determine refined forms for εxc in the
LDAs [35], εxc(n) → εxc(n) − �Exc(n)/N :

2e : εxc(n) = (−0.74 + 0.68n − 0.38n2)n0.604, (2)

3e : εxc(n) = (−0.77 + 0.79n − 0.48n2)n0.61. (3)

These refined forms for εxc reduce �Exc from 2%–3% to

below 0.5% when applied to the slab systems. This refinement
process is thus determined to be sufficient.

When the LDAs are applied to inhomogeneous systems it
is the xc potential that is the crucial quantity used to determine
the electron density. Vxc is the functional derivative of the xc
energy which in the LDA becomes

V LDA
xc (x) = δELDA

xc [n]

δn(x)
= εxc(n(x)) + n(x)

dεxc

dn

∣∣∣∣
n(x)

. (4)
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The following expressions are therefore obtained from
Eqs. (2) and (3), respectively:

2e : Vxc(n) = (−1.19 + 1.77n − 1.37n2)n0.604, (5)

3e : Vxc(n) = (−1.24 + 2.1n − 1.7n2)n0.61. (6)

C. An LDA from one-electron slabs

So far we have constructed LDAs from systems of two
and three interacting electrons. Owing to the absence of the
Coulomb interaction it is simple to construct one-electron (1e)
slab systems. In a 1e system the Hartree energy is entirely
self-interaction and so the xc energy is entirely self-interaction
correction:

εxc = Exc = −EH = −1

2

∫∫
n(x)n(x ′)

|x − x ′| + 1
dxdx ′, (7)

where the electron density is of the same form as the 2e and
3e slab systems, n(x) = n0 exp[−10−11(mx)12].

A selection of slab systems is chosen and εxc is calculated
to build up a set of data points. An initial fit is found [36] and
the same refinement process used in the 2e and 3e slab systems
is applied. From this an expression for εxc and Vxc follows:

1e : εxc(n) = (−0.803 + 0.82n − 0.47n2)n0.638, (8)

1e : Vxc(n) = (−1.315 + 2.16n − 1.71n2)n0.638. (9)

D. Comparison of 1e, 2e, and 3e LDAs

We now compare the 1e, 2e, and 3e LDAs that have been
developed. The strong similarity between the three LDAs
can be seen in the refined curves for εxc [Fig. 3(a)]. This is
remarkable due to physical correlation being absent in one-
electron systems and εxc consisting entirely of self-interaction
correction. While the three curves effectively overlap at low
densities, they deviate slightly at higher densities [inset of
Fig. 3(a)] with these deviations being numerically significant.
There is a clear progression from 1e to 2e to 3e.

This is also seen in the refined curves for Vxc [Fig. 3(b)].
The 1e and 2e overlap at high densities with the 3e curve
deviating slightly.

E. The one-dimensional homogeneous electron gas

Various parametrizations [6,37,38] of QMC calculations
show that in the case of a 3D HEG, the exchange energy per
electron εx is dominant over the correlation energy per electron
εc, particularly for higher densities. We solve the Hartree-
Fock (HF) equations to determine the exact εx for a 1D HEG
consisting of an infinite number of electrons interacting via
the softened Coulomb repulsion u(x − x ′):

εx = − 1

8π2n

∫ πn

−πn

dk

∫ πn

−πn

dk′u(k′ − k), (10)

where the Fourier transform of u(x − x ′) is integrated over the
plane defined by the Fermi wave vector kF = πn, for a HEG
of density n.

Using Eq. (10) we calculate εx for a set of HEGs covering
the range of densities used in the LDAs. We then apply a fit

-0.3

-0.2

-0.1

0

ε x
c

(a
.u

.)

1e LDA
2e LDA
3e LDA

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6

V
xc

(a
.u

.)
n (a.u.)

1e LDA
2e LDA
3e LDA

-0.35

-0.34

-0.33

-0.32

0.5 0.55 0.6

(a)

(b)

FIG. 3. (a) The refined curves for εxc in the 1e (dashed red line
in both plots), 2e (solid green line in both plots), and 3e (dotted blue
line in both plots) LDAs. Inset: Close-up of the three curves at higher
densities. The slight deviations at higher densities are numerically
significant. There is a clear progression from 1e to 2e to 3e. (b) The
refined curves for Vxc in the 1e, 2e, and 3e LDAs. The closeness of
the three curves, in each case, is striking.

to determine a functional form of εx for the 1D HEG. From
this we find that the εx curve in the 1D HEG is surprisingly
close to the εxc curves in the 1e, 2e, and 3e LDAs (Fig. 4).
This suggests that εx is the dominant term in εxc in the case of
a 1D HEG, even more so than in the 3D case.

In Ref. [25], QMC calculations of a 1D HEG of electrons
interacting through a slightly different softened Coulomb
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FIG. 4. The exact exchange energy εx (dotted-dashed dark-gray
line) of a 1D HEG of density n. The εxc curves in the 1e (dashed
red line), 2e (solid green line), and 3e (dotted blue line) LDAs are
repeated from Fig. 3 for comparison. Inset: Close-up of the four curves
at higher densities. All four curves are remarkably similar, indicating
the importance of exchange in 1D, and showing the similarity of the
different LDA approaches in 1D systems.
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FIG. 5. The εxc curve (dashed red line) for the LDA that has been
developed from 3D 1e finite systems (which are fully spin-polarized),
along with the fully spin-polarized (ζ = 1) (solid green line) and fully
spin-unpolarized (ζ = 0) (dotted blue line) traditional LSDA [6]. We
find the 1e LDA and LSDA (ζ = 1) to be remarkably similar.

interaction are used to determine a functional form for εc.
We evaluate εx using the method of Eq. (10) for this HEG, and
find εc to be of the order of a few percent of εxc, except in the
low-density limit. Assuming this result to be applicable to our
own (very similar) 1D HEG, we conclude that the εxc curve
constructed from a HEG for our softened interaction would be
close to the three εxc curves for our LDAs constructed from
finite systems (Fig. 4). That is, in 1D, an LDA constructed
from small finite systems is very similar to one constructed
from the infinite HEG.

F. Extension to higher dimensions

In Ref. [39], an LDA is developed that satisfies exact con-
straints derived from 3D finite systems, with the intention of it
being more applicable to finite systems than the conventional
LDA. We find the concept of constructing LDAs from 3D finite
systems in their own right to be feasible. For this feasibility
study we have restricted our consideration to one-electron 3D
systems. By generating a set of 3D one-electron systems with
a slablike radial density profile (analogous to the 1D slab
systems), we develop an LDA that exhibits a form for εxc that is
qualitatively similar to that of traditional local approximations
constructed through QMC calculations.

Specifically, we compare our 3D 1e LDA with the local spin
density approximation (LSDA) as parametrized by Perdew and
Zunger [6] (Fig. 5). We find that the 1e LDA is remarkably
close to the fully spin-polarized (ζ = 1) LSDA. We believe this
is a fairer comparison than the fully spin-unpolarized (ζ = 0)
LSDA, as our 3D finite systems contain one spin-half electron;
i.e., they are fully spin-polarized [40].

We compare the 1e LDA with the LSDA by applying them
self-consistently to ground-state hydrogen and helium atoms
to approximate the total energies, given in Table I. We apply
the (ζ = 0) and (ζ = 1) LSDA to both atoms (feigning the
densities to be fully spin-unpolarized and fully spin-polarized,
respectively, for comparison purposes). We find that our simple
1e LDA is able to approximate the energy in both cases,
performing better than the LSDA in the case of the hydrogen

TABLE I. The exact total energies of atoms in their ground state,
along with the energies obtained by applying the 1e LDA and the
conventional LSDA self-consistently. All energies are in a.u.

Atom Eexact E1e LDA ELSDA(ζ=0) ELSDA(ζ=1)

H −0.500 −0.482 −0.446 −0.479
He −2.90 −3.06 −2.83 −3.01

atom (fully spin-polarized system), and slightly worse in the
helium atom (fully spin-unpolarized system).

G. Physics of the slab systems

To determine what fraction of εxc for the (many-electron)
slab systems is due to εx and what fraction is due to εc, we apply
the HF method self-consistently to the 2e and 3e slab systems
(as defined by the external potentials). We find the HF method
reproduces accurate densities for high-density slab systems
but breaks down for low-density slab systems. This suggests
that correlation (which the HF method neglects) increases as
we progress to lower densities, which is consistent with QMC
calculations of the 3D HEG and other systems [41].

In both the 2e and 3e slab systems, we calculate εx to
be the dominant component in εxc, with εc increasing as
we move to lower density slab systems. However, we see
that the correlation energy remains small (< a few %) in all
the slab systems, a feature which is common to all our 1D
test systems. The breakdown of the HF method suggests the
slab systems are extremely sensitive to this small amount of
electron correlation. In this sense, the low-density slabs are in
fact systems of relatively strong correlation.

Traditional LDAs become exact in the limit of the HEG, i.e.,
when applied to the systems from which they were constructed.
Our finite LDAs are, by definition, exact for the total energy
when applied non-self-consistently to the slab systems, but it
is of interest to examine the self-consistent application of our
LDAs to the slabs.

We find that in high-density slab systems the electron
density is well matched due to the external potential being
the dominant component in VKS. This becomes less so as we
move to lower densities in which the “base” of the external
potential becomes wider [see Fig. 1(b) for a 2e slab case].
Consequently, erroneous dips and bumps form in the plateau
regions of the LDA electron density.

To examine the errors in the density we analyze Vxc. As
well as missing out the long-range Vxc fields that are present in
the exact system, we find the LDAs break down in the critical
central region where the vast majority of the electron density
is. We can attribute this to the exact Vxc being highly nonlocal
in these systems whereas the LDAs only depend on the local
density.

The self-consistent energies of our slab systems are accurate
with errors below 1%, despite the self-consistent density
being far from exact. Hence, as shown in Ref. [42], errors
in the density can be canceled by errors inherent in the
approximate energy functional. However, the derivative of the
energy functional is less forgiving of these errors, leading to
an inaccurate xc potential and density.
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FIG. 6. The exact many-body electron density (dashed black line)
and ELF (dotted blue line) for a low-density two-electron slab system
(n0 ≈ 0.16). Also plotted are the exact many-body electron density
(solid red line) and ELF (dotted-dashed green line) for a high-density
two-electron slab system (n0 ≈ 0.51). In both systems, we find that
the electrons are extremely localized towards the edges but as we
approach the interface between the electrons strong delocalization
occurs. In the high-density slab system, this dip in localization is
deeper and occupies a greater proportion of the overall system.

Electron localization [43,44] is the tendency of an electron
in a many-body system to exclude other electrons from its
vicinity. The electron localization function (ELF) [43,45,46]
provides a useful indicator of localization: ELF = 1 is complete
localization; i.e., the chance of finding one electron in the
vicinity of another is zero. ELF ranges from 0 to 1, and a
HEG has ELF = 0.5. For comparison we apply the exact
ELF developed by Dobson [45] (using our knowledge of the
many-body wave function) to the 2e slab systems. We find that
the electrons are extremely localized towards the edges of the
systems but as we approach the interface between the electrons
strong delocalization occurs (Fig. 6). The plot shows that as
we move to a high-density slab system, this dip in localization
increases in depth and occupies a greater proportion of the
overall system. (This is also observed in the 3e slab systems;
however there is an extra localization peak and dip due to the
third electron.)

Our results show two major differences in electron local-
ization between the slab systems and the HEG. First, the ELF
is constant across a HEG and is independent of the density.
It varies between (many-electron) slab systems of different
densities and is position-dependent. Second, the slab systems
have regions of very high localization. In the HEG, the ELF is
defined to be 0.5 in this case, but our results (e.g., Fig. 4)
indicate that the physical nature of the correlation (in the
broad sense) in a HEG is, in fact, much more akin to that in
relatively strongly localized systems—such as our finite slab
systems—than is often supposed. That is, in a HEG, at densities
much greater than those required to obtain strict localization
through Wigner crystallization, a degree of localization exists
which might be termed incipient Wigner crystallization.

III. APPLICATION TO EXCHANGE-DOMINATED
SYSTEMS

In the previous section we observed the dominance of
the exchange energy in the slab systems. In this section we
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FIG. 7. A triple well containing two electrons. (a) A comparison
of the exact many-body electron density (solid red line), the density
obtained from applying the 2e LDA (dotted-dashed blue line), and
the density obtained when we use the noninteracting approximation
(dotted black line, shifted down by 0.5 to more easily distinguish
between the different densities), along with the external potential
(dashed green line). The LDA approximates the density remarkably
well, while the noninteracting approximation incorrectly predicts
both electrons occupying the central well. Inset: Close-up of the
exact density and the 2e LDA density at the interface between the
left-hand side well and the central well. (b) The exact Vxc (solid purple
line), along with the Vxc obtained from applying the 2e LDA (dashed
light-blue line). The LDA replicates the self-interaction correction
remarkably well, seen in the large dips in Vxc. However, it misses out
nonlocal features present in the exact Vxc. (c) Detail of the peak of the
exact many-body electron density (solid red line) in the central well
along with the densities obtained by applying the 1e (short-dashed
dark-green line), 2e (dotted-dashed blue line), and 3e (dotted purple
line) LDAs. All three LDAs accurately describe the self-interaction
correction.

investigate the capacity of our LDAs to describe systems
dominated either by the exchange energy or by the self-
interaction correction.
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TABLE II. The total energies and xc energies calculated self-consistently using the LDAs and their associated errors for the two-electron
triple well. All three LDAs perform very well in both cases.

LDA ELDA (a.u.) �E (a.u.) % Error ELDA
xc (a.u.) �Exc (a.u.) % Error

1e −0.698 −0.008 −1 −0.474 −0.007 −1
2e −0.697 −0.007 −1 −0.472 −0.005 −1
3e −0.698 −0.008 −1 −0.472 −0.005 −1

A. Two-electron triple well

We begin the testing of the LDAs by studying a ground-state
system where the electrons are highly localized: two electrons
subject to an external potential consisting of a deep, central
well and two identical, shallow, side wells [47] (two-electron
triple well). The exact many-body electron density, which
we calculate using iDEA, is compared to the density that
is obtained when we apply the 2e LDA self-consistently
and the density obtained when we use the noninteracting
approximation [Fig. 7(a)]. The LDA does a remarkable job
of matching the exact electron density. The Hartree potential
acts to drive the electrons apart, with the xc potential then
making the density accurate. However, the noninteracting
approximation wrongly predicts both electrons occupying the
central well, due to the first two single-particle energy states
being lower than the potential barrier between the central well
and the side wells. The HF method performs very well in this
system due to strong exchange.

To understand these results we analyze the xc potential.
The large dips in the exact Vxc [48] [Fig. 7(b)] corresponding
to the peaks in the electron density are primarily due to the
self-interaction correction, i.e., occurring in regions of high
electron localization. The LDA does quite an extraordinary job
of replicating this which explains the success in approximating
the electron density. This is a particularly striking feature
as traditional LDAs do not perform well in highly localized
systems, as they are unable to accurately describe the self-
interaction correction. The discrepancy in Vxc in the low-
density regions, at the interfaces of the wells in Vext, is due
to the LDA being dependent on the local density and hence
not accounting for nonlocal effects. These nonlocal features in
the exact Vxc lead to, among other things, lower peaks in the
density in the side wells [inset of Fig. 7(a)]. As expected, the
LDA incorrectly predicts Vxc decaying exponentially rather
than following a Coulomb-like −1/x decay.

We now look at how well each of the LDAs describe the self-
interaction correction in this system. To do this we compare
the electron density as predicted by each LDA to the exact
many-body electron density in the highly localized central
well [Fig. 7(c)]. The 2e LDA is the most accurate, closely
followed by the 1e LDA and then the 3e LDA. However, in

general, we find that the N -electron LDA (N = 1,2, or 3) does
not necessarily perform best when applied to an N -electron
system. In the majority of systems we study, the 1e LDA most
accurately describes the self-interaction correction, followed
by the 2e LDA and then the 3e LDA.

The final quantities we use to compare the merits of the
LDAs are the approximations to E and Exc, due to the
fundamental importance of energy calculations in DFT. To
do this we first calculate the exact E for the two-electron
triple-well system through iDEA and from this we calculate the
exact Exc. We obtain E = −0.690 a.u. and Exc = −0.467 a.u.

For each LDA we take the self-consistently calculated
electron density to determine the self-consistently calculated
energies. The set of self-consistently calculated E, ELDA,
along with the error relative to the exact E, �E, and the
corresponding percentage error, % error, are given in Table II.
Also given are the set of self-consistently calculated Exc, ELDA

xc ,
along with the error relative to the exact Exc, �Exc, and the
corresponding percentage error, % error. The results show that
all three LDAs do an impressive job of approximating E and
Exc.

B. One-electron harmonic well

We now study a ground-state system in which exchange
and correlation consist exclusively of the self-interaction cor-
rection: one electron subject to a harmonic external potential
(one-electron harmonic well). The electron behaves as a
quantum harmonic oscillator with the density forming a single
peak in the center of the well. This exact electron density is
compared to the density that is obtained when we apply the
1e LDA self-consistently and the density obtained when we
set Vxc = 0, i.e., Hartree theory (HT) [49] [Fig. 8(a)]. Much
like in the two-electron triple well, the LDA gives a result
which closely matches the exact electron density. It captures
the central peak in the density and correctly predicts its rate
of decay towards the edges of the system. It is worth noting
that all three LDAs give very similar results with the 1e LDA
performing the best by a small margin. We choose to only
illustrate the 1e LDA here. HT gives a poor performance which
misses out both of these features. Both the HF method and

TABLE III. The total energies and xc energies calculated self-consistently using the LDAs and their associated errors for the one-electron
harmonic well. While the % Errors in the total energy and the xc energy are larger than in the two-electron triple well, the relative errors are of
the same order. Again, all three LDAs give similar results.

LDA ELDA (a.u.) �E (a.u.) % Error ELDA
xc (a.u.) �Exc (a.u.) % Error

1e 0.138 0.011 9 −0.225 0.012 5
2e 0.139 0.012 9 −0.223 0.014 6
3e 0.137 0.010 8 −0.224 0.013 5
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FIG. 8. A harmonic well containing one electron. (a) A com-
parison of the exact many-body electron density (solid red line),
the density obtained from applying the 1e LDA (dotted-dashed blue
line), and the density obtained when we use HT (dotted black line),
along with the external potential (dashed green line). Again, the LDA
approximates the density remarkably well. It captures the central
peak in the density and correctly predicts its rate of decay towards the
edges of the system. This is a significant improvement on HT. (b) The
exact Vxc (solid purple line) for the one-electron harmonic well, along
with the Vxc obtained from applying the 1e LDA (dashed light-blue
line). Vxc in this system is entirely self-interaction correction and the
LDA performs well, much like it did in the two-electron triple well in
which Vxc was mostly self-interaction correction. The LDA accurately
describes the dip in Vxc in the center of the system; however, there is an
error relative to the exact Vxc. Again, the LDA incorrectly predicts Vxc

decaying exponentially rather than following a Coulomb-like −1/x

decay.

the noninteracting approximation are exact in a one-electron
system.

In a one-electron system the exact Vxc is just the negative of
the Hartree potential VH. Much like the LDAs’ remarkable
success in the two-electron triple well, in which Vxc is
mostly self-interaction correction, it also performs well at
approximating Vxc in this system [Fig. 8(b)]. The LDA
accurately describes the dip in Vxc in the center of the system;
however, there is an error relative to the exact Vxc. Again, the
LDA incorrectly predicts Vxc decaying exponentially rather
than following a Coulomb-like −1/x decay. (We have tested
the LDA in a variety of harmonic wells as we vary the angular
frequency ω and we obtain similar results.)

As for the two-electron triple well, we perform energy
calculations to obtain E = 0.127 a.u. and Exc = −0.237 a.u.
We calculate ELDA for each LDA along with �E and the
% error. This is displayed in Table III. Also given is the cal-
culated ELDA

xc for each LDA along with �Exc and the % error.
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FIG. 9. Two-electron harmonic wells with weak and stronger
correlation. (a) A comparison of the exact many-body electron density
(solid red line), the density obtained from applying the 2e LDA
(dotted-dashed blue line), and the density obtained when we use
the noninteracting approximation (dotted black line), along with
the external potential (dashed green line) for the strongly confined
harmonic well. The LDA performs very well in this exchange-
dominated system. (b) A comparison of the exact many-body electron
density (solid red line), the density obtained from applying the 2e

LDA (dotted-dashed blue line), the density obtained when we use
the noninteracting approximation (dotted black line), and the density
obtained when we use the HF method (short-dashed dark-gray line),
along with the external potential (dashed green line) for the weakly
confined harmonic well. The LDA completely breaks down in this
strongly correlated system. (c) The exact Vxc (solid purple line) for
the weakly confined harmonic well along with the Vxc obtained from
applying the 2e LDA (dashed light-blue line). The LDA incorrectly
predicts a central dip in Vxc. This, along with the LDA vastly
underestimating the two other dips in Vxc, leads to the three peaks
that are seen in the electron density.

While the % errors are noticeably larger in this system than
in the two-electron triple well (see Table II), it is the relative
errors �E that are important. (Adding a constant to Vext will
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TABLE IV. The total energies and xc energies calculated self-consistently using the LDAs and their associated errors for the weakly
confined harmonic well. The LDAs give good approximations to E despite poor electron densities, which we attribute to a cancellation of
errors. They perform much worse at approximating Exc.

LDA ELDA (a.u.) �E (a.u.) % Error ELDA
xc (a.u.) �Exc (a.u.) % Error

1e 0.072 0.004 6 − 0.182 0.033 15
2e 0.066 −0.002 −3 −0.186 0.029 13
3e 0.063 −0.005 −7 −0.191 0.024 11

change the % errors but not �E.) These are of the same order
as those in the two-electron triple well, with all three LDAs
performing similarly.

C. Summary

We observe our LDA calculations to yield accurate electron
densities for a variety of exchange-dominated systems, even
when the LDA is constructed from one-electron systems. The
most striking aspect of our LDAs are their ability to accurately
describe the self-interaction correction. This is remarkable as
local approximations are traditionally known to be incapable of
accurately describing this feature. However, we note that some
systems exhibit highly nonlocal features in the exact exchange-
correlation potential, such as potential steps and other features
in low-density regions [50,51]. These absent nonlocal features
in V LDA

xc can lead to inaccurate electron densities for ground-
state systems, as well as for time-dependent systems; see
Sec. IV B.

IV. APPLICATION TO MORE STRONGLY
CORRELATED SYSTEMS

In the previous section we observed the capacity of our
LDAs to describe exchange and the self-interaction correction.
We now study systems in which correlation is stronger, a
feature which should challenge local approximations.

A. Two-electron harmonic wells

We now consider a pair of systems which demonstrate
the effect on the LDAs when electron correlation increases:
two electrons confined to a harmonic external potential.
First, for purposes of comparison, we consider a strongly
confining harmonic external potential (ω = 0.4 a.u.) so that
the system is dominated by exchange, and correlation is very
low (strongly confined harmonic well). We contrast this with a
weakly confining harmonic external potential (ω = 0.01 a.u.)
in which correlation increases significantly, as kinetic energy
diminishes (weakly confined harmonic well).

In the strongly confined harmonic well, the HF method is
almost exact due to the near absence of electron correlation.
The exact electron density is compared to the density that
is obtained when we apply the 2e LDA self-consistently
and the density obtained when we use the noninteracting
approximation [Fig. 9(a)]. We find that the LDA performs
very well in this system, which is consistent with the other
two exchange-dominated systems in the previous section. (All
three LDAs perform similarly.) Again, we analyze Vxc and find
that the LDA misses out key nonlocal features, e.g., a central
bump in the exact Vxc, formed from the superposition of two

steps (yielded by a single interaction term), which acts to drive
the electrons further apart, leading to a discrepancy in the
electron density. Even though Vext is the dominant component
in VKS, the Coulomb interaction is key to push the electrons
apart, which is evident by comparing the exact density and the
LDA density to the noninteracting approximation.

As we move to the weakly confined harmonic well, we find
that correlation increases. This is evident in the electron density
produced by the HF method becoming worse, which we
compare with the exact density, the density obtained when we
apply the 2e LDA self-consistently, and the density obtained
when we use the noninteracting approximation [Fig. 9(b)].
Despite the LDA being constructed from slab systems in
which correlation is significant, we find that it completely
breaks down in this system. It incorrectly predicts three peaks
in the electron density and appears to closely approximate a
slablike system. The noninteracting approximation performs
much worse than in the strongly confined harmonic.

We analyze Vxc and find that, unlike in the strongly confined
harmonic well in which the LDA underestimated the central
bump present in the exact Vxc, it does worse in this system
by incorrectly predicting a central dip in Vxc [Fig. 9(c)]. This,
along with the LDA vastly underestimating the two other dips
in Vxc, leads to the three peaks that are seen in its approximation
to the electron density. Again, the LDA incorrectly predicts an
exponential decay of Vxc towards the system’s edges.

Finally, we perform energy calculations to obtain E =
0.068 a.u. and Exc = −0.215 a.u. for the weakly confined har-
monic well. We calculate ELDA for each LDA along with �E

and the % error. This is displayed in Table IV. The LDAs give
good approximations to E despite poor electron densities [42].

We calculate ELDA
xc for each LDA along with �Exc and the

% error for the weakly confined harmonic well. This is also
displayed in Table IV. Clearly the LDAs perform much worse
at approximating Exc than they do at approximating E. While
we find the errors are substantially larger than in the strongly
confined harmonic well (error ∼2% for all three LDAs), one
might expect a larger error on the basis of the inaccuracy of
the density given by the LDAs [see Fig. 9(b) for the 2e LDA].

B. Tunneling system

We now extend our study to a highly correlated time-
dependent system in which there is strong current flow: two
electrons confined to an external potential consisting of two
wells separated by a long flat barrier, Vext = αx10 − βx4,
where α = 5 × 10−11 a.u. and β = 0.5 × 10−4 a.u. For t > 0
a perturbing electric field Vpert = εx, where ε = −0.01, is
applied [Fig. 10(a)] to induce quantum tunneling (tunneling
system) [30].
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FIG. 10. A tunneling system containing two electrons. (a) The
unperturbed external potential Vext = αx10 − βx4, t = 0 (dashed
green line), and the perturbed external potential with the electric
field −εx, applied for t > 0 (solid blue line). (b) A comparison of the
exact many-body electron density (solid red line), the density obtained
from applying the 2e LDA (dotted-dashed blue line), and the density
obtained when we use the noninteracting approximation (dotted
black line) for the system’s ground state, t = 0. The Pauli exclusion
principle, combined with the Coulomb repulsion, forces the electrons
to localize in opposite wells resulting in a small-density barrier
(central) region. The LDA and the noninteracting approximation both
match this well. (c) A comparison of the exact many-body electron
density (solid red line), the density obtained from applying the 2e

LDA (dotted-dashed blue line), and the density obtained when we
use the noninteracting approximation (dotted black line) at a later
time, t = 40 a.u., once there has been sufficient tunneling. While the
LDA still manages to replicate the exact density well, it fails in the
critical central region which indicates that the tunneling rate is too
high.

The Pauli exclusion principle, combined with the Coulomb
repulsion, forces the electrons to localize in opposite wells
resulting in a small-density barrier (central) region. This is
well matched, both when we apply the 2e LDA and when we
use the noninteracting approximation [Fig. 10(b)]. We apply
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n L
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2e LDA

Exact
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FIG. 11. The exact total electron number on the LHS (x < 0)
of the system nL (solid red line), the approximation produced from
applying the 2e LDA adiabatically (dotted-dashed blue line), and the
one obtained when we use the noninteracting approximation (dotted
black line). The tunneling rates are therefore given by the gradients of
the curves. It is clear that the LDA overestimates the rate of tunneling.
By taking the gradients of the three curves, we measure the magnitude
of the LDA tunneling rate to be, on average, nearly twice that of the
exact tunneling rate. At early times, this error is due to the LDA
missing out key ground-state features. At later times, it is primarily
due to increasing correlation as the electrons explore different orbitals.
The noninteracting approximation further overestimates the tunneling
rate.

the HF method and find this to be an exchange-dominated
system. Again, the LDA accurately describes the large self-
interaction correction present in the highly localized wells. As
in the strongly confined harmonic well, there is a central bump
present in the exact Vxc, which is due to the superposition of
two steps. The LDA misses out this key feature, which acts to
drive the electrons apart, leading to higher peaks in the exact
electron density.

The application of the electric field initially causes the
electrons to oscillate within their respective wells. Eventually
the electron in the left-hand well begins to tunnel through the
potential barrier towards the right-hand well. Correlation in-
creases as the electrons begin to explore different orbitals. We
apply the LDA adiabatically, V ALDA

xc [n](x,t) = V LDA
xc [n(t)](x),

to examine how well it approximates the dynamic electron
density once there has been sufficient tunneling (t = 40 a.u.),
along with the result that is obtained when we use the
noninteracting approximation [Fig. 10(c)]. While the LDA
still manages to replicate the exact density well, it fails in the
critical central region which indicates that the tunneling rate
is too high. However, it is an improvement on the density that
is obtained when we neglect the Coulomb interaction.

To explore this we first define the tunneling rate as the rate
at which the total electron density on the left-hand side (LHS;
x < 0) of the system decreases with time. (This is deemed to
be a sufficient approximation as the electrons start in a highly
localized ground state.) We now plot the exact total electron
density in the LHS as a function of time, the approximation
produced from applying the LDA, and the result obtained when
we use the noninteracting approximation (Fig. 11). In all three
cases the tunneling rate increases as the LHS electron gains
kinetic energy, before decreasing in response to an increase in
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the Coulomb repulsion. It is clear that the LDA overpredicts the
rate of tunneling. By taking the gradients of the three curves,
we measure the magnitude of the LDA tunneling rate to be, on
average, nearly twice that of the exact tunneling, although this
is a large reduction in the erroneous tunneling rate obtained
when we use the noninteracting approximation.

Dynamic potential steps have previously been shown to be
important nonlocal features which give rise to accurate electron
densities [51–53]. We observe a dynamic step to grow in the
exact Vxc (and hence VKS) in the central density minimum,
which in turn controls the tunneling rate. Unsurprisingly, this
characteristic is missing from the LDA Vxc. In order to slow the
tunneling rate to an appropriate amount, a better approximate
functional will be needed; one that takes into account the
current density, which is particularly sensitive to interaction
in this system. We observe this through the LDA current
density quickly deviating from the exact current density, which
is reflected in the time-dependent density.

We find that at early times, errors in the time-dependent
density depend heavily on how well the ground-state is
approximated. Therefore, we find that accurately describing
ground-state features is crucial. At later times, the error in the
LDA density grows primarily due to increasing correlation.

C. Summary

Similar to traditional local approximations, we have found
that our LDAs are unable to accurately describe systems
in which correlation is significant. The transition from the
strongly confined harmonic well to the weakly confined har-
monic well demonstrates that while the LDAs can successfully
be applied to exchange-dominated systems, an increase in the
correlation energy causes them to become severely inaccurate.
This is also observed in the tunneling system, in which starting

from a highly localized ground state, the approximation to the
electron density becomes worse as correlation increases with
time. Therefore, despite the low-density slab systems being
strongly correlated, correlation effects in test systems do not
appear to be captured by the LDAs.

V. CONCLUSIONS

We have introduced a set of three LDAs constructed from
the exact properties of finite systems consisting of as few as
one electron, as an alternative to the homogeneous electron
gas. The three LDAs are remarkably similar to one another.
By analyzing calculations for a HEG using a closely related
1D interaction [25], we conclude that our three LDAs are also
similar to a HEG-based LDA, contradicting the common idea
that localization differs greatly in a HEG from that in finite
systems. Extending to 3D, we find that an LDA constructed
from finite systems containing just one electron is feasible.

One of the most surprising features of our 1D LDAs is their
ability to accurately describe the self-interaction correction.
When combined with the Hartree potential, this leads to
good electron densities, especially in regions of high electron
localization. Much like 3D LDAs, we find that our LDAs
perform well in test systems dominated by the exchange
energy, but are much less reliable when correlation is stronger.
However, by definition, the LDAs omit nonlocal features in
the xc functional, such as steps, which are needed in certain
systems to give accurate electron densities.
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