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Motivated by recently discovered quasi-one-dimensional superconductor K2Cr3As3 with D3h lattice symmetry,
we study a one-dimensional three-orbital Hubbard model with generic electron repulsive interaction described by
intraorbital repulsion U , interorbital repulsion U ′, and Hund’s coupling J . As extracted from density functional
theory calculation, two of the three atomic orbitals are degenerate (E′ states) and the third one is nondegenerate
(A′

1), and the system is at incommensurate filling. With the help of bosonization, the normal state is described by
a three-band Tomonaga-Luttinger liquid. Possible charge density wave (CDW), spin density wave (SDW), and
superconducting (SC) instabilities are analyzed by renormalization group method. The ground state depends on
the ratio J/U and is sensitive to the degeneracy of E′ bands. The spin-singlet SC state is favored at 0 < J < U/3,
and the spin-triplet SC state is favored in the region U/3 < J < U/2. The SDW state has the lowest energy
only in the unphysical parameter region J > U/2. When the twofold degeneracy of E′ bands is lifted, the SDW
instability has the tendency to dominate over the spin-singlet SC state at 0 < J < U/3, while the order parameter
of the spin-triplet SC state will be modulated by a phase factor 2�kF x at U/3 < J < U/2. Possible experimental
consequences and applications to K2Cr3As3 are discussed.
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I. INTRODUCTION

There has been considerable interest in the recent dis-
covery of a new family of quasi-one-dimensional (quasi-1D)
unconventional superconductors A2Cr3As3 (A = K, Rb, Cs)
in ambient pressure with Tc up to 6.1 K [1–3], because of their
exotic properties revealed in various experiments below. (1)
In the normal state, the resistivity in polycrystalline samples
follows a linear temperature dependence, ρ(T ) = ρ0 + AT ,
in a wide temperature region, different from the usual Fermi
liquid behavior ρ0 + AT 2 [1–3]. On the other hand, the
transport measurement in single-crystalline samples indicates
that the normal state is a smectic metal; namely, it behaves
as a metal along the c axis and as a semiconductor in
the ab plane [4]. (2) Nuclear magnetic resonance (NMR)
and nuclear quadrupole resonance (NQR) measurements on
K2Cr3As3 show a noninteger power-law temperature depen-
dence 1/T1 ∼ T 0.75 above Tc, which is neither 1/T1 ∼ T for
a Fermi liquid nor Curie-Weiss behavior 1/T1T ∼ C/(T + θ )
for a ferromagnet or antiferromagnet [5]. Meanwhile, NMR
and NQR experiments on Rb2Cr3As3 show a critical spin
fluctuation above Tc,1/T1T ∼ a + b/(T + θ ), where θ ∼ 0 K
[6]. The Hebel-Slichter coherence peak of 1/T1 is absent
in both compounds. (3) K2Cr3As3 possesses a large upper
critical field Hc2, which exceeds the BCS weak-coupling
Pauli limit field by 3–4 times [1,7,8]. The angle-resolved
Hc2 measurement demonstrates strong anisotropy and reveals
dominant spin-triplet SC pairing [9], which is consistent with
the observation of a very weak spontaneous internal magnetic
field near Tc in the muon spin relaxation/rotation (μSR)
experiment [10]. (4) London penetration depth measurement
for K2Cr3As3 shows linear temperature dependence, �λ(T ) ∼
T , at temperatures T � Tc, indicating the existence of line
nodes in the SC gap [11]. (5) Doping nonmagnetic impurities
in K2Cr3As3 will reduce Tc significantly, which indicates
non-s-wave superconductivity [12].

There has also been a series of theoretical studies. (1) The
electronic structure of K2Cr3As3 has been investigated by
Jiang et al. [13] using density functional theory (DFT), which
is confirmed by later calculation [14]. The band calculations
show that Cr-3d orbitals dominate the electronic states near
the Fermi level, and there exist three energy bands at the Fermi
level: two quasi-1D α and β bands with flat Fermi surfaces,
and a 3D γ band. (2) Zhou et al. proposed a minimum effective
model based on three molecular orbitals on a hexagonal lattice
with D3h symmetry [15]. They found that for small Hubbard
U and moderate Hund’s coupling J , the pairing arises from
the 3D γ band and has a spatial symmetry fy(3x2−y2), which
gives line nodes in the gap function, while for large U , a
fully gapped p-wave state, pzẑ dominates at the quasi-1D
α band. The spin-triplet SC pairing is driven by the Hund’s
coupling. Similar three-band and six-band models were also
proposed by Wu et al. [16–18]. The dominant SC instability
channels are found as pz and fy(3x2−y2) for weak and strong
Hund’s coupling, respectively. (3) Zhong et al. carried out DFT
calculation on a single [CrAs]∞ tube to construct an effective
three-band Hubbard model [19]. Possible Tomonaga-Luttinger
liquid instabilities have been proposed based on such a
three-band Hubbard chain.

Besides its possible exotic superconductivity, K2Cr3As3

provides a platform for us to study 1D correlated electrons
apart from carbon nanotubes and cuprate ladders. The key
building block of K2Cr3As3 is the 1D [(Cr3As3)2−]∞ double-
walled subnanotubes, which are separated by columns of
K+ ions, in contrast to the layered iron-pnictide and copper-
oxide high-Tc superconductors [1]. These [(Cr3As3)2−]∞ tubes
together with K+ ions form a noncentrosymmetric hexagonal
lattice with D3h point group [1]. The quasi-one-dimensionality
can be also seen from its electronic structure, say, the existence
of two quasi-1D electron bands [13,14]. Experimentally, both
the smectic metallic transport [4] and the noninteger power-law
temperature dependence in NMR 1/T1 ∼ T 0.75 [5] imply a
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Tomonaga-Luttinger liquid (TLL) normal state. The question
is how this three-band TLL normal state gives rise to the
unconventional SC states below Tc. This motivates us to study
possible instabilities of three-band TLLs in this paper. Our
analysis on the TLLs in this class of materials may also help
us understand their normal-state properties.

It is noted that two-leg Hubbard ladders and two-orbital
Hubbard chains have already been investigated [20,21], and
that the SC instability caused by electron-phonon coupling
in three-band metallic nanotubes has also been theoretically
studied [22]. In this paper, we shall focus on electron
interactions in a 1D three-band Hubbard model.

This paper is organized as follows. We present the electronic
model Hamiltonian in Sec. II. In Sec. III, the low-energy
scattering processes near the Fermi points are classified by
using generalized g-ology. In Sec. IV, we take the continuum
limit and use the bosonization technique to transform the
fermionic Hamiltonian into the bosonic Hamiltonian. The non-
interacting part describes a three-band TLL, and the remaining
terms describe the bosonic interactions. In Sec. V, order
parameters are defined to characterize ordered states. In
Sec. VI, we utilize renormalization group (RG) to analyze
these bosonic interactions. The RG equations are derived by
the operator product expansion (OPE) method. The relevant
terms lead to different instabilities in different parameter
regions. Section VII is devoted to discussion and conclusions.

II. MODEL HAMILTONIAN

We consider a single fermionic chain with a unit cell (per
Cr6As6 cluster) containing three molecular orbitals. One of the
three orbitals belongs to the one-dimensional irreducible repre-
sentation A′

1 of the D3h group, and the other two are in the two-
dimensional irreducible representation E′ [15]. Without loss
of generality, the fermionic Hamiltonian consists of two parts,

HF = HF
0 + HF

int, (1a)

where the noninteracting part HF
0 is a three-band tight-binding

Hamiltonian describing the electron hopping, while the
interacting part HF

int originates from the electron-electron
interaction.

The D3h lattice symmetry does not allow a mixture between
the A′

1 state and E′ states along the c direction. The absence
of such hybridization is also seen from the DFT calculation,
where the β and γ bands are degenerate along the 	-A line.
Neglecting the interchain coupling, we have the following HF

0
in such a 1D system,

HF
0 =

∑
kmσ

ξkmc
†
kmσ ckmσ , (1b)

where σ =↑ , ↓ is the spin index, and the orbital (or band)
index m = 0 refers to the A′

1 state and m = ±1 refer to
E′ states. ckmσ (c†kmσ ) is the electron annihilation (creation)
operator for orbital m and spin σ . The band structure from
the tight-binding model [15] is plotted in Fig. 1, where the
linearized energy dispersion near the Fermi energy is shown
in the inset.

The interacting part HF
int describes electron interactions. In

the Hubbard approximation, we only retain on-site Coulomb

FIG. 1. Band structure from tight-binding model. The A′
1 band is

nondegenerate and the E′ band is twofold degenerate. 	 = (0,0,0)
and A = (0,0,π ) in the reciprocal space. Inset shows the linearized
energy dispersion near the Fermi energy.

repulsion. The interaction Hamiltonian contains four terms

HF
int = 1

2

∑
im

∑
σ �=σ ′

Unimσnimσ ′ + 1

2

∑
iσσ ′

∑
m�=m′

U ′nimσnim′σ ′

−
∑

i

∑
m�=m′

J

(
	Sim · 	Sim′ + 1

4
nimnim′

)

+ 1

2

∑
iσ

∑
m�=m′

J ′c†imσ c
†
imσ̄ cim′σ̄ cim′σ , (1c)

where nimσ = c
†
imσ cimσ , nim = ∑

σ nimσ , 	Sim = 1
2

∑
αβ

c
†
imα 	ταβcimβ , 	τ is a vector with three components of Pauli

matrices, and σ̄ = −σ is the opposite spin to σ . U is the
intraorbital repulsion, U ′ is the interorbital repulsion, J is
the Hund’s coupling, and J ′ is the pair hopping. Note that we
have chosen Wannier functions to be real. The two degenerate
orbitals m = ±1 transfer as x and y under D3h symmetry
operations, respectively. We also assume that

J ′ = J > 0, (2)

so that the following relation

U = U ′ + 2J (3)

arises subject to the rotational symmetry of the Coulomb
interaction.

It is noted that similar models for three coupled chains [23]
and three-leg ladders [24] have been investigated using
renormalization group. The important difference between
these existing models and the present model is that two of the
three bands are degenerate or nearly degenerate in our case,
which plays a crucial role for superconducting instabilities as
we will see in the next sections.

III. CONTINUUM LIMIT AND THE g-OLOGY

Now we introduce electron fields cmσ (x) to study the low-
energy physics in the continuum limit; hereafter x denotes
the coordinate along the chain (c direction). In a 1D system,
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FIG. 2. Four possible scattering processes for single-band spin-
less fermions: g(1)ψ †

pψ
†
p̄ψpψp̄,g(2)ψ †

pψ
†
p̄ψp̄ψp,g(3)ψ †

pψ †
pψp̄ψp̄ , and

g(4)ψ †
pψ †

pψpψp , where p̄ is the opposite chirality to p.

Fermi points fall into two categories characterized by chirality
p = R,L, which represents right- and left-moving electrons,
respectively. Thus the electron field cmσ (x) can be decomposed
into two parts

cmσ (x) = ψRmσ (x) + ψLmσ (x) (4)

in low energies.
In order to classify various scattering processes in such

a three-band system, we shall generalize the conventional
g-ology [21,25] for single-band spinless fermions, which
now includes chirality, band, and spin indices. For single-
band spinless fermions, there are four possible scattering
processes between the two chiralities because of lattice
momentum conservation. All these scattering processes are
illustrated in Fig. 2, back scattering g(1)ψ

†
pψ

†
p̄ψpψp̄, double-

chirality forward scattering g(2)ψ
†
pψ

†
p̄ψp̄ψp, umklapp scatter-

ing g(3)ψ
†
pψ

†
pψp̄ψp̄, and single-chirality forward scattering

g(4)ψ
†
pψ

†
pψpψp, where p̄ is the opposite chirality to p.

For the three-band spinful fermions, we introduce an
additional notation f and two additional subscripts to describe
the scattering processes due to the multibands and spin
degrees of freedom, which are summarized in Table I. One
of the subscripts is for spin degrees of freedom; namely,
“‖” denotes spin-parallel scattering and “⊥” denotes spin-
antiparallel scattering. The other subscript is associated with
the notations g and f . Now the notation g is used only
for the scattering processes within the same D3h irreducible
representation, which includes the scattering between two
E′ bands with m = ±1 and the scattering within the A′

1

band with m = 0. It is similar to g1,2,3,4 for two chiralities
that we use g1ψ

†
mψ

†
m̄ψmψm̄, g2ψ

†
mψ

†
m̄ψm̄ψm, g3ψ

†
mψ

†
mψm̄ψm̄,

and g4ψ
†
mψ

†
mψmψm for the scatterings between two E′

bands, where m̄ is the opposite orbital to m. We also
use gψ

†
0ψ

†
0ψ0ψ0 for the scattering within the A′

1 band by
neglecting the subscript. On the other hand, the new notation
f describes the scattering between E′ and A′

1 bands, in-
cluding f1(ψ†

mψ
†
0ψmψ0 + H.c.),f2(ψ†

mψ
†
0ψ0ψm + H.c.), and

f3(ψ†
mψ

†
mψ0ψ0 + H.c.), where m = ±1. Four typical scatter-

ing processes are plotted in Fig. 3, which are all the dominant
scattering processes at incommensurate filling as we will
discuss later.

The long-wavelength physics is dominated by low-energy
scattering processes near the Fermi points. These g-ology
classified scattering processes serve as building blocks for the
low-energy effective theory. We can decouple the microscopic
Hamiltonian in terms of these processes to obtain the effective
theory.

For instance, the interband Hubbard repulsive interaction
U ′ between the two degenerate E′ bands m = ±1 can be
decoupled as follows,

U ′ ∑
mσσ ′

c
†
imσ cimσ c

†
im̄σ ′cim̄σ ′

= U ′ ∑
pmσ

(ψ†
pmσ ψ

†
p̄m̄σψpm̄σψp̄mσ+ψ†

pmσ ψ
†
p̄m̄σψp̄m̄σψpmσ

+ψ†
pmσ ψ

†
pm̄σψp̄m̄σψp̄mσ + ψ†

pmσ ψ
†
pm̄σψpm̄σψpmσ

+ψ†
pmσ ψ

†
p̄m̄σ̄ ψpm̄σ̄ψp̄mσ + ψ†

pmσ ψ
†
p̄m̄σ̄ ψp̄m̄σ̄ψpmσ

+ψ†
pmσ ψ

†
pm̄σ̄ψp̄m̄σ̄ψp̄mσ + ψ†

pmσ ψ
†
pm̄σ̄ψpm̄σ̄ψpmσ ). (5)

The initial values of the coupling constants (f ’s and g’s)
in the effective theory are determined by the microscopic
Hamiltonian HF . Decoupling all the terms in HF

int in Eq. (1c)
and collecting all the scattering processes, we obtain the values
of nonzero coupling constants,

g
(1)
1⊥ = g

(2)
1⊥ = g

(1)
3⊥ = g

(2)
3⊥

= f
(1)
1⊥ = f

(2)
1⊥ = f

(1)
3⊥ = f

(2)
3⊥ = J, (6a)

g
(1)
4⊥ = g

(2)
4⊥ = g

(1)
⊥ = g

(2)
⊥ = U, (6b)

g
(1)
2⊥ = g

(2)
2⊥ = f

(1)
2⊥ = f

(2)
2⊥ = U − 2J, (6c)

g
(1)
2‖ = g

(2)
2‖ = f

(1)
2‖ = f

(2)
2‖ = U − 3J, (6d)

where the relations Eqs. (2) and (3) have been used in deriving
the above equations. Finally, we shall take the continuum limit
by using Eq. (4) to obtain the fermion field theory.

TABLE I. g-ology for the three-band spinful fermion system.

Chirality Band Spin

g(f )(1) ψ †
pψ

†
p̄ψpψp̄ g1 ψ †

mψ
†
m̄ψmψm̄ f1 ψ †

mψ
†
0ψmψ0 + H.c. g(f )‖ ψ †

σ ψ †
σ ψσ ψσ

g(f )(2) ψ †
pψ

†
p̄ψp̄ψp g2 ψ †

mψ
†
m̄ψm̄ψm f2 ψ †

mψ
†
0ψ0ψm + H.c. g(f )⊥ ψ †

σ ψ
†
σ̄ ψσ̄ ψσ

g(f )(3) ψ †
pψ †

pψp̄ψp̄ g3 ψ †
mψ †

mψm̄ψm̄ f3 ψ †
mψ †

mψ0ψ0 + H.c.

g(f )(4) ψ †
pψ †

pψpψp g4 ψ †
mψ †

mψmψm g ψ
†
0ψ

†
0ψ0ψ0
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FIG. 3. Four dominant scattering processes at incommensurate filling: (a) g
(2)
1⊥ψ †

pmσ ψ
†
p̄m̄σ̄ ψp̄mσ̄ ψpm̄σ , (b) g

(1)
2‖ ψ †

pmσ ψ
†
p̄m̄σ ψpm̄σ ψp̄mσ , (c)

g
(1)
3‖ ψ †

pmσ ψ
†
p̄mσ ψpm̄σ ψp̄m̄σ , and (d) f

(1)
3‖ ψ †

pmσ ψ
†
p̄mσ ψp0σ ψp̄0σ .

IV. BOSONIZATION

To study low-energy effective theory, we shall utilize the
standard bosonization technique to analyze the continuum
fermion model. In Abelian bosonization, the fermion operators
can be expressed in terms of boson operators as follows [25]:

ψpmσ = ηmσ√
2πa

eipkFmxe−ipϕpmσ , (7a)

where kFm is the Fermi momentum for band m,a is the cutoff
which can be chosen as the lattice constant, and p = 1 (−1)
stands for the R (L) branch. The Klein factors ηmσ ensure the
fermionic statistics and obey the anticommutation relations

{ηmσ ,ηm′σ ′ } = 2δmm′δσσ ′ . (7b)

Counting the four-fermion interactions, there are still some
gauge degrees of freedom for choosing the values of the
product of two Klein factors with different band indices m.
In this paper, we adopt the convention

ηmσηm̄σ = η0σ ηmσ = imσ, (7c)

ηmσηmσ̄ = η0σ η0σ̄ = iσ, (7d)

ηmσηm̄σ̄ = η0σ ηmσ̄ = im, (7e)

where m = ±1 and σ = +1 (−1) for spin up (down). As we
will see later in this section, these products of two Klein factors
will determine the sign of coupling constants in the bosonic
interacting Hamiltonian.

The chiral fields ϕpmσ can be written in terms of two
nonchiral fields φmσ and θmσ through

ϕpmσ = φmσ − pθmσ . (7f)

Their gradients are proportional to fermionic density and
current operator, respectively,

∇φmσ ∝ nmσ = ψ
†
Rmσ ψRmσ + ψ

†
LmσψLmσ , (7g)

∇θmσ ∝ jmσ = ψ
†
Rmσ ψRmσ − ψ

†
LmσψLmσ . (7h)

Thus the four-fermion density-density and current-current
interaction can be bosonized into quadratic terms in the
bosonic Hamiltonian.

Furthermore, the fields φmσ and θmσ can be decomposed
into their charge and spin degrees of freedom,

φmσ = 1√
2

(φcm + σφsm), (7i)

θmσ = 1√
2

(θcm + σθsm). (7j)

Since both charge and spin are conserved, φcm(θcm) and
φsm(θsm) can be diagonalized separately in the quadratic part
of the bosonic Hamiltonian HB

0 . The diagonalization can be
carried out explicitly by the following transformation,

⎛
⎝φ(θ )μ+1

φ(θ )μ−1

φ(θ )μ0

⎞
⎠ =

⎛
⎜⎜⎝

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

⎞
⎟⎟⎠

⎛
⎝φ̃(θ̃)μ+1

φ̃(θ̃)μ−1

φ̃(θ̃ )μ0

⎞
⎠, (8)

where μ = c,s refers to charge and spin components.
Near the Fermi points, the energy dispersion ξkm can be

linearized as

ξkm = vFm(k − kFm), (9)
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where vFm is the Fermi velocity and kFm is the Fermi
momentum. According to the DFT calculation, the difference
between vF0 and vF±1 is small. As we will show below, the
Fermi velocity is renormalized by the forward scattering; thus
this small difference is inessential and we will approximate
vF0 = vF±1 = vF at first.

The bosonized Hamiltonian HB also consists of two parts,

HB = HB
0 + HB

int. (10)

HB
0 is the quadratic or noninteracting part, and HB

int is
the interacting part. The noninteracting part HB

0 can be
diagonalized by Eq. (8), resulting in

HB
0 = 1

2π

∫
dx

∑
μν

vμν

[
Kμν(∇θ̃μν)2 + 1

Kμν

(∇φ̃μν)2

]
, (11)

where μ = c,s and ν = 0, ± 1. The renormalized Fermi
velocity vμν and Tomonaga-Luttinger parameters Kμν are
given by

vc(s)±1

vF

=
√

1 −
[+(−)g(2)

4⊥ − (
g

(2)
2‖ + (−)g(2)

2⊥
)]2

(2πvF )2
, (12a)

vc(s)0

vF

=
√

1 −
[+(−)g(2)

4⊥ + 2
(
g

(2)
2‖ + (−)g(2)

2⊥
)]2

(2πvF )2
, (12b)

Kc(s)±1 =
√√√√1 − 1

2πvF

[+(−)g(2)
4⊥ − (

g
(2)
2‖ + (−)g(2)

2⊥
)]

1 + 1
2πvF

[+(−)g(2)
4⊥ − (

g
(2)
2‖ + (−)g(2)

2⊥
)] , (12c)

Kc(s)0 =
√√√√1 − 1

2πvF

[+(−)g(2)
4⊥ + 2

(
g

(2)
2‖ + (−)g(2)

2⊥
)]

1 + 1
2πvF

[+(−)g(2)
4⊥ + 2

(
g

(2)
2‖ + (−)g(2)

2⊥
)] . (12d)

The spin-charge separation is reflected in vcm �= vsm, which
is similar to single-band Tomonaga-Luttinger liquids. The
difference between the single-band and three-band models is
the following. For the single-band model, all the forward-
scattering processes contribute to the bosonic noninteracting
Hamiltonian HB

0 . However, for the three-band model, some
g(2) forward-scattering processes contribute to the interacting
part HB

int but not the noninteracting part HB
0 , which can be seen

in Eq. (13) below. This difference is due to the fact that there are
only partial forward-scattering processes that can be expressed
in the form of density-density or current-current interaction,
renormalizing the Tomonaga-Luttinger parameters Kμν .

Note that we have omitted the coupling constants with
zero initial values in the derivation of HB

0 . These coupling
constants do not flow under the RG transformation. We have
also dropped all the g(3) umklapp scattering processes, which
are negligible when the fermion system is away from half
filling. All the g(4) and f (4) scattering processes happen within
the same chirality and have small momentum transfer. These
small-momentum-transfer terms are irrelevant in the sense of
RG. In fact, the g(4) terms will renormalize both vμν and Kμν .
However, if one expands vμν and Kμν in powers of g(4), the
first-order terms will vanish. So we can safely neglect g(4)

and f (4) in both HB
0 and HB

int in perturbation RG, which will
not change the conclusions of our perturbation RG analysis in
remaining parts of this paper.

The bosonic interacting Hamiltonian HB
int is given by

HB
int = −g

(1)
1⊥

4

(2πa)2

∫
dx cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)
cos(2θ̃s+1) + g

(1)
2‖

4

(2πa)2

∫
dx cos(2φ̃c+1) cos(2φ̃s+1)

+ g
(1)
2⊥

4

(2πa)2

∫
dx cos(2φ̃c+1) cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)
+ g

(1)
3‖

4

(2πa)2

∫
dx cos(2θ̃c+1) cos(2θ̃s+1)

+ g
(1)
3⊥

4

(2πa)2

∫
dx cos(2θ̃c+1) cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)
+ g

(1)
4⊥

4

(2πa)2

∫
dx cos(2φ̃s+1) cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)

− g
(2)
1⊥

4

(2πa)2

∫
dx cos(2φ̃c+1) cos(2θ̃s+1) + g

(2)
3⊥

4

(2πa)2

∫
dx cos(2θ̃c+1) cos(2φ̃s+1)

− f
(1)
1⊥

8

(2πa)2

∫
dx

[
cos φ̃s+1 cos

(
− 1√

3
φ̃s−1 + 4√

6
φ̃s0

)
cos θ̃s+1 cos

√
3θ̃s−1 + (cos → sin)

]

+ f
(1)
3‖

8

(2πa)2

∫
dx[cos θ̃c+1 cos

√
3θ̃c−1 cos θ̃s+1 cos

√
3θ̃s−1 + (cos → sin)]

+ f
(1)
3⊥

8

(2πa)2

∫
dx

[
cos θ̃c+1 cos

√
3θ̃c−1 cos φ̃s+1 cos

(
− 1√

3
φ̃s−1 + 4√

6
φ̃s0

)
+ (cos → sin)

]

+ f
(2)
3⊥

8

(2πa)2

∫
dx[cos θ̃c+1 cos

√
3θ̃c−1 cos φ̃s+1 cos

√
3φ̃s−1 + (cos → sin)]

+ g
(1)
⊥

2

(2πa2

∫
dx cos

(
− 4√

3
φ̃s−1 + 4√

6
φ̃s0

)
. (13)
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Unlike the noninteracting situation in HB
0 , here we retain

the terms with zero initial values of coupling constants in
HB

int, namely, g
(1)
3‖ and f

(1)
3‖ . These terms will be automatically

generated in the one-loop RG to form the closed algebra of
operator product expansion (OPE). Since different scattering
processes may give rise to the same form in the bosonized
Hamiltonian, we have incorporated them into a single term,
e.g., g(1)

3‖ and g
(2)
3‖ terms. As mentioned before, both the forward

and backward scattering processes will contribute to HB
int in the

three-band case, which is different from the single-band case.
The noninteracting Hamiltonian HB

0 describes a three-band
Tomonaga-Luttinger liquid, which is a Gaussian fixed point
under RG transformation. In the remaining sections, we shall
treat the interacting part HB

int as a perturbation and perform
RG analysis to investigate its relevance. The (most) relevant
terms in HB

int will give the low-energy effective field theories.
In such effective field theories, the fields φμν and θμν will be
locked around some saddle points, say, the extrema of cosine
functions in Eq. (13), which gives rise to some ordered states
or relevant instabilities. To classify such orders or instabilities,
we shall introduce order parameters in the next section at first.

V. ORDER PARAMETER

To characterize different effective field theories in low
energies, we shall introduce order parameters in this section.
In general, the order parameter can be defined as fermionic
bilinear, or more precisely, long-ranged correlation of bilinear
fermionic operators. By this definition, there are two classes of
order parameters in such a three-band system. One is defined
in the particle-hole channels,

O
ij

ph =
∑

mm′σσ ′
λi

mm′τ
j

σσ ′ψ
†
Rmσ ψLm′σ ′ , (14a)

and the other is defined in particle-particle channels (or their
Hermitian conjugates in hole-hole channels),

Oij
pp =

∑
mm′σσ ′

σλi
mm′τ

j

σσ ′ψ
†
Rmσ ψ

†
Lm′σ̄ ′ . (14b)

Here λi(i = 1, . . . ,8) are Gell-Mann matrices, and τ j (j =
1,2,3) are Pauli matrices. We have also defined λ0 and σ 0 as
3×3 and 2×2 unit matrices, respectively. ψpmσ (ψ†

pmσ ) is the
electron annihilation (creation) operator with chirality p, band
m, and spin σ .

Note that we only keep opposite-chirality terms ψ
†
RψL

and ψ
†
Rψ

†
L in Eq. (14) and ignore equal-chirality terms,

such as ψ
†
RψR,ψ

†
LψL,ψ

†
Rψ

†
R , and ψ

†
Lψ

†
L. This is because

four-fermion operators in the same chirality, e.g., ψ†
Rψ

†
Rψ

†
RψR

and ψ
†
RψRψ

†
RψR , are all irrelevant in the sense of RG.

Physically, all our familiar ordered states, including charge
density wave (CDW), spin density wave (SDW), and super-
conducting (SC) states, arise from scattering or pairing in
opposite chiralities. Therefore, Eq. (14) contains all possible
physically relevant order parameters constructed by fermionic
bilinears.

We shall identify physical ordered states for each order
parameter in Eq. (14) and bosonize them. For particle-hole
channels, we find that Oi0

ph refers to CDW and Oi1−3
ph refer to

the three components of SDW. There are total 9×4 = 36 order
parameters in particle-hole channels. Below we only list 4 λ1

components as examples, which involve only two E′ bands
with m = ±1. After bosonization, these four order parameters
read

O10
ph ∝ e

−i2kF x+i

(
1√
3
φ̃c−1+ 2√

6
φ̃c0

)[
cos

(
1√
3
φ̃s−1 + 2√

6
φ̃s0

)
cos θ̃c+1 sin θ̃s+1 + i(cos ↔ sin)

]
, (15a)

O11
ph ∝ e

−i2kF x+i

(
1√
3
φ̃c−1+ 2√

6
φ̃c0

)[
cos

(
1√
3
θ̃s−1 + 2√

6
θ̃s0

)
sin θ̃c+1 cos φ̃s+1 + i(cos ↔ sin)

]
, (15b)

O12
ph ∝ e

−i2kF x+i

(
1√
3
φ̃c−1+ 2√

6
φ̃c0

)[
sin

(
1√
3
θ̃s−1 + 2√

6
θ̃s0

)
sin θ̃c+1 cos φ̃s+1 − i(cos ↔ sin)

]
, (15c)

O13
ph ∝ e

−i2kF x+i

(
1√
3
φ̃c−1+ 2√

6
φ̃c0

)[
cos

(
1√
3
φ̃s−1 + 2√

6
φ̃s0

)
sin θ̃c+1 cos θ̃s+1 + i(cos ↔ sin)

]
, (15d)

where 2kF = kF+1 + kF−1, and (cos ↔ sin) means replacing all the cosine functions by sine functions and vice versa.
For particle-particle channels, we find that Oi0

pp serves as a singlet superconducting (SSC) pairing order parameter and Oi1−3
pp

serve as three components of triplet superconducting (TSC) pairing order parameters. The bosonization for λ2 components is the
following:

O20
pp ∝ e

i

(
1√
3
θ̃c−1+ 2√

6
θ̃c0

)[
cos

(
1√
3
φ̃s−1 + 2√

6
φ̃s0

)
sin φ̃c+1 sin θ̃s+1 − i(cos ↔ sin)

]
, (16a)

O21
pp ∝ e

i

(
1√
3
θ̃c−1+ 2√

6
θ̃c0

)[
cos

(
1√
3
θ̃s−1 + 2√

6
θ̃s0

)
cos φ̃c+1 cos φ̃s+1 − i(cos ↔ sin)

]
, (16b)

O22
pp ∝ e

i

(
1√
3
θ̃c−1+ 2√

6
θ̃c0

)[
sin

(
1√
3
θ̃s−1 + 2√

6
θ̃s0

)
cos φ̃c+1 cos φ̃s+1 + i(cos ↔ sin)

]
, (16c)

O23
pp ∝ e

i

(
1√
3
θ̃c−1+ 2√

6
θ̃c0

)[
cos

(
1√
3
φ̃s−1 + 2√

6
φ̃s0

)
cos φ̃c+1 cos θ̃s+1 − i(cos ↔ sin)

]
. (16d)
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Each bosonized order parameter contains two parts, which
are related to each other by interchanging cos ↔ sin. If one
shifts the bosonic fields θμ+1 and φμ+1 by π√

2
,

φ(θ )μ+1 → φ(θ )μ+1 + π√
2
, (17)

and leaves other θμν’s and φμν’s unchanged, the diagonalized
fields θ̃μν and φ̃μν will transfer accordingly,

φ̃(θ̃ )μ+1 → φ̃(θ̃)μ+1 + π

2
,

φ̃(θ̃ )μ−1 → φ̃(θ̃)μ−1 + π

2
√

3
,

φ̃(θ̃)μ0 → φ̃(θ̃)μ0 + π√
6
.

So,

1√
3
φ̃(θ̃)μ−1+ 2√

6
φ̃(θ̃)μ0 → 1√

3
φ̃(θ̃ )μ−1+ 2√

6
φ̃(θ̃)μ0+ π

2
.

This means that the order parameters Oi1−3
ph and Oi1−3

pp will
not change under the phase shift given in Eq. (17). This can be
verified by the bosonization formula Eq. (7) too.

In the following RG analysis, the coupling constants will
flow to zero if they are irrelevant and to the strong-coupling
limit if they are relevant. The relevant coupling constants will
lock the corresponding bosonic fields θμν and φμν around the
saddle points, say, in the extremum of cosine or sine functions
to minimize the action. If we substitute these saddle-point
values of bosonic fields into the order parameters, we will
obtain the nonzero order parameters. For instance, the saddle
point (

1√
3
φ̃s−1 + 2√

6
φ̃s0, φ̃c+1, θ̃s+1

)
= (0, 0, 0) (18)

will give rise to nonzero amplitude for order parameter O23
pp in

Eq. (16). The remaining phase factor

e
i

(
1√
3
θ̃c−1+ 2√

6
θ̃c0

)
= e

i√
2

(θc+1+θc−1)

reflects the U (1) gauge symmetry, which will be spontaneously
broken when the SC long-ranged order is established.

VI. RENORMALIZATION GROUP ANALYSIS

The quadratic part of the Hamiltonian, HB
0 , is a well-defined

Gaussian fixed point under RG, describing the three-band
TLLs at high temperatures, which servers as a good starting
point for our study. In this section, we begin with the
quadratic (noninteracting) part HB

0 and treat the nonquadratic
(interacting) part HB

int by a RG method perturbatively. We shall
use the OPE method [26] to derive the RG equations for the
13 coupling constants in Eq. (13) up to one loop.

The general form of the one-loop perturbative RG equations
reads

dgk

dl
= (d − �k)gk −

∑
ij

Ck
ij gigj , (19)

where gk represents the coupling constants (g’s and f ’s) in
HB

int in Eq. (13). The linear term in Eq. (19) is the tree-level

contribution and depends on space-time dimension d and
scaling dimension �k . The quadratic terms are the one-loop
contributions. The coefficients Ck

ij are the structure constants
of the OPE, which can be obtained by the fusion of two
arbitrary terms in HB

int. This process will generate new terms,
which are absent in the original microscopic Hamiltonian, until
all terms form a closed algebra. This is the reason why we
retain the terms with zero initial values of coupling constants
in Eq. (13).

In the spirit of perturbation theory, we shall first derive and
analyze RG equations at tree level, and then carry out one-loop
analysis in the remaining parts of this section.

A. Tree-level RG

To simplify, we introduce the dimensionless coupling
constants

yi = gi

πvF

, (20a)

xi = fi

πvF

. (20b)

As shown in Appendix A, the tree-level RG equations in weak
coupling can be written in terms of xi and yi’s,

dy
(1)
1⊥

dl
= (

y
(2)
2‖ − y

(2)
2⊥

)
y

(1)
1⊥, (21a)

dy
(1)
2‖

dl
= −y

(2)
2‖ y

(1)
2‖ , (21b)

dy
(1)
2⊥

dl
= −y

(2)
2⊥y

(1)
2⊥, (21c)

dy
(1)
3‖

dl
= y

(2)
2‖ y

(1)
3‖ , (21d)

dy
(1)
3⊥

dl
= (−y

(2)
4⊥ + y

(2)
2‖

)
y

(1)
3⊥, (21e)

dy
(1)
4⊥

dl
= −y

(2)
2⊥y

(1)
4⊥, (21f)

dy
(2)
1⊥

dl
= (

y
(2)
4⊥ − y

(2)
2⊥

)
y

(2)
1⊥, (21g)

dy
(2)
3⊥

dl
= (−y

(2)
4⊥ + y

(2)
2⊥

)
y

(2)
3⊥, (21h)

dx
(1)
1⊥

dl
= (

y
(2)
2‖ − y

(2)
2⊥

)
x

(1)
1⊥, (21i)

dx
(1)
3‖

dl
= y

(2)
2‖ x

(1)
3‖ , (21j)

dx
(1)
3⊥

dl
= (−y

(2)
4⊥ + y

(2)
2‖

)
x

(1)
3⊥, (21k)

dx
(2)
3⊥

dl
= (−y

(2)
4⊥ + y

(2)
2⊥

)
x

(2)
3⊥, (21l)

dy
(1)
⊥

dl
= −y

(2)
4⊥y

(1)
⊥ . (21m)
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In the formulation of Abelian bosonization, Eqs. (7), the
variables y

(2)
2‖ ,y

(2)
2⊥, and y

(2)
4⊥ in Eqs. (A3) and (21) only appear in

the quadratic part HB
0 in the original microscopic Hamiltonian,

and thus do not flow under the RG transformation. So we
use their initial values y

(2)
2‖ = U−3J

πvF
,y

(2)
2⊥ = U−2J

πvF
, and y

(2)
4⊥ =

U
πvF

in tree-level analysis. However, this formulation does not
conserve spin rotational symmetry. We shall discuss how to
restore spin SU (2) symmetry in the next subsection, where
y

(2)
2‖ ,y

(2)
2⊥, and y

(2)
4⊥ can be expressed in terms of the 13 coupling

constants in Eq. (13) and make the RG equations close.
The slope { 1

xi

dxi

dl
, 1
yi

dyi

dl
} around the Tomonaga-Luttinger

liquid fixed point will determine which coupling constants
are relevant. In weak coupling, this slope is given by the initial
values of the coupling constants in Eq. (6), say, the microscopic
Hamiltonian with two parameters U > 0 and J > 0. We find
that there exist three parameter regions. (1) For 0 < J < U/3,
the coupling constants x

(1)
3‖ ,y

(1)
3‖ , and y

(2)
1⊥ are relevant; other

coupling constants are irrelevant. (2) For U/3 < J < U/2,
there are only two relevant coupling constants, y

(1)
2‖ and y

(2)
1⊥.

(3) For the unphysical region J > U/2, there are four relevant
coupling constants, y(1)

2‖ ,y
(1)
2⊥,y

(1)
4⊥, and y

(2)
1⊥. However, the above

analysis relies largely on tree-level RG equations. We now
proceed to one-loop RG equations for further study.

B. One-loop RG

With the help of spin SU (2) symmetry and the microscopic
Hamiltonian, we are able to derive one-loop RG equations
(see Appendix B) as follows:

dy
(1)
1⊥

dl
= −(

y
(1)
1⊥

)2 − y
(1)
2⊥y

(2)
1⊥ + y

(1)
3‖ y

(1)
3⊥, (22a)

dy
(1)
2‖

dl
= 1

2
y

(1)
1⊥y

(1)
2‖ − y

(1)
2⊥y

(1)
4⊥, (22b)

dy
(1)
2⊥

dl
= −1

2
y

(1)
1⊥y

(1)
2⊥ − y

(1)
1⊥y

(2)
1⊥ − y

(1)
2‖ y

(1)
4⊥, (22c)

dy
(1)
3‖

dl
= −1

2
y

(1)
1⊥y

(1)
3‖ + y

(1)
1⊥y

(1)
3⊥, (22d)

dy
(1)
3⊥

dl
= −

(
y

(1)
4⊥ + 1

2
y

(1)
1⊥

)
y

(1)
3⊥ + y

(1)
1⊥y

(1)
3‖ − y

(1)
4⊥y

(2)
3⊥, (22e)

dy
(1)
4⊥

dl
= 1

2
y

(1)
1⊥y

(1)
4⊥ − y

(1)
2‖ y

(1)
2⊥ − y

(1)
3⊥y

(2)
3⊥, (22f)

dy
(2)
1⊥

dl
=

(
y

(1)
4⊥ − 1

2
y

(1)
1⊥

)
y

(2)
1⊥ − y

(1)
1⊥y

(1)
2⊥, (22g)

dy
(2)
3⊥

dl
=

(
−y

(1)
4⊥ + 1

2
y

(1)
1⊥

)
y

(2)
3⊥ − y

(1)
3⊥y

(1)
4⊥, (22h)

dx
(1)
1⊥

dl
= −(

x
(1)
1⊥

)2 + x
(1)
3‖ x

(1)
3⊥, (22i)

dx
(1)
3‖

dl
= −1

2
x

(1)
1⊥x

(1)
3‖ + x

(1)
1⊥x

(1)
3⊥, (22j)

dx
(1)
3⊥

dl
= −

(
y

(1)
⊥ + 1

2
x

(1)
1⊥

)
x

(1)
3⊥ + x

(1)
1⊥x

(1)
3‖ − y

(1)
⊥ x

(2)
3⊥, (22k)

dx
(2)
3⊥

dl
=

(
−y

(1)
⊥ + 1

2
x

(1)
1⊥

)
x

(2)
3⊥ − y

(1)
⊥ x

(1)
3⊥, (22l)

dy
(1)
⊥

dl
= −(

y
(1)
⊥

)2 − x
(1)
3⊥x

(2)
3⊥. (22m)

The above 13 RG equations can be classified into two
categories. The first eight equations, Eqs. (22a) to (22h),
describe the RG flow of coupling constants within the two
degenerate E′ bands, which coincide with those derived in the
two-leg-ladder model [27]. The last five equations, Eqs. (22i)
to (22m), couple the two E′ bands to the nondegenerate A′

1
band. Note that the last five RG equations are decoupled from
the first eight ones. This will greatly simplify our analysis.
Such decoupling originates from the particular form of the
Hamiltonian (1c), which satisfies Eq. (B3).

The key to analyze these one-loop RG equations is to find
fixed points, where the coupling constants will no longer flow
under RG transformation [28]. We rewrite the RG equations
in vector form,

d 	y
dl

≡ 	R(	y), (23)

where 	y = {yi} is the vector of 13 running coupling constants,
and 	R(	y) is a vector function of 	y. By definition, the fixed
points 	y = 	y∗ are given by

	R(	y∗) = 0. (24)

It is obvious that 	y∗ = 0 is the trivial Tomonaga-Luttinger
liquid fixed point. Nontrivial fixed points 	y∗ �= 0 can be found
in perturbation as follows.

In perturbation, we are able to find nontrivial fixed
points in two different parameter regions of the microscopic
Hamiltonian:

(1) For 0 < J < U/3, we have nontrivial fixed points char-
acterized by the following nonvanishing coupling constants,

y
(1)
3‖ = y

(1)∗
3‖ , y

(2)
1⊥ = y

(2)∗
1⊥ , x

(1)
3‖ = x

(1)∗
3‖ , (25)

while other coupling constants are all zero.
(2) For J > U/3, nontrivial fixed points are given by

y
(1)
2‖ = y

(1)∗
2‖ ,

y
(2)
1⊥ = y

(2)∗
1⊥ , (26)

while other coupling constants equal zero.
These nontrivial fixed points form hypersurfaces in the

13-dimensional parameter space of coupling constants. By
examining the RG flow around these hypersurfaces, we find
that these fixed points are phase transition points rather than
stable fixed points describing stable phases. Then we shall
analyze the RG flow near the fixed points using one-loop RG
equations to find out what kind of instabilities are favored.

In the vicinity of the fixed points, the RG equations can be
expanded to linear order

	R(	y) = 	R((	y − 	y∗) + 	y∗) � W (	y − 	y∗), (27)

where the W matrix is defined as

Wab = ∂Ra

∂yb

∣∣∣∣
	y=	y∗

. (28)
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We diagonalize the W matrix with the left-eigenvectors φα ,

φT
α W = φT

α λa, (29)

where λα are corresponding eigenvalues. The scaling fields are
defined as

vα = φT
α (	y − 	y∗). (30)

Under RG these scaling fields show different behaviors,

dvα

dl
= φT

α

d

dl
(	y − 	y∗) = φT

α W (	y − 	y∗) = λaφ
T
α (	y − 	y∗)

= λavα, (31)

which becomes relevant, irrelevant, and marginal when
λα > 0,λα < 0, and λα = 0, respectively.

Note that {y(1)
1⊥,y

(1)
2‖ ,y

(1)
2⊥,y

(1)
3‖ ,y

(1)
3⊥,y

(1)
4⊥,y

(2)
1⊥,y

(2)
3⊥} and {x(1)

1⊥,

x
(1)
3‖ ,x

(1)
3⊥,x

(2)
3⊥,y

(1)
⊥ } form two separated sets in Eqs. (22). The

W matrix is block diagonal as follows:

W =
(

W1 0
0 W2

)
, (32)

where W1 is a 8×8 matrix and W2 is a 5×5 matrix. The generic
forms for W1 and W2 can be found in Appendix E.

To illustrate how to carry out the analysis, we first consider
a simplified case, say, special fixed points when J > U/3,

y
(2)
1⊥ = y

(2)∗
1⊥ , (33)

with other coupling constants equal to zero. In this case,
W2 = 0, and the W1 matrix reads

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −y
(2)∗
1⊥ 0 0 0 0 0

0 0 0 0 0 0 0 0

−y
(2)∗
1⊥ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− 1
2y

(2)∗
1⊥ 0 0 0 0 y

(2)∗
1⊥ 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(34)

For this nonsymmetric matrix, we find that there are only two
nonzero eigenvalues, −y

(2)∗
1⊥ with corresponding eigenvector

y
(1)
1⊥ + y

(1)
2⊥ and y

(2)∗
1⊥ with eigenvector y

(1)
1⊥ − y

(1)
2⊥. According to

the microscopic model, the initial value g
(2)
1⊥ = J > 0. Then

we expect y
(2)∗
1⊥ > 0 in the RG. Thus the relevant scaling field

is given by the eigenvector corresponding to the eigenvalue
y

(2)∗
1⊥ , say,

y
(1)
1⊥ − y

(1)
2⊥. (35)

Then we can extract relevant terms from the bosonic
Hamiltonian HB

int. Thus the low-energy effective interacting

Hamiltonian becomes

HB
int = −(

g
(1)
1⊥ − g

(1)
2⊥

) 2

(2πa)2

∫
dx

× cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)
cos(2θ̃s+1)

− (
g

(1)
1⊥ − g

(1)
2⊥

) 2

(2πa)2

∫
dx cos(2φ̃c+1)

× cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)
. (36)

When J > U/3, the initial value of y
(1)
1⊥ − y

(1)
2⊥ ∝ 3J − U is

positive. This relevant scaling field will flow to strong coupling
and lock the corresponding bosonic fields around the saddle
points,(

1√
3
φ̃s−1 + 2√

6
φ̃s0, φ̃c+1, θ̃s+1

)
= (0, 0, 0)

or
(π

2
,
π

2
,
π

2

)
.

(37)

As discussed following Eq. (17), these two saddle points
will give rise to the same physical states. The nonzero order
parameter corresponding to these locked bosonic fields is O23

pp,
which describes a TSC phase.

Let us turn to generic situations now. We shall neglect
vanishing components in 	y for short, and denote 	y as
(y(1)

3‖ ,y
(2)
1⊥,x

(1)
3‖ ) and (y(2)

1⊥,y
(1)
2‖ ) for 0 < J < U/3 and J > U/3,

respectively.
(1) For J > U/3, all the fixed points are in a plane. We can

generalize the above analysis for fixed points with two nonzero
components, (y(1)

2‖ ,y
(2)
1⊥) = (y(1)∗

2‖ ,y
(2)∗
1⊥ ). In this situation, we

still have W2 = 0, while W1 becomes

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −y
(2)∗
1⊥ 0 0 0 0 0

1
2y

(1)∗
2‖ 0 0 0 0 0 0 0

−y
(2)∗
1⊥ 0 0 0 0 −y

(1)∗
2‖ 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −y
(1)∗
2‖ 0 0 0 0 0

− 1
2y

(2)∗
1⊥ 0 0 0 0 y

(2)∗
1⊥ 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(38)

Now we have four eigenvectors with two corresponding
to the zero eigenvalue and the other two corresponding
to nonzero eigenvalues. The two nonzero eigenvalues are

±
√

(y(1)∗
2‖ )2 + (y(2)∗

1⊥ )2. The eigenvector corresponding the pos-

itive eigenvalue
√

(y(1)∗
2‖ )2 + (y(2)∗

1⊥ )2 is

y
(2)∗
1⊥ y

(1)
1⊥ −

√(
y

(1)∗
2‖

)2 + (
y

(2)∗
1⊥

)2
y

(1)
2⊥ + y

(1)∗
2‖ y

(1)
4⊥. (39)

Considering the initial value g
(1)
2‖ = U − 3J < 0, we expect

that y
(1)∗
2‖ < 0 for the same reason of perturbation. In the

limit y
(2)∗
1⊥ → 0, the relevant scaling field will become y

(1)
2⊥ +

y
(1)
4⊥, which will flow to a strong-coupling limit too. The
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)2(
1⊥y

)1(
4

)1(
2 ⊥⊥ + yy

)1(
||2y−

)1(
2

)1(
1 ⊥⊥ − yy

FIG. 4. Sketched RG flow for J > U/3. Fixed points (y(1)∗
2‖ <0

and y
(2)∗
1⊥ >0) form a quarter plane. The origin is the trivial Tomonaga-

Luttinger liquid (TLL) fixed point. The dashed line denotes the phase
boundary separating two phases, TSC and SDW.

corresponding saddle point gives rise to a SDW state with
order parameter O03

ph +
√

3
2 O83

ph. In the other limit y
(1)∗
2‖ → 0,

the eigenvector will become y
(1)
1⊥ ± y

(1)
2⊥. Then we restore the

simplified situation, where the TSC instability dominates with
the order parameter O23

pp.
Starting from fixed points between the above two limits,

which form a quarter plane (y(1)∗
2‖ < 0,y

(2)∗
1⊥ > 0), the RG

trajectory will flow to one of the two strong-coupling limits,
SDW and TSC. There must be a phase boundary separating
the SDW phase (with order parameter O03

ph +
√

3
2 O83

ph) from the
TSC phase (with order parameter O23

pp). The RG flow diagram
is sketched in Fig. 4. And all the possible ordered ground states
for J > U/3 are summarized in Table II.

There exist two competing phases, SDW and TSC, when
J > U/3. Which one will win out is governed by the micro-
scopic model, say, initial values of the coupling constants.
The most relevant (strongest) instability is given by the

largest eigenvalue of the W matrix. Assuming that 	y∗ is
close to the initial value of 	y, we estimate that the SDW
state (O03

ph +
√

3
2 O83

ph) will dominate when J > U/2. And
the TSC state (O23

pp) will become dominant in the region
U/3 < J < U/2.

(2) For 0 < J < U/3, we have three nonvanishing com-
ponents (y(1)

3‖ ,y
(2)
1⊥,x

(1)
3‖ ) in 	y∗, which form a three-dimensional

hypersurface. In this case, we have W1 and W2 matrices as
follows:

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −y
(2)∗
1⊥ 0 y

(1)∗
3‖ 0 0 0

0 0 0 0 0 0 0 0

−y
(2)∗
1⊥ 0 0 0 0 0 0 0

− 1
2y

(1)∗
3‖ 0 0 0 0 0 0 0

y
(1)∗
3‖ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− 1
2y

(2)∗
1⊥ 0 0 0 0 y

(2)∗
1⊥ 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(40a)

and

W2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 x
(1)∗
3‖ 0 0

− 1
2x

(1)∗
3‖ 0 0 0 0

x
(1)∗
3‖ 0 0 0 0

0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (40b)

These matrices have five nonzero eigenvalues, with three from
W1 and two from W2. The three nonzero eigenvalues from

W1 are y
(2)∗
1⊥ , ±

√
(y(1)∗

3‖ )2 + (y(2)∗
1⊥ )2, and the two from W2 are

±x
(1)∗
3‖ . Since the related initial values are g

(1)
3‖ = 0,g

(2)
1⊥ = J ,

and f
(1)
3‖ = 0, we expect y

(2)∗
1⊥ > 0 in perturbation theory.

Moreover, considering the one-loop RG flow around the TLL
fixed point, we can deduce that y

(1)∗
3‖ > 0 and x

(1)∗
3‖ > 0.

A similar analysis can be carried out to that in the situation
when J > U/3. The RG trajectory will flow to three strong-
coupling limits with relevant scaling fields, x

(1)
1⊥ + x

(1)
3⊥,y

(1)
1⊥ +

y
(1)
3⊥, and y

(1)
1⊥ − y

(1)
2⊥. These relevant scaling fields are associated

with positive eigenvalues of the W matrix, x
(1)∗
3‖ ,y

(1)∗
3‖ , and

y
(2)∗
1⊥ , respectively. They give rise to two different SDW states

(one with order parameters O43
ph and O63

ph the other with order
parameter O13

ph) and one spin-singlet SC (SSC) state (with
order parameter O20

pp). All these possible ordered ground states

TABLE II. Possible ordered ground states from one-loop RG analysis when 0 < J > U/3.

Scaling field y
(1)
2⊥ + y

(1)
4⊥ y

(1)
1⊥ − y

(1)
2⊥

Instability SDW TSC
Order parameter O03

ph +
√

3
2 O83

ph O23
pp

Saddle point

1√
3
φ̃s−1 + 2√

6
φ̃s0 = 0

(
π

2

)
φ̃c+1 = π

2 (0)

φ̃s+1 = π

2 (0)

1√
3
φ̃s−1 + 2√

6
φ̃s0 = 0

(
π

2

)
φ̃c+1 = 0

(
π

2

)
θ̃s+1 = 0

(
π

2

)
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TABLE III. Possible ordered ground states from one-loop RG analysis when 0 < J < U/3.

Scaling field x
(1)
1⊥ + x

(1)
3⊥ y

(1)
1⊥ + y

(1)
3⊥ y

(1)
1⊥ − y

(1)
2⊥

Instability SDW SDW SSC
Order parameter O43

ph,O
63
ph O13

ph O20
pp

Saddle point

1
2 φ̃s+1 − 1√

12
φ̃s−1 + 2√

6
φ̃s0 = 0

(
π

2

)
1
2 θ̃c+1 + 3√

12
θ̃c−1 = π

2 (0)
1
2 θ̃s+1 + 3√

12
θ̃s−1 = 0

(
π

2

)
1√
3
φ̃s−1 + 2√

6
φ̃s0 = 0

(
π

2

)
θ̃c+1 = π

2 (0)

θ̃s+1 = 0
(

π

2

)
1√
3
φ̃s−1 + 2√

6
φ̃s0 = 0

(
π

2

)
φ̃c+1 = π

2 (0)

θ̃s+1 = π

2 (0)

for 0 < J < U/3 and corresponding order parameters are
summarized in Table III.

Then we will compare these three instabilities and find the
strongest one, which is determined by the largest eigenvalue
of the W matrix. In the spirit of perturbation theory, we still
assume that 	y∗ close to the initial value of 	y. Note that related
initial values are g

(1)
3‖ = f

(1)
3‖ = 0 and g

(2)
1⊥ = J ; we conclude

that the SSC state with order parameter O20
pp will dominate

among these three possible ground states.
Let us now summarize the one-loop RG analysis by using

OPE and present the phase diagrams which are listed in
Tables II and III. In the region 0 < J < U/3, the most
relevant instability is the spin-singlet SC instability with
order parameter O20

pp. At U/3 < J < U/2, the spin-triplet
SC instability with order parameter O23

pp is favored. In the
region J > U/2 (since U = U ′ + 2J,U ′ < 0 in this region),
the SDW instability with order parameter O03

ph will dominate.
The phase diagram is shown in Fig. 5.

It is worth noting that the one-loop RG Eqs. (22) have
been obtained and solved perturbatively in this subsection.
For comparison, we have reproduced established results for the
two-degenerate-band model [21] to examine the validity of this
method. Indeed, there exist other fixed points that are beyond
this perturbative approach. An example for a nonperturbative
solution is given in Appendix E. We shall also solve the
one-loop RG Eqs. (22) numerically in Appendix F to further
confirm the present results.

VII. DISCUSSION AND CONCLUSIONS

Now we shall relate our theory to experimental results of
K2Cr3As3. First, we would like to discuss NMR and NQR
experiments. The spin-lattice relaxation rate 1/T1 in a NMR
experiment measures the local spin correlation which sums
over q in the momentum space. The dominant contribution
comes from the q ∼ 0 and q ∼ 2kF components. For a three-
band Tomonaga-Luttinger liquid governed by the Hamiltonian
HB

0 in Eq. (11), we have the following temperature dependence
of 1/T1 (see Appendix C for details):

1

T1
∝ AT + BT

1− U
2πvF , (41)

FIG. 5. Phase diagram for the three-band Hubbard model with
two degenerate E′ orbitals, kF+1 = kF−1.

where U is the effective on-site intraorbital electron interac-
tion. The first linearly temperature-dependent term follows
the Korringa law as in Fermi liquids. The second term follows
a power law with a noninteger exponent as long as U �= 0.
When electron Coulomb repulsion governs the system, U is
positive, and the dominant contribution at low temperatures
will come from the second term. The spin-lattice relaxation
rate 1/T1 will exhibit noninteger power-law temperature de-
pendence. However, U may become negative effectively, e.g.,
when electron-phonon interaction dominates over Coulomb
repulsion. In this case, 1/T1 will become linearly temperature
dependent at low temperatures as in Fermi liquids. This is
consistent with the well-known single-band result that SDW
will become irrelevant when U < 0. In the NQR experiment
on K2Cr3As3,1/T1 exhibits noninteger power law temperature
dependence and gives rise to 1 − U

2πvF
∼ 0.75. However, the

NQR experiment on Rb2Cr3As3 shows linear temperature
dependence at high temperature while critical spin fluctu-
ations appear near the SC transition temperature Tc. These
diversified 1/T1 behaviors in K2Cr3As3 and Rb2Cr3As3 imply
different effective electron interaction in the two systems.
The Rb compound has a larger unit cell volume than the K
compound, resulting in a smaller electron repulsion, which
is consistent with larger exponent, 1 − U

2πvF
∼ 1 in 1/T1 in

Rb2Cr3As3.
We next discuss two possible SC ground states in physical

parameter regions 0 < J < U/3 and U/3 < J < U/2. (1)
At 0 < J < U/3, the order parameter O20

pp indicates that the
SC pairing is spin-singlet and orbital antisymmetric, and the
pairing electrons come from the two degenerate E′ bands,
(2) while for U/3 < J < U/2, the order parameter O23

pp gives
rise to spin-triplet (|↑↓〉 + |↓↑〉) and orbital antisymmetric SC
pairing, and the pairing electrons come from E′ bands too.
This kind of even-parity, spin-triplet, and orbital antisymmetric
SC pairing was first proposed by Dai et al. in the context
of iron pnictide [29]. Note that the degeneracy of two E′
bands plays a crucial role in the formation of SC ground
states.

The role of the two degenerate E′ bands can be also seen
from the effective Hamiltonian HB

int and order parameters
for different ground states. To do this, we consider the
situation when the twofold degeneracy is slightly lifted, for
instance, by interchain coupling. In this case, we have kF+1 �=
kF−1. Introducing �kF = kF+1 − kF−1, we can generalize the
bosonic interacting Hamiltonian in Eq. (13) to the expression
in Eq. (D1) in Appendix D, where an additional phase factor
2�kF x appears in g

(1)
2‖ ,g

(1)
2⊥ and g

(2)
1⊥ terms. Thus these terms

will be suppressed by this phase factor in the integrand.
Consequently, both the spin-triplet SC order parameter O20

pp
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FIG. 6. Phase diagram for the three-band Hubbard model with
lifted degeneracy in E′ orbitals, kF+1 �= kF−1.

(for U/3 < J < U/2) and the spin-singlet SC order parameter
O23

pp (for 0 < J < U/3) will be suppressed and be modulated
by the phase factor 2�kF x, indicating a possible FFLO state
when �kF �= 0 [30,31]. This is because both O20

pp and O23
pp

arise from interorbital pairing, namely, pairing between ±kF+1

and ∓kF−1.
Then we shall investigate how the lifted degeneracy will

affect the SDW ground states characterized by order param-
eters O03

ph +
√

3
2 O83

ph,O
43
ph(O63

ph), and O13
ph. The expression for

O43
ph(O63

ph) and O13
ph will not change as we turn on �kF , since

SDW instabilities in these states come from the scattering from
±kF+1 to ∓kF−1. However, the order parameter O03

ph +
√

3
2 O83

ph

arising from intraorbital scattering, say, from ±kF+1 to ±kF−1,
will be suppressed and be modulated by the phase factor
2�kF x too.

Thus, we expect that (1) for 0 < J < U/3, the SDW states
will win out since the SSC state is suppressed; (2) for U/3 <

J < U/2, the TSC state will survive and be modulated by a
phase factor 2�kF x, since the possible competing SDW order
(O03

ph +
√

3
2 O83

ph) will be suppressed too; (3) for the unphysical
region J > U/2, the SDW state will be modulated by a phase
factor 2�kF x. The new phase diagram is illustrated in Fig. 6.

Finally, we would like to point out that these ordered states
will not survive in a single chain due to strong quantum
fluctuations, as stated by the Mermin-Wagner-Hohenberg
theorem [32,33]. However, these instabilities will be enhanced
at low temperatures, so that small interchain couplings will
stabilize these ordered states. Moreover, the interchain cou-
plings will also determine the spatial pairing symmetry for SC
states. Work along this line is in progress.

In summary, we have studied a three-band Hubbard model
at incommensurate filling with intraorbital electron repulsion
U , interorbital electron repulsion U ′ = U − 2J , and Hund’s
coupling J > 0. With the help of bosonization and RG, we
find that the Tomonaga-Luttinger fixed point gives rise to
the experimentally observed normal state at high temperature.
The ground-state instability depends on the ratio J/U and
the degeneracy of E′ bands. When the two E′ bands are
degenerate, for 0 < J < U/3, the ground state is a spin-singlet
SC state; for U/3 < J < U/2, a spin-triplet SC state is
favored; a SDW state can be achieved in the parameter region
J > U/2. However, when the twofold degeneracy of E′ bands
is lifted, the phase diagram will change. In the physically
relevant regions, a SDW state may dominate instead of the
spin-singlet SC state when 0 < J < U/3. The spin-triplet SC
state is still favored when U/3 < J < U/2, but the SC order
parameter will be modulated by a spatially varying phase
factor 2�kF x. Our theoretical results support the existence
of a spin-triplet SC state in K2Cr3As3.
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APPENDIX A: DERIVATION OF TREE-LEVEL
RG EQUATIONS

The tree-level RG equations are given by the scaling dimen-
sion �k for each coupling constant gk . Since �k is determined
by Tomonaga-Luttinger parameters Kμν , one finds that

dg
(1)
1⊥

dl
=

[
2 −

(
1

3
Ks−1 + 2

3
Ks0 + K−1

s+1

)]
g

(1)
1⊥, (A1a)

dg
(1)
2‖

dl
= [2 − (Kc+1 + Ks+1)]g(1)

2‖ , (A1b)

dg
(1)
2⊥

dl
=

[
2 −

(
Kc+1 + 1

3
Ks−1 + 2

3
Ks0

)]
g

(1)
2⊥, (A1c)

dg
(1)
3‖

dl
= [

2 − (
K−1

c+1 + K−1
s+1

)]
g

(1)
3‖ , (A1d)

dg
(1)
3⊥

dl
=

[
2 −

(
K−1

c+1 + 1

3
Ks−1 + 2

3
Ks0

)]
g

(1)
3⊥, (A1e)

dg
(1)
4⊥

dl
=

[
2 −

(
Kc+1 + 1

3
Ks−1 + 2

3
Ks0

)]
g

(1)
4⊥, (A1f)

dg
(2)
1⊥

dl
= [

2 − (
Kc+1 + K−1

s+1

)]
g

(2)
1⊥, (A1g)

dg
(2)
3⊥

dl
= [

2 − (
K−1

c+1 + Ks+1
)]

g
(2)
3⊥, (A1h)

df
(1)
1⊥

dl
=

[
2 −

(
1

4
Ks+1 + 1

12
Ks−1 + 2

3
Ks0 + 1

4
K−1

s+1

+3

4
K−1

s−1

)]
f

(1)
1⊥ , (A1i)

df
(1)
3‖

dl
=

[
2 −

(
1

4
K−1

c+1 + 3

4
K−1

c−1 + 1

4
K−1

s+1 + 3

4
K−1

s−1

)]
f

(1)
3‖ ,

(A1j)

df
(1)
3⊥

dl
=

[
2 −

(
1

4
K−1

c+1 + 3

4
K−1

c−1 + 1

4
Ks+1 + 1

12
Ks−1

+2

3
Ks0

)]
f

(1)
3⊥ , (A1k)

df
(2)
3⊥

dl
=

[
2 −

(
1

4
K−1

c+1 + 3

4
K−1

c−1 + 1

4
Ks+1 + 3

4
Ks−1

)]
f

(2)
3⊥ ,

(A1l)

dg
(1)
⊥

dl
=

[
2 −

(
4

3
Ks−1 + 2

3
Ks0

)]
g

(1)
⊥ . (A1m)
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To simplify, we introduce the dimensionless coupling
constants xi and yi as defined in Eq. (20). In weak coupling,
we can expand Tomonaga-Luttinger liquid parameters Kμν to
leading order of xi and yi’s,

Kμν = 1 − yμν, (A2)

where the redefined Tomonaga-Luttinger liquid parameters
yμν are linear combinations of yi’s,

yc±1 = 1
2

[(
y

(2)
4⊥

) − (
y

(2)
2‖ + y

(2)
2⊥

)]
, (A3a)

yc0 = 1
2

[(
y

(2)
4⊥

) + 2
(
y

(2)
2‖ + y

(2)
2⊥

)]
, (A3b)

ys±1 = 1
2

[(−y
(2)
4⊥

) − (
y

(2)
2‖ − y

(2)
2⊥

)]
, (A3c)

ys0 = 1
2

[(−y
(2)
4⊥

) + 2
(
y

(2)
2‖ − y

(2)
2⊥

)]
. (A3d)

Then the tree-level RG equations (A1) can be written in terms
of xi and yi’s as in Eqs. (21).

APPENDIX B: DERIVATION OF ONE-LOOP
RG EQUATIONS

The full structure constants Ck
ij in OPE in Eq. (19) can be

obtained by the fusion of two arbitrary terms in the interaction
HB

int. This process will generate new terms, which are absent
in the original microscopic Hamiltonian, until all terms form
a closed algebra. Thus we should retain the related terms with
zero initial values of coupling constants. The one-loop RG
equations from OPE read

dy
(1)
1⊥

dl
= [(

y
(2)
2‖ −y

(2)
2⊥

)
y

(1)
1⊥

]
1+

[−y
(1)
2⊥y

(2)
1⊥+y

(1)
3‖ y

(1)
3⊥

]
2, (B1a)

dy
(1)
2‖

dl
= [−y

(2)
2‖ y

(1)
2‖

]
1 + [−y

(1)
2⊥y

(1)
4⊥

]
2, (B1b)

dy
(1)
2⊥

dl
= [−y

(2)
2⊥y

(1)
2⊥

]
1 + [−y

(1)
1⊥y

(2)
1⊥ − y

(1)
2‖ y

(1)
4⊥

]
2, (B1c)

dy
(1)
3‖

dl
= [

y
(2)
2‖ y

(1)
3‖

]
1 + [

y
(1)
1⊥y

(1)
3⊥

]
2, (B1d)

dy
(1)
3⊥

dl
= [(−y

(2)
4⊥+y

(2)
2‖

)
y

(1)
3⊥

]
1+

[
y

(1)
1⊥y

(1)
3‖ −y

(1)
4⊥y

(2)
3⊥

]
2, (B1e)

dy
(1)
4⊥

dl
= [−y

(2)
2⊥y

(1)
4⊥

]
1 + [−y

(1)
2‖ y

(1)
2⊥ − y

(1)
3⊥y

(2)
3⊥

]
2, (B1f)

dy
(2)
1⊥

dl
= [(

y
(2)
4⊥ − y

(2)
2⊥

)
y

(2)
1⊥

]
1 + [−y

(1)
1⊥y

(1)
2⊥

]
2, (B1g)

dy
(2)
3⊥

dl
= [(−y

(2)
4⊥ + y

(2)
2⊥

)
y

(2)
3⊥

]
1 + [−y

(1)
3⊥y

(1)
4⊥

]
2, (B1h)

dx
(1)
1⊥

dl
= [(

y
(2)
2‖ − y

(2)
2⊥

)
x

(1)
1⊥

]
1 + [

x
(1)
3‖ x

(1)
3⊥

]
2, (B1i)

dx
(1)
3‖

dl
= [

y
(2)
2‖ x

(1)
3‖

]
1 + [

x
(1)
1⊥x

(1)
3⊥

]
2, (B1j)

dx
(1)
3⊥

dl
= [(−y

(2)
4⊥+y

(2)
2‖

)
x

(1)
3⊥

]
1+

[
x

(1)
1⊥x

(1)
3‖ −y

(1)
⊥ x

(2)
3⊥

]
2, (B1k)

dx
(2)
3⊥

dl
= [(−y

(2)
4⊥ + y

(2)
2⊥

)
x

(2)
3⊥

]
1 + [−y

(1)
⊥ x

(1)
3⊥

]
2, (B1l)

dy
(1)
⊥

dl
= [−y

(2)
4⊥y

(1)
⊥

]
1 + [−x

(1)
3⊥x

(2)
3⊥

]
2. (B1m)

To distinguish the tree-level and one-loop contribution in the
full one-loop RG equations, we use subscript [· · · ]1 to denote
the tree-level terms and [· · · ]2 to denote the one-loop terms.

As mentioned in Sec. VI A in the main text, we should
restore the spin rotational symmetry by imposing the following
constraints on coupling constants,

g
(1)
1‖ − g

(2)
2‖ = g

(1)
1⊥ − g

(2)
2⊥, (B2a)

g
(1)
2‖ − g

(2)
1‖ = g

(1)
2⊥ − g

(2)
1⊥, (B2b)

g
(1)
3‖ − g

(2)
3‖ = g

(1)
3⊥ − g

(2)
3⊥, (B2c)

g
(1)
4‖ − g

(2)
4‖ = g

(1)
4⊥ − g

(2)
4⊥, (B2d)

f
(1)
1‖ − f

(2)
2‖ = f

(1)
1⊥ − f

(2)
2⊥ , (B2e)

f
(1)
2‖ − f

(2)
1‖ = f

(1)
2⊥ − f

(2)
1⊥ , (B2f)

f
(1)
3‖ − f

(2)
3‖ = f

(1)
3⊥ − f

(2)
3⊥ , (B2g)

g
(1)
‖ − g

(2)
‖ = g

(1)
⊥ − g

(2)
⊥ , (B2h)

which will further simplify our analysis. In addition to these
spin SU (2) constraints, we also have

g
(2)
4⊥ = g

(2)
⊥ , (B3a)

g
(2)
2‖ = f

(2)
2‖ , (B3b)

g
(2)
2⊥ = f

(2)
2⊥ , (B3c)

from the microscopic Hamiltonian. By these relations, the
coupling constants y

(2)
4⊥,y

(2)
2‖ , and y

(2)
2⊥ can substitute by y

(2)
⊥ ,x

(2)
2‖ ,

and x
(2)
2⊥ in Eqs. (B1). Thus the 13 RG equations (B1) can be

decoupled into two sets; one consists of 8 equations and the
other consists of 5 equations, as the following:

dy
(1)
1⊥

dl
= −(

y
(1)
1⊥

)2 − y
(1)
2⊥y

(2)
1⊥ + y

(1)
3‖ y

(1)
3⊥, (B4a)

dy
(1)
2‖

dl
= −1

2

(
y

(2)
2‖ + y

(2)
2⊥ − y

(1)
1⊥

)
y

(1)
2‖ − y

(1)
2⊥y

(1)
4⊥, (B4b)

dy
(1)
2⊥

dl
= −1

2

(
y

(2)
2‖ +y

(2)
2⊥+y

(1)
1⊥

)
y

(1)
2⊥−y

(1)
1⊥y

(2)
1⊥−y

(1)
2‖ y

(1)
4⊥, (B4c)

dy
(1)
3‖

dl
= 1

2

(
y

(2)
2‖ + y

(2)
2⊥ − y

(1)
1⊥

)
y

(1)
3‖ + y

(1)
1⊥y

(1)
3⊥, (B4d)

dy
(1)
3⊥

dl
=

[
−y

(1)
4⊥ + 1

2

(
y

(2)
2‖ + y

(2)
2⊥ − y

(1)
1⊥

)]
y

(1)
3⊥

+ y
(1)
1⊥y

(1)
3‖ − y

(1)
4⊥y

(2)
3⊥, (B4e)
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dy
(1)
4⊥

dl
= −1

2

(
y

(2)
2‖ +y

(2)
2⊥−y

(1)
1⊥

)
y

(1)
4⊥−y

(1)
2‖ y

(1)
2⊥−y

(1)
3⊥y

(2)
3⊥, (B4f)

dy
(2)
1⊥

dl
=

[
y

(1)
4⊥ − 1

2

(
y

(2)
2‖ + y

(2)
2⊥ + y

(1)
1⊥

)]
y

(2)
1⊥−y

(1)
1⊥y

(1)
2⊥, (B4g)

dy
(2)
3⊥

dl
=

[
−y

(1)
4⊥+ 1

2

(
y

(2)
2‖ +y

(2)
2⊥+y

(1)
1⊥

)]
y

(2)
3⊥−y

(1)
3⊥y

(1)
4⊥, (B4h)

dx
(1)
1⊥

dl
= −(

x
(1)
1⊥

)2 + x
(1)
3‖ x

(1)
3⊥, (B4i)

dx
(1)
3‖

dl
= 1

2

(
x

(2)
2‖ + x

(2)
2⊥ − x

(1)
1⊥

)
x

(1)
3‖ + x

(1)
1⊥x

(1)
3⊥, (B4j)

dx
(1)
3⊥

dl
=

[
−y

(1)
⊥ + 1

2

(
x

(2)
2‖ + x

(2)
2⊥ − x

(1)
1⊥

)]
x

(1)
3⊥

+ x
(1)
1⊥x

(1)
3‖ − y

(1)
⊥ x

(2)
3⊥, (B4k)

dx
(2)
3⊥

dl
=

[
−y

(1)
⊥ + 1

2

(
x

(2)
2‖ + x

(2)
2⊥+x

(1)
1⊥

)]
x

(2)
3⊥−y

(1)
⊥ x

(1)
3⊥, (B4l)

dy
(1)
⊥

dl
= −(

y
(1)
⊥

)2 − x
(1)
3⊥x

(2)
3⊥. (B4m)

Note that the variables y
(2)
2‖ + y

(2)
2⊥ and x

(2)
2‖ + x

(2)
2⊥ do not

flow as they do not appear in HB
int. In perturbation, we can drop

these small variables to obtain closed one-loop RG equations.
By keeping all the relevant terms, we have Eqs. (22).

APPENDIX C: SPIN-LATTICE RELAXATION RATE
FOR A THREE-BAND TOMONAGA-LUTTINGER LIQUID

The spin-lattice relaxation rate 1/T1 in a NMR experiment
detects the local spin correlation function

1

T1
= A2

f T
∑

q

Imχ (q,ω)

ω
, (C1)

where Af is the hyperfine coupling constant. The spin
correlation function in a multiband system is defined as

χαβ(x,τ ) =
∑
m

〈
Sα

m(x,τ )Sβ
m(0,0)

〉
, (C2)

where Sα
m = 1

2

∑
ss ′ c

†
msσ

α
ss ′cms ′ is the spin operator in the mth

band and α,β = x,y,z.
For a system where spin rotational symmetry is respected,

χαβ = χδαβ . We find that the dominant contribution to χ

comes from the q ∼ 0 and q ∼ 2kF components. Summing

over all the bands, we have the following form of the
temperature-dependent spin-lattice relaxation rate,

1

T1
∝ A1T + A2T

1
2 [(Kc+1+ 1

3 Kc−1+ 2
3 Kc0)+(Ks+1+ 1

3 Ks−1+ 2
3 Ks0)]−1

+A3T
1
2 [( 4

3 Kc−1+ 2
3 Kc0)+( 4

3 Ks−1+ 2
3 Ks0)]−1. (C3)

The first linearly temperature-dependent term follows Kor-
ringa law as in Fermi liquids. The second term comes from
the two degenerate bands m = ±1 and both have the same
exponent. The third term comes from the nondegenerate band
m = 0. In the noninteracting limit, Kμν = 1; thus all three
terms become linearly temperature dependent as in Fermi
liquids.

With the help of spin rotational symmetry, we can further
simplify the expression in Eq. (C3). Considering the spin
correlation function χαβ = χδαβ in the TLL fixed point, the
spin SU (2) symmetry will impose the following constraints to
Tomonaga-Luttinger parameters,

Ksm = 1. (C4)

Meanwhile, we have Kc+1 = Kc−1 in our model. In weak
coupling, we can expand Tomonaga-Luttinger parameters as
Kμν = 1 − yμν . Then the spin-lattice relaxation rate can be
simplified as

1

T1
∝ AT + BT 1− y

(2)
4⊥
2 , (C5)

where the coupling constant y
(2)
4⊥ is chosen as its initial value

y
(2)
4⊥ = U/πvF . When the short-ranged Coulomb repulsion

governs the system, U is positive, and the dominant contri-
bution will come from the second term at low temperatures.
The spin-lattice relaxation rate 1/T1 will exhibit noninteger
power law temperature dependence. However, U may become
negative effectively, e.g., when electron-phonon interaction
dominates. In this case, 1/T1 will become linearly temperature
dependent at low temperatures as in Fermi liquids. It is
consistent with the common sense that SDW terms will become
irrelevant when U < 0.

APPENDIX D: INTERACTING HAMILTONIAN
H B

int FOR kF+1 �= kF−1

When the degeneracy of the two E′ bands is lifted,
kF+1 �= kF−1. From Eq. (8), we find that the terms containing
phase φ̃c+1 ∝ φc+1 − φc−1 (indicated with an underline in the
following) should change with a phase factor �kF x, resulting
in the interacting Hamiltonian HB

int for kF+1 �= kF−1 as follows:

HB
int = − g

(1)
1⊥

4

(2πa)2

∫
dx cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)
cos(2θ̃s+1)

+ g
(1)
2‖

4

(2πa)2

∫
dx cos(2�kF x + 2φ̃c+1) cos(2φ̃s+1)

+ g
(1)
2⊥

4

(2πa)2

∫
dx cos(2�kF x + 2φ̃c+1) cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)

205129-14



INSTABILITY OF THREE-BAND TOMONAGA-LUTTINGER . . . PHYSICAL REVIEW B 94, 205129 (2016)

+ g
(1)
3‖

4

(2πa)2

∫
dx cos(2θ̃c+1) cos(2θ̃s+1)

+ g
(1)
3⊥

4

(2πa)2

∫
dx cos(2θ̃c+1) cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)

+ g
(1)
4⊥

4

(2πa)2

∫
dx cos(2φ̃s+1) cos

(
2√
3
φ̃s−1 + 4√

6
φ̃s0

)

− g
(2)
1⊥

4

(2πa)2

∫
dx cos(2�kF x + 2φ̃c+1) cos(2θ̃s+1)

+ g
(2)
3⊥

4

(2πa)2

∫
dx cos(2θ̃c+1) cos(2φ̃s+1)

− f
(1)
1⊥

8

(2πa)2

∫
dx

[
cos φ̃s+1 cos

(
− 1√

3
φ̃s−1 + 4√

6
φ̃s0

)
cos θ̃s+1 cos

√
3θ̃s−1 + (cos → sin)

]

+ f
(1)
3‖

8

(2πa)2

∫
dx[cos θ̃c+1 cos

√
3θ̃c−1 cos θ̃s+1 cos

√
3θ̃s−1 + (cos → sin)]

+ f
(1)
3⊥

8

(2πa)2

∫
dx

[
cos θ̃c+1 cos

√
3θ̃c−1 cos φ̃s+1 cos

(
− 1√

3
φ̃s−1 + 4√

6
φ̃s0

)
+ (cos → sin)

]

+ f
(2)
3⊥

8

(2πa)2

∫
dx[cos θ̃c+1 cos

√
3θ̃c−1 cos φ̃s+1 cos

√
3φ̃s−1 + (cos → sin)]

+ g
(1)
⊥

2

(2πa)2

∫
dx cos

(
− 4√

3
φ̃s−1 + 4√

6
φ̃s0

)
, (D1)

where �kF = kF+1 − kF−1.

APPENDIX E: NONPERTURBATIVE SOLUTIONS

Indeed, there exist other solutions to the one-loop RG equations (22) besides the perturbative solutions discussed in Sec. VI B.
One example is given by the following fixed points satisfying Eq. (24):

y
(1)
1⊥ = y

(1)
4⊥ = 0, (E1a)

−y
(1)
2⊥y

(2)
1⊥ + y

(1)
3‖ y

(1)
3⊥ = 0, (E1b)

y
(1)
2‖ y

(1)
2⊥ + y

(1)
3⊥y

(2)
3⊥ = 0, (E1c)

and

y
(1)
⊥ = x

(1)
1⊥ = 0, (E2a)

x
(1)
3‖ x

(1)
3⊥ = x

(1)
3⊥x

(2)
3⊥ = 0. (E2b)

The solution gives rise to a five or six dimensional manifold. It is easy to see that these fixed points are critical points except
the trivial TLL fixed point 	y∗ = 0. This can be examined through the W matrix defined in Eq. (28).

As mentioned in Sec. VI B, the 13 running coupling constants form two separated close sets in Eqs. (22),
{y(1)

1⊥,y
(1)
2‖ ,y

(1)
2⊥,y

(1)
3‖ ,y

(1)
3⊥,y

(1)
4⊥,y

(2)
1⊥,y

(2)
3⊥} and {x(1)

1⊥,x
(1)
3‖ ,x

(1)
3⊥,x

(2)
3⊥,y

(1)
⊥ }. So the W matrix is diagonal block as in Eq. (32), and the
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generic forms of W1 and W2 at a fixed point 	y = 	y∗ are given as follows:

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2y
(1)∗
1⊥ 0 −y

(2)∗
1⊥ y

(1)∗
3⊥ y

(1)∗
3‖ 0 −y

(1)∗
2⊥ 0

1
2y

(1)∗
2‖

1
2y

(1)∗
1⊥ −y

(1)∗
4⊥ 0 0 −y

(1)∗
2⊥ 0 0

− 1
2y

(1)∗
2⊥ − y

(2)∗
1⊥ −y

(1)∗
4⊥ − 1

2y
(1)∗
1⊥ 0 0 −y

(1)∗
2‖ −y

(1)∗
1⊥ 0

− 1
2y

(1)∗
3‖ + y

(1)∗
3⊥ 0 0 − 1

2y
(1)∗
1⊥ y

(1)∗
1⊥ 0 0 0

− 1
2y

(1)∗
3⊥ + y

(1)∗
3‖ 0 0 y

(1)∗
1⊥ −y

(1)∗
4⊥ − 1

2y
(1)∗
1⊥ −y

(1)∗
3⊥ − y

(2)∗
3⊥ 0 −y

(1)∗
4⊥

1
2y

(1)∗
4⊥ −y

(1)∗
2⊥ −y

(1)∗
2‖ 0 −y

(2)∗
3⊥

1
2y

(1)∗
1⊥ 0 −y

(1)∗
3⊥

− 1
2y

(2)∗
1⊥ − y

(1)∗
2⊥ 0 −y

(1)∗
1⊥ 0 0 y

(2)∗
1⊥ y

(1)∗
4⊥ − 1

2y
(1)∗
1⊥ 0

1
2y

(2)∗
3⊥ 0 0 0 −y

(1)∗
4⊥ −y

(1)∗
3⊥ − y

(2)∗
3⊥ 0 −y

(1)∗
4⊥ + 1

2y
(1)∗
1⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E3)

and

W2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2x
(1)∗
1⊥ x

(1)∗
3⊥ x

(1)∗
3‖ 0 0

− 1
2x

(1)∗
3‖ + x

(1)∗
3⊥ − 1

2x
(1)∗
1⊥ x

(1)∗
1⊥ 0 0

− 1
2x

(1)∗
3⊥ + x

(1)∗
3‖ x

(1)∗
1⊥ −y

(1)∗
⊥ − 1

2x
(1)∗
1⊥ −y

(1)∗
⊥ −x

(1)∗
3⊥ − x

(2)∗
3⊥

1
2x

(2)∗
3⊥ 0 −y

(1)∗
⊥ −y

(1)∗
⊥ + 1

2x
(1)∗
1⊥ −x

(1)∗
3⊥ − x

(2)∗
3⊥

0 0 −x
(2)∗
3⊥ −x

(1)∗
3⊥ −2y

(1)∗
⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E4)

On the 5D or 6D fixed hypersurface determined by Eqs. (E1)
and (E2), there exist both relevant and irrelevant scaling
fields at each nontrivial fixed point (	y∗ �= 0). For instance,
we consider the W2 matrix and the solution

y
(1)
⊥ = x

(1)
1⊥ = x

(1)
3⊥ = 0, (E5a)

x
(1)
3‖ = x

(1)∗
3‖ , (E5b)

x
(2)
3⊥ = x

(2)∗
3⊥ . (E5c)

The W2 matrix has two nonzero eigenvalues with opposite

signs, ±
√

(x(1)∗
3‖ )2 + (x(2)∗

3⊥ )2. Similarly, the solution

y
(1)
⊥ = x

(1)
1⊥ = x

(1)
3‖ = x

(2)
3⊥ = 0, (E6a)

x
(1)
3⊥ = x

(1)∗
3⊥ , (E6b)

also gives rise to eigenvalues ±x
(1)∗
3⊥ for matrix W2.

The 8 variables {y(1)
1⊥,y

(1)
2‖ ,y

(1)
2⊥,y

(1)
3‖ ,y

(1)
3⊥,y

(1)
4⊥,y

(2)
1⊥,y

(2)
3⊥} de-

scribe the coupling within the two degenerate E′ bands. Within
this subspace of the total 13-dimensional parameter space,
there exist a duality symmetry on the critical hypersurface. If
one exchanges the fields,

φ̃c+1 ↔ θ̃c+1, (E7a)

φ̃s+1 ↔ θ̃s+1, (E7b)

the forms of Hamiltonian (11) and (13) do not change.
So the particular choice of coupling constants on the fixed
hypersurface given by Eqs. (E1) and (E2),

y
(1)
2‖ = y

(1)
3‖ , (E8a)

y
(1)
2⊥ = y

(1)
3⊥, (E8b)

y
(2)
1⊥ = −y

(2)
3⊥, (E8c)

y
(1)
1⊥ = y

(1)
4⊥ = 0, (E8d)

x
(1)
1⊥ = x

(1)
3‖ = x

(1)
3⊥ = x

(2)
3⊥ = y

(1)
⊥ = 0, (E8e)

and Kc+1 = Ks+1 = 1 will give rise to self-dual fixed points.
However, the coupling between the E′ bands and the A′

1 band,
with nonzero x

(1)
3‖ ,x

(1)
3⊥,x

(2)
3⊥, will spoil such a duality symmetry.

APPENDIX F: NUMERICAL STUDY OF ONE-LOOP
RG EQUATIONS

We solve the one-loop RG equations (22) numerically and
the calculation is carried out in two stages. First, beginning
with the initial values given by Eq. (6),

y
(1)
1⊥ = J

πvF

, y
(1)
2‖ = U − 3J

πvF

, y
(1)
2⊥ = U − 2J

πvF

,

y
(1)
3‖ = 0, y

(1)
3⊥ = J

πvF

, y
(1)
4⊥ = U

πvF

,

205129-16



INSTABILITY OF THREE-BAND TOMONAGA-LUTTINGER . . . PHYSICAL REVIEW B 94, 205129 (2016)

FIG. 7. The RG flows starting from bare values given in Eq. (F1)
with U

πvF
= 0.8 and J

πvF
= 0.2.

y
(2)
1⊥ = J

πvF

, y
(2)
3⊥ = J

πvF

,

x
(1)
1⊥ = J

πvF

, x
(1)
3‖ = 0, x

(1)
3⊥ = J

πvF

,

x
(2)
3⊥ = J

πvF

, y
(1)
⊥ = U

πvF

, (F1)

we find that the running coupling constant y
(2)
1⊥ always

approaches the order of O(1) first, which is consistent with
analytic analysis in Secs. VI A and VI B that the most relevant
coupling constant is y

(2)
1⊥. For instance, the RG flows starting

from these bare values given in Eq. (F1) with U
πvF

= 0.8 and
J

πvF
= 0.2 are plotted in Fig. 7.

However, there exist several different ordered states associ-
ated with the dominant y

(2)
1⊥ term. In order to distinguish these

FIG. 8. The RG flows starting from initial values given in
Eq. (F2) with U

πvF
= 0.8 and J

πvF
= 0.2, satisfying that J < U/3.

The dominant phase is a spin-singlet superconductor, which is given
by the order parameter O20

pp .

FIG. 9. The RG flows starting from initial values given in
Eq. (F2) with U

πvF
= 0.8 and J

πvF
= 0.3, satisfying that J > U/3.

The dominant phase is a spin-triplet superconductor, which is given
by the order parameter O23

pp .

competing orders, we will suppress the bare values by a factor
ε < 1 except the most relevant one y

(2)
1⊥, and choose the initial

values as follows:

y
(1)
1⊥ = J

πvF

ε, y
(1)
2‖ = U − 3J

πvF

ε, y
(1)
2⊥ = U − 2J

πvF

ε,

y
(1)
3‖ = 10−4, y

(1)
3⊥ = J

πvF

ε, y
(1)
4⊥ = U

πvF

ε,

y
(2)
1⊥ = J

πvF

, y
(2)
3⊥ = J

πvF

ε,

x
(1)
1⊥ = J

πvF

ε, x
(1)
3‖ = 10−4, x

(1)
3⊥ = J

πvF

ε,

x
(2)
3⊥ = J

πvF

ε, y
(1)
⊥ = U

πvF

ε. (F2)

There are two distinct situations for different J/U values. (1)
When J/U < 1/3, an example is shown in Fig. 8, with U

πvF
=

0.8 and J
πvF

= 0.2, the leading terms are y
(1)
1⊥ < 0,y

(1)
2⊥ > 0,

and y
(2)
1⊥ > 0. These values of coupling constants will lock the

bosonic fields at the saddle point with nonzero order parameter
O20

pp. Thus we obtain the spin-singlet superconducting (SSC)
phase. (2) When J/U > 1/3, as demonstrated in Fig. 9, with
U

πvF
= 0.8 and J

πvF
= 0.3, the leading terms now become

y
(1)
1⊥ > 0,y

(1)
2⊥ < 0, and y

(2)
1⊥ > 0. By the same method, we

obtain the spin-triplet superconducting (TSC) ground state
with order parameter O23

pp. We note these three coupling

constants y
(1)
1⊥,y

(1)
2⊥, and y

(2)
1⊥ form a closed OPE, which will

become relevant simultaneously. The phase boundary deter-
mined numerically is about J/U = 1/3, which is consistent
with the W -matrix analysis of RG equations as carried in
Sec. VI B.

205129-17



JIAN-JIAN MIAO, FU-CHUN ZHANG, AND YI ZHOU PHYSICAL REVIEW B 94, 205129 (2016)

[1] J.-K. Bao, J.-Y. Liu, C.-W. Ma, Z.-H. Meng, Z.-T. Tang, Y.-L.
Sun, H.-F. Zhai, H. Jiang, H. Bai, C.-M. Feng, Z.-A. Xu, and
G.-H. Cao, Phys. Rev. X 5, 011013 (2015).

[2] Z.-T. Tang, J.-K. Bao, Y. Liu, Y.-L. Sun, A. Ablimit, H.-F. Zhai,
H. Jiang, C.-M. Feng, Z.-A. Xu, and G.-H. Cao, Phys. Rev. B
91, 020506(R) (2015).

[3] Z.-T. Tang, J.-K. Bao, Z. Wang, H. Bai, H. Jiang, Y. Liu, H.-F.
Zhai, C.-M. Feng, Z.-A. Xu, and G.-H. Cao, Sci. Chin. Mater.
58, 16 (2015).

[4] G.-H. Cao, J.-K. Bao, Z.-T. Tang, Y. Liu, and H. Jiang,
arXiv:1609.09635.

[5] H. Z. Zhi, T. Imai, F. L. Ning, J.-K. Bao, and G.-H. Cao, Phys.
Rev. Lett. 114, 147004 (2015).

[6] J. Yang, Z. T. Tang, G. H. Cao, and G.-q. Zheng, Phys. Rev. Lett.
115, 147002 (2015).

[7] T. Kong, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 91,
020507(R) (2015).

[8] F. F. Balakirev, T. Kong, M. Jaime, R. D. McDonald, C.
H. Mielke, A. Gurevich, P. C. Canfield, and S. L. Bud’ko,
Phys. Rev. B 91, 220505(R) (2015).

[9] H. Zuo, J.-K. Bao, Y. Liu, J. Wang, Z. Jin, Z. Xia, L. Li, Z. Xu,
Z. Zhu, and G.-H. Cao, arXiv:1511.06169.

[10] D. T. Adroja, A. Bhattacharyya, M. Telling, Yu. Feng, M.
Smidman, B. Pan, J. Zhao, A. D. Hillier, F. L. Pratt, and
A. M. Strydom, Phys. Rev. B 92, 134505 (2015).

[11] G. M. Pang, M. Smidman, W. B. Jiang, J. K. Bao, Z. F. Weng,
Y. F. Wang, L. Jiao, J. L. Zhang, G. H. Cao, and H. Q. Yuan,
Phys. Rev. B 91, 220502(R) (2015).

[12] Y. Liu, J.-K. Bao, H.-K. Zuo, A. Ablimit, Z.-T. Tang, C.-M. Feng,
Z.-W. Zhu, and G.-H. Cao, Sci. Chin. Phys. Mech. Astron. 59,
1 (2016).

[13] H. Jiang, G. Cao, and C. Cao, Sci. Rep. 5, 16054 (2015).

[14] X. X. Wu, C. C. Le, J. Yuan, H. Fan, and J. P. Hu, Chin. Phys.
Lett. 32, 057401 (2015).

[15] Y. Zhou, C. Cao, and F.-C. Zhang, arXiv:1502.03928.
[16] X. Wu, F. Yang, C. Le, J. Yuan, H. Fan, and J. Hu, Phys. Rev. B

92, 104511 (2015).
[17] L.-D. Zhang, X. Wu, H. Fan, F. Yang, and J. Hu,

arXiv:1512.00147.
[18] X. Wu, F. Yang, S. Qin, H. Fan, and

J. Hu, arXiv:1507.07451.
[19] H. Zhong, X.-Y. Feng, H. Chen, and J. Dai, Phys. Rev. Lett. 115,

227001 (2015).
[20] P. Chudzinski, M. Gabay, and T. Giamarchi, Phys. Rev. B 78,

075124 (2008).
[21] J.-i. Okamoto and A. J. Millis, Phys. Rev. B 85, 115406 (2012).
[22] D. Carpentier and E. Orignac, Phys. Rev. B 74, 085409 (2006).
[23] E. Arrigoni, Phys. Status Solidi B 195, 425 (1996).
[24] T. Kimura, K. Kuroki, and H. Aoki, J. Phys. Soc. Jpn. 67, 1377

(1998).
[25] T. Giamarchi, Quantum Physics in One Dimension (Clarendon

Press, Oxford, UK, 2003).
[26] J. Cardy, Scaling and Renormalization Group in Statistical

Physics (Cambridge University Press, Cambridge, UK, 1996).
[27] E. Orignac and Y. Suzumura, Eur. J. Phys. 23, 57 (2001).
[28] A. Altland and B. D. Simons, Condensed Matter Field Theory

(Cambridge University Press, Cambridge, UK, 2010).
[29] X. Dai, Z. Fang, Y. Zhou, and F.-C. Zhang, Phys. Rev. Lett. 101,

057008 (2008).
[30] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[31] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,

1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].
[32] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[33] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

205129-18

https://doi.org/10.1103/PhysRevX.5.011013
https://doi.org/10.1103/PhysRevX.5.011013
https://doi.org/10.1103/PhysRevX.5.011013
https://doi.org/10.1103/PhysRevX.5.011013
https://doi.org/10.1103/PhysRevB.91.020506
https://doi.org/10.1103/PhysRevB.91.020506
https://doi.org/10.1103/PhysRevB.91.020506
https://doi.org/10.1103/PhysRevB.91.020506
https://doi.org/10.1007/s40843-015-0021-x
https://doi.org/10.1007/s40843-015-0021-x
https://doi.org/10.1007/s40843-015-0021-x
https://doi.org/10.1007/s40843-015-0021-x
http://arxiv.org/abs/arXiv:1609.09635
https://doi.org/10.1103/PhysRevLett.114.147004
https://doi.org/10.1103/PhysRevLett.114.147004
https://doi.org/10.1103/PhysRevLett.114.147004
https://doi.org/10.1103/PhysRevLett.114.147004
https://doi.org/10.1103/PhysRevLett.115.147002
https://doi.org/10.1103/PhysRevLett.115.147002
https://doi.org/10.1103/PhysRevLett.115.147002
https://doi.org/10.1103/PhysRevLett.115.147002
https://doi.org/10.1103/PhysRevB.91.020507
https://doi.org/10.1103/PhysRevB.91.020507
https://doi.org/10.1103/PhysRevB.91.020507
https://doi.org/10.1103/PhysRevB.91.020507
https://doi.org/10.1103/PhysRevB.91.220505
https://doi.org/10.1103/PhysRevB.91.220505
https://doi.org/10.1103/PhysRevB.91.220505
https://doi.org/10.1103/PhysRevB.91.220505
http://arxiv.org/abs/arXiv:1511.06169
https://doi.org/10.1103/PhysRevB.92.134505
https://doi.org/10.1103/PhysRevB.92.134505
https://doi.org/10.1103/PhysRevB.92.134505
https://doi.org/10.1103/PhysRevB.92.134505
https://doi.org/10.1103/PhysRevB.91.220502
https://doi.org/10.1103/PhysRevB.91.220502
https://doi.org/10.1103/PhysRevB.91.220502
https://doi.org/10.1103/PhysRevB.91.220502
https://doi.org/10.1007/s11425-015-5107-0
https://doi.org/10.1007/s11425-015-5107-0
https://doi.org/10.1007/s11425-015-5107-0
https://doi.org/10.1007/s11425-015-5107-0
https://doi.org/10.1038/srep16054
https://doi.org/10.1038/srep16054
https://doi.org/10.1038/srep16054
https://doi.org/10.1038/srep16054
https://doi.org/10.1088/0256-307X/32/5/057401
https://doi.org/10.1088/0256-307X/32/5/057401
https://doi.org/10.1088/0256-307X/32/5/057401
https://doi.org/10.1088/0256-307X/32/5/057401
http://arxiv.org/abs/arXiv:1502.03928
https://doi.org/10.1103/PhysRevB.92.104511
https://doi.org/10.1103/PhysRevB.92.104511
https://doi.org/10.1103/PhysRevB.92.104511
https://doi.org/10.1103/PhysRevB.92.104511
http://arxiv.org/abs/arXiv:1512.00147
http://arxiv.org/abs/arXiv:1507.07451
https://doi.org/10.1103/PhysRevLett.115.227001
https://doi.org/10.1103/PhysRevLett.115.227001
https://doi.org/10.1103/PhysRevLett.115.227001
https://doi.org/10.1103/PhysRevLett.115.227001
https://doi.org/10.1103/PhysRevB.78.075124
https://doi.org/10.1103/PhysRevB.78.075124
https://doi.org/10.1103/PhysRevB.78.075124
https://doi.org/10.1103/PhysRevB.78.075124
https://doi.org/10.1103/PhysRevB.85.115406
https://doi.org/10.1103/PhysRevB.85.115406
https://doi.org/10.1103/PhysRevB.85.115406
https://doi.org/10.1103/PhysRevB.85.115406
https://doi.org/10.1103/PhysRevB.74.085409
https://doi.org/10.1103/PhysRevB.74.085409
https://doi.org/10.1103/PhysRevB.74.085409
https://doi.org/10.1103/PhysRevB.74.085409
https://doi.org/10.1002/pssb.2221950211
https://doi.org/10.1002/pssb.2221950211
https://doi.org/10.1002/pssb.2221950211
https://doi.org/10.1002/pssb.2221950211
https://doi.org/10.1143/JPSJ.67.1377
https://doi.org/10.1143/JPSJ.67.1377
https://doi.org/10.1143/JPSJ.67.1377
https://doi.org/10.1143/JPSJ.67.1377
https://doi.org/10.1007/s100510170082
https://doi.org/10.1007/s100510170082
https://doi.org/10.1007/s100510170082
https://doi.org/10.1007/s100510170082
https://doi.org/10.1103/PhysRevLett.101.057008
https://doi.org/10.1103/PhysRevLett.101.057008
https://doi.org/10.1103/PhysRevLett.101.057008
https://doi.org/10.1103/PhysRevLett.101.057008
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRev.158.383



