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Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an
exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux � as a single
integral of a known function of the system’s parameters. Our approach provides exact results at zero temperature,
which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent
current through p-wave and s-wave superconducting-normal hybrid rings, deriving full plots of the current as a
function of the applied flux at various system’s scales. Doing so, we recover at once a number of effects such
as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological
phase transition in the p-wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse
powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of
physical interest.
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I. INTRODUCTION

Due to the zero resistance of a superconductor, once
a current is induced for instance by an applied magnetic
flux �, in a superconducting ring, it is expected to last
in principle forever. The existence of such a persistent
current in superconducting rings was already predicted at
the discovery of superconductivity in 1911 [1,2], and later
experimentally demonstrated [3]. Remarkably, as predicted
in 1983 by Büttiker, Landauer, and Imry, superconductivity
is not a necessary mechanism to have persistent currents.
Indeed, even a normal ring threaded by a magnetic flux can
host a persistent current, provided that the temperature is low
enough to suppress inelastic scattering from phonons and
other electrons and that the size of the ring is short enough
compared to the phase coherence length [4]. Because of the
gauge invariance, both for superconducting and normal rings,
the persistent current I [�] must be a periodic function of
the magnetic flux �. This prediction has been eventually
verified in a number of experiments [5,6]. However, while
in the superconducting case the period is equal to the flux
quantum appropriate for a superconductor, with current carried
by Cooper pairs, �∗

0 = h/(2e), in the normal case such a period
is doubled, and equal to �0 = h/e.

A large amount of literature about persistent current in a
normal mesoscopic ring has addressed a number of issues
such as the effect of disorder in the ring with consequent
possible halving in the period of the current [7,8], the role
of the spin degree of freedom [9], the consequences of
the electron-electron interaction, with and without impurity
scattering [10], and the presence of spin-orbit interaction [11]
(for a recent comprehensive review on electron transport in
mesoscopic rings see, for instance, [12]). Moreover, the issue
of how the current is affected by collective fluctuations in
quasi-one-dimensional superconducting rings with a weak
link has been considered [13], together with the possibility
of using small superconducting rings, realized with pertinent

Josephson junction networks, as high-coherence quantum
devices [14–16].

Recent progresses in the fabrication of nanostructures made
it possible to engineer hybrid devices where superconductivity
is induced by proximity effect only in a section of the ring [17]
[hybrid rings (HRs)]. This enables one to explore a number of
physical regimes. For instance, one may think of looking at
the persistent current across the ring varying the lengths of the
two regions, while keeping the length of the normal region �N

shorter than the phase coherence length. In this way one may
monitor the crossover between the normal mesoscopic regime,
in which the length of the superconducting region �S is shorter
than the superconducting coherence length ξ0, towards the
complementary Josephson-junction regime, in which �S � ξ0

[18]. Accompanied to the above crossover, one is also expected
to see a crossover of the period of the persistent current, with
respect to the magnetic flux, between �0 (current carried by
electrons) and �∗

0 (current carried by Cooper pairs) [18,19].
A special type of HR has recently attracted great interest,

in view of the possibility of designing a nonambiguous way
of probing Majorana fermions (MFs) in condensed matter
systems. MFs have been predicted by Kitaev to emerge as
localized end modes in a spinless p-wave one-dimensional
superconductor in its topological phase [20]. It has been
proposed that such a system can be realized by inducing
superconductivity by proximity effect in a semiconducting
quantum wire with a sizable spin-orbit coupling (e.g., an InAs
wire) when subject to an external magnetic field [21,22].

A zero-bias peak in a tunneling spectroscopy measurement
has been claimed as an evidence for the existence of the
localized MF [23], but alternative possible explanations of the
experimental data of Ref. [23] have been provided, leaving
still as a debated question whether a MF has been really
detected, or not [24,25]. Other proposals to detect MFs have
been presented, for instance, using a quantum switch made
with two quantum dots coupled to MFs [26] or by means of
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a local flux measurement in a topological rf-SQUID with a
frustrating π junction [27] or, ultimately, of the analysis of the
persistent current in metallic rings interrupted by a Coulomb
blockaded topological superconducting segment [28].

When using I [�] as a tool to monitor the emergence of
MFs, it is of the utmost importance to disentangle effects
related to MF physics from “spurious” effects, which are
expected to appear in nontopological phases, as well. For
instance, the crossover of the period of I [�] vs � from �0

to �∗
0, can be either attributed to MFs, or can be regarded as

a simple crossover of a hybrid ring toward the mesoscopic
regime, taking place when the length of the superconducting
regions becomes longer than the corresponding supercon-
ducting coherence length [18,29]. Therefore, it is extremely
useful to recover an exact (or pertinently approximated)
formula for I [�], allowing us to make rigorous predictions
on its dependence on the system parameters, on the length
of the superconducting and nonsuperconducting regions, etc.
Nevertheless, even after a number of simplifications: consid-
ering a ballistic system, using a non-self-consistent model for
the superconducting region [30], or its corresponding lattice
version for a s-wave [31], or for a p-wave superconductor
[20], computing I [�] is typically still quite a challenging task.
In fact, the “standard” approach to the problem consists in
computing the current as

I [�] = e∂�F[�; T ], (1)

with F[�; T ] being the system’s free energy at applied flux �

and temperature T . At T = 0 Eq. (1) yields

I [�] = e∂�EGS[�] = e∂�

∑
En<0

En, (2)

where the sum is taken over energies of the occupied single-
quasiparticle states. To compute these energies, one has to
solve the secular equation for the energy eigenvalues at
nonzero � with periodic boundary conditions over the whole
ring. In general, the resulting set of equations looks quite
formidable and hard to deal with, which requires resorting to
various approximations, such as retaining only the low-energy
part of the spectrum [19], or employing various approxima-
tions for the single-quasiparticle energies as a function of �

in various regions of the spectrum [18].
In this paper we present a technique that, under very

general assumptions such as the ones listed above, allows for
exactly expressing I [�] as a single integral of a pertinently
constructed function of the system’s parameters. At T = 0,
our approach is based on first writing Eqs. (2) in terms of
a single integral over an appropriate path in the complex
energy plane, and on eventually deforming the integration
path to the imaginary axis. In this respect, our method can
be regarded as an adapted version of the technique developed
in Refs. [32–35] to compute the dc Josephson current across an
SNS junction in terms of the single-quasiparticle S matrix of
the junction, which has been successfully applied to a number
of cases of interest, such as the Josephson current through a
chaotic Josephson junction [36], the critical supercurrent in the
quantum spin-Hall effect [37], and the current across a long
Josephson junction [35,38]. In fact, our method combines the
idea of deforming the integration path to the imaginary axis

with the idea of using the transfer matrix, rather than the S

matrix, to recover the quasiparticle scattering dynamics of the
system. Indeed, while in principle the transfer matrix and the
S matrix can be used on an equivalent footing to derive the
transport properties of a mesoscopic system [39], the former
approach comes out to be more appropriate for systems with
periodic boundary conditions, such as quantum rings (see, for
instance, Ref. [40] for an example of application of transfer
matrix approach to the persistent current through a disordered,
normal mesoscopic ring). Besides providing an exact formula
allowing us to easily compute I [�] by numerically integrating
a known function at fixed �, in the large-ring limit, our
technique is also suitable for a systematic expansion in inverse
powers of the system’s length, which is the counterpart for
a HR of the expansion in inverse powers of the length of a
long SNS junction discussed in Ref. [35] for a single-channel
system and generalized in Ref. [38] to the multichannel case. In
this limit the formula for I [�] is greatly simplified, allowing
for the derivation of analytic closed-form formulas for the
current in a number of cases of interest. As an example of
the effectiveness of our technique, we consistently extend the
results of Refs. [28,29,41] by deriving exact plots of I [�] vs
� through p-wave and s-wave superconducting-normal hybrid
rings, which, by comparing the plots in the two cases with each
other, allows us to highlight the features strictly related to the
emergence of MFs in the p-wave case.

Remarkably, while in this paper we do not account for a
number of features that can be in principle important in HRs,
such as quantum phase slips [42], electronic interaction effects
[10], disorder [7,8], etc., as we outline among the concluding
remarks, it should not be difficult to pertinently address them
within our formalism. In fact, we plan to treat some of this
issues in forthcoming publications, as a natural development
of this work.

The paper is organized as follows:
(1) In Sec. II we introduce the transfer matrix approach

which we use to compute the persistent current.
(2) In Sec. III we introduce the lattice model Hamiltonian

for a hybrid superconducting-superconducting ring, both for
the p-wave and for the s-wave superconductor.

(3) In Sec. IV we compute the persistent current in some
relevant reference model, such as a superconducting ring
interrupted by a normal weak link, and in the case of a hybrid
normal-superconducting ring. Specifically, we recover both
cases as particular limit of the model introduced in Sec. III:
the former one by making one of the two superconducting
regions shrink to zero, the latter one by simply setting to zero
the superconducting gap in one of the two regions.

(4) In Sec. V we consider the limit of large ring size in the
HR both in the s-wave, and in the p-wave case. In particular,
we first show how one recovers the results of Refs. [35,38] in
the limit of infinite length for the superconducting region,
therefore, we discuss the complementary limit of a short-
superconducting and a long-normal region.

(5) In Sec. VI we outline how our results can be extended to
a temperature T finite, but well below the superconducting gap.
Specifically, this allows us to recover within our formalism the
finite-T formula at Eq. (1).

(6) In Sec. VII we provide our main conclusions and
discuss further possible developments of our work.
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(7) In the Appendix we review the derivation of the subgap
states in an open Kitaev chain, of finite length �S , which is
functional to the discussion of the results of Sec. IV.

II. THE TRANSFER MATRIX APPROACH
TO THE PERSISTENT CURRENT

Our technique to compute the persistent current through
mesoscopic normal/superconducting rings is based on a
combination of the approach to the Josephson current across
an SNS junction based on the analytical continuation of the
quasiparticle S matrix to the imaginary axis [32–35] with
the transfer matrix (TM) approach to transport in mesoscopic
systems [39], particularly well suited to account for periodic
boundary conditions in quantum rings. The key feature of our
approach is that it eventually leads to an exact, closed-form
formula for the ground-state energy of the system at a given
� and, therefore, for the persistent current across the ring.
In order to illustrate its main features, in this section we
review the main steps leading to our final formula for the
ground-state energy in the case of a normal, mesoscopic ring.
Nevertheless, as we discuss in the following, the case of a
HR containing one, or more, superconducting sections is quite
a straightforward generalization of the derivation we provide
in this section. To treat the p-wave and the s-wave case on
the same footing we choose to perform our derivation within
a lattice one-dimensional model Hamiltonian, which, in the
superconducting region, corresponds to Kitaev’s Hamiltonian
in the p-wave case [20], and to the lattice one-dimensional
Hamiltonian of Ref. [31] in the s-wave case.

As an introduction to the technique presented in this article,
let us consider a normal (nonsuperconducting) ring with �

sites as depicted in Fig. 1. We can ideally divide the ring into
three regions, within the shaded region nontrivial scattering
processes may happen, while in the remaining part the system
is described by the asymptotic lattice Hamiltonian of the form

FIG. 1. An example of the ring geometry used in the article:
nontrivial scattering happens in the shaded region, whereas in the
remaining part one can write the wave function in terms of simple
scattering states (cf. main text)

Has = −J
∑

j {c†j cj+1 + c
†
j+1cj } − μ

∑
j c

†
j cj , with cj being

the single-fermion lattice annihilation operator for spinless
fermions.

Let us for the moment imagine that the ring is open at the
last site � and that j1 and j2 are limiting the region of the ring
with nontrivial scattering. The wave functions at energy E in
the two “asymptotic” regions for j < j1 and for j > j2 is

uj ∼ A<
+eikj + A<

−e−ikj (j < j1),
(3)

uj ∼ A>
+eikj + A>

−e−ikj (j > j2),

with

E = −2J cos(k) − μ. (4)

Now, by definition the transfer matrix between sites ja < j1

and jb > j2, M[E; ja,jb], relates the solution at j = ja to the
solution at j = jb, that is

ujb
= Ã+eikja + Ã−e−ikja , (5)

with [
Ã+
Ã−

]
= M[E; ja,jb]

[
A<

+
A<

−

]
. (6)

Upon considering the closed geometry, we have to impose
periodic boundary conditions (PBCs) on the solution in Eq. (3).
Going through Eq. (5), this is accounted for by means of the
secular equation

M[E; 1,�]

[
A<

+
A<

−

]
=
[
A<

+
A<

−

]
. (7)

As a result, Eq. (7) leads to the secular equation for the
allowed values of the energy E:

det{M[E; �] − I} = 0. (8)

[In Eq. (8) we suppressed the dependence of M[E; ja,jb]
on ja since, as expected because of the periodic boundary
conditions, it depends only on the distance between the sites,
which is equal to �.] Besides constituting an alternative way
of presenting the eigenvalue equation for a single particle on
the ring, Eq. (8) also provides an efficient way to compute the
ground-state energy of the system EGS, defined as the sum
of all the negative (if measured with respect to the chemical
potential) single-particle energy eigenvalues En, that is

EGS =
∑
En<0

En. (9)

In fact, single-particle negative energy eigenvalues are just
the zeros of det{M[E; �] − I} lying at the negative part of
the real axis, if one regards det{M[E; �] − I} as a function
of the complex variable E. To sum over all of them, we adapt
the approach of Refs. [35,38], namely, we first of all note that
the energy eigenvalues are the poles (with residues all equal to
1) of the function �[E; �], defined as

�[E; �] = ∂Edet{M[E; �] − I}
det{M[E; �] − I} = ∂E ln det{M[E; �] − I}.

(10)
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Im(E)

Re(E)

Im(E)
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Re(E)

(a) (b) (c)

FIG. 2. Sequence of deformations in the integration path �

eventually allowing to express I [�] as an integral over the imaginary
axis: (a) The path � obtained as the union of small circles, each one
surrounding one, and only one, negative (with respect to the Fermi
level) energy eigenvalue. (b) The integral over � can be deformed to an
integral over just one closed path, surrounding all the negative energy
eigenvalues. (c) The integral over the red-dashed arc is assumed to
be equal to 0 in the infinite-radius limit. Only the integral over the
imaginary axis (to which the solid-blue line can be continuously
deformed) is left.

We therefore introduce the integration path � depicted in
Fig. 2(a) and compute EGS as

EGS = 1

2πi

∮
�

dE E�[E; �]

= − 1

2πi

∮
�

dE ln det{M[E; �] − I}. (11)

On noting that �[E; �] must have no singularities outside
of the real axis, we deform the integration path as illustrated in
Fig. 2, so to eventually compute the integral over the imaginary
axis as

EGS = − 1

2π

∫ ∞

−∞
dω ln det{M[iω; �] − I}. (12)

Equation (12) is the heart of our article. When the ring is
pierced by a magnetic field the transfer matrix M and hence
the spectrum takes an additional dependence on the total flux
�. We can calculate the (zero-temperature) persistent current
as

I [�] = e∂�EGS[�]

= − e

2π

∫ ∞

−∞
dω ∂� ln det{M[iω; �; �] − I}. (13)

Equation (13), together with the corresponding finite-T
generalization which we discuss in the following sections,
is the key result of our paper and its main point of novelty: it
provides an exact formula for I [�] which can be readily imple-
mented, once one has derived the TM of the ring. Remarkably,
while, for the sake of the presentation, in this section we relied
on a normal mesoscopic ring, Eq. (13) does certainly apply
equally well to the case of superconducting and/or hybrid rings,
once one has constructed the appropriate TM for the system.
Importantly enough, our approach allows for circumventing
the main difficulty in computing the persistent current working
out the single-particle energy levels, using them to compute
EGS[�], and eventually employing the final result to derive the
current. Besides a few, oversimplified remarkable exceptions,
extracting the single-quasiparticle energy levels from the TM
(or by means of an equivalent approach) is quite a difficult
task to achieve, which can only be addressed either by means

of exact numerical diagonalization of the Hamiltonian (with
the corresponding limitations on the system size), or within
approximate methods based on truncating the full Hilbert space
to a small number of low-energy (subgap) states, which are
expected to carry the largest part of the current. While both
these techniques are expected to suffer of strong limitations
in their range of applicability, our Eq. (13) is universally
applicable and, once one has constructed the TM, does not
require us to go through any additional steps, besides explicitly
computing the integral on the right-hand side.

Our Eq. (13) is the analog, for a superconducting ring, of the
equation giving the Josephson current across an SNS junction
in terms of the single-particle S matrix, analytically continued
to the imaginary axis [32,34]. In this respect, it is expected
by analogy to have a wide range of applicability, either as
it stands, as an exact, closed form formula for I [�], or as a
starting point to account, for instance, for the effect of disorder
(in analogy to what is done in Ref. [36] for an SNS junction),
or of the electronic interaction. As an example of application
of our technique, in the following we derive full plots of
the persistent current in hybrid superconducting-normal rings,
both in the case of p-wave, and of s-wave superconductivity,
which allows us to highlight the key feature that, in the former
case, can be definitely attributed to the emergence of MFs at the
interfaces.

As a convention on the units of measurement, in the
following we shall measure the flux � in units of �/(2e),
so that a period �∗

0 corresponds to a 2π periodicity, while a
period �0 corresponds to a 4π periodicity.

III. MODEL HAMILTONIAN FOR A HYBRID
SUPERCONDUCTING-NORMAL RING

To model a hybrid superconducting-normal ring, we resort
to an effective lattice model Hamiltonian with position-
dependent parameters. Using a lattice model Hamiltonian
allows, on one hand, to easily introduce p-wave pairing both
in real space and in momentum space, on the other hand,
it provides a natural mean to regularize divergences which
would arise in the continuum model when summing over
the energies of the occupied levels to compute EGS[�] (and,
therefore, I [�]). To highlight special features of p-wave HRs,
in the following, when possible, we systematically compare
the results obtained in p-wave systems to the ones obtained
in s-wave systems. Therefore, in this section we derive the
transfer matrix which we shall eventually use in the following
to compute the persistent current in both cases.

A. Model Hamiltonian for a p-wave nonhomogeneous
superconducting ring

We here consider the system sketched in Fig. 3: a hybrid ring
made of two homogeneous regions, either superconducting
(p wave or s wave), or normal, each one characterized
by different parameters. In the p-wave case, referring to
the one-dimensional Kitaev Hamiltonian [20] for a spinless
p-wave superconductor, calling 1 and 2 the two regions, we
assume that the normal hopping amplitude, the pairing gap,
and the chemical potential are respectively given by w1,
1,μ1

and by w2,
2,μ2. Moreover, we assume that regions 1 and 2
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FIG. 3. Sketch of the system described by the model Hamiltonian
in Eq. (14).

are coupled at their endpoints via a normal hopping term,
with hopping amplitude τ . In a ring configuration, we also
assume that a magnetic flux � pierces the ring. By means
of an appropriate canonical redefinition of the lattice fermion
operators, it is possible to account for the applied magnetic
flux in terms of a phase factor e±i �

4 , symmetrically ascribed to
the two hopping terms between the two regions. As a result,
we eventually present the model Hamiltonian as

H = −w1

�1−1∑
j=1

{c†j cj+1 + c
†
j+1cj } − μ1

�1∑
j=1

c
†
j cj

+
1

�1−1∑
j=1

{cj cj+1 + c
†
j+1c

†
j }

−w2

�2−1∑
j=1

{d†
j dj+1 + d

†
j+1dj } − μ2

�2∑
j=1

d
†
j dj

+
2

�2−1∑
j=1

{djdj+1 + d
†
j+1d

†
j }

− τ
{[

c
†
1d�2 + d

†
1c�1

]
e

i
4 � + [d†

�2
c1 + c

†
�1

d1
]
e− i

4 �
}
. (14)

In Eq. (14) we have set the lengths of the two arms of the
ring, respectively, at �1 and at �2 and used cj ,c

†
j to denote the

lattice annihilation/creation operators at site j within region 1,
and dj ,d

†
j to denote the lattice annihilation/creation operators

at site j within region 2, with standard anticommutation rela-
tions {dj ,d

†
j ′ } = {cj ,c

†
j ′ } = δj,j ′ , all the other anticommutators

being equal to 0. Taken in the appropriate limit, the model
Hamiltonian in Eq. (14) is suitable to describing a number of
systems of physical interest, such as a p-wave superconducting
ring interrupted by a weak link [41], a hybrid p-wave-
normal metal ring, and a half-topological, half-nontopological
superconducting ring [29]. Moreover, as we discuss in the
following, taken in the limit of long-superconducting section,
the superconducting-normal hybrid ring is mapped onto the
effective model for a Josephson junction made with topological
superconductors [43,44].

In the following, we will be mostly focusing onto the

2 → 0 limit. To construct the transfer matrix, we start
from the Bogoliubov–de Gennes (BdG) equations for the
single-quasiparticle wave function at a given energy E. To
do so, we consider a generic energy eigenmode �E which,
in terms of the single-fermion lattice operators on the ring, is

given by

�E =
�1∑

j=1

{[
u

(1)
j

]∗
cj + [v(1)

j

]∗
c
†
j

}

+
�2∑

j=1

{[
u

(2)
j

]∗
dj + [v(2)

j

]∗
d
†
j

}
, (15)

with [u
(1)
j

v
(1)
j

] and [u
(2)
j

v
(2)
j

] being the single-quasiparticle wave function

in region 1 and in region 2. On imposing the canonical
commutation relation

[�E,H ] = E�E, (16)

we therefore obtain the BdG equations for the wave functions.
Within the homogeneous regions, these are given by

Eu
(1)
j = −w1

{
u

(1)
j+1 + u

(1)
j−1

}− μ1u
(1)
j + 
1

{
v

(1)
j+1 − v

(1)
j−1

}
,

Ev
(1)
j = w1

{
v

(1)
j+1 + v

(1)
j−1

}+ μ1v
(1)
j − 
1

{
u

(1)
j+1 − u

(1)
j−1

}
,

(17)

for 1 < j < �1, and

Eu
(2)
j = −w2

{
u

(2)
j+1 + u

(2)
j−1

}− μ2u
(2)
j + 
2

{
v

(2)
j+1 − v

(2)
j−1

}
,

Ev
(2)
j = w2

{
v

(2)
j+1 + v

(2)
j−1

}+ μ2v
(2)
j − 
2

{
u

(2)
j+1 − u

(2)
j−1

}
,

(18)

for 1 < j < �2. At the interfaces between the two regions,
instead, the BdG equations yield

Eu
(1)
1 = −w1u

(1)
2 − τe− i

4 �u
(2)
�2

− μ1u
(1)
1 + 
1v

(1)
2 ,

Ev
(1)
1 = w1v

(1)
2 + τe

i
4 �v

(2)
�2

+ μ1v
(1)
1 − 
1u

(1)
2 ,

Eu
(2)
�2

= −w2u
(2)
�2−1 − τe

i
4 �u

(1)
1 − μ2u

(2)
�2

− 
2v
(2)
�2−1,

Ev
(2)
�2

= w2v
(2)
�2−1 + τe− i

4 �v
(1)
1 + μ2v

(2)
�2

+ 
2u
(2)
�2−1,

Eu
(2)
1 = −w2u

(2)
2 − τe− i

4 �u
(1)
�1

− μ1u
(2)
1 + 
2v

(2)
2 ,

Ev
(2)
1 = w2v

(2)
2 + τe

i
4 �v

(1)
�1

+ μ1v
(2)
1 − 
2u

(2)
2 ,

Eu
(1)
�1

= −w1u
(1)
�1−1 − τe

i
4 �u

(2)
1 − μ1u

(1)
�1

− 
1v
(1)
�1−1,

Ev
(1)
�1

= w1v
(1)
�1−1 + τe− i

4 �v
(2)
1 + μ1v

(1)
�1

+ 
1u
(1)
�1−1. (19)

According to Eqs. (17) and (18), within the homogeneous
regions, we write the wave functions as superpositions of the
solutions of the homogeneous BdG equations, that is, we set[

uj

vj

]
=
[
u(1)

v(1)

]
eik1j (20)

in region 1, with 1 � j � �1, and[
uj

vj

]
=
[
u(2)

v(2)

]
eik2j (21)

in region 2, with 1 � j � �2. At a given energy E, the

amplitudes [u
(a)

v(a)] (a = 1,2) are determined by solving the
equations

0 = {E + 2wa cos(ka) + μa}u(a) − 2i
a sin(ka)v(a),
(22)

0 = 2i
a sin(ka)u(a) + {E − 2wa cos(ka) − μa}v(a),
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with k1,k2 determined by the dispersion relations

E2 = [2w1 cos(k1) + μ1]2 + 4
2
1 sin2(k1)

= [2w2 cos(k2) + μ2]2 + 4
2
2 sin2(k2). (23)

Solving Eq. (23) at a given energy, we define the particlelike
momenta k(a)

p and the holelike momenta k
(a)
h as

cos
(
k(a)
p

) = − waμa

2
(
w2

a − 
2
a

) − 1

2

√√√√E2 − [
(a)
w

]2
w2

a − 
2
a

,

(24)

cos
(
k

(a)
h

) = − waμa

2
(
w2

a − 
2
a

) + 1

2

√√√√E2 − [
(a)
w

]2
w2

a − 
2
a

,

with


(a)
w = 
a

√
4 − μ2

a

w2
a − 
2

a

. (25)

[Note that Eqs. (24) do in principle hold also for |E| <


(a)
w .] At given k(a)

p ,k
(a)
h , one determines the wave functions

(u(a)
p ,v(a)

p ) and (u(a)
h ,v

(a)
h ), defined as solutions of Eqs. (22) with

ka respectively equal to kp and kh. Taking the most general
linear combinations of wave functions at the same energy, one
finds that a generic wave function at energy E within region a

(=1,2) takes the form[
u

(a)
j

v
(a)
j

]
= A

(a)
(p,+)

[
u(a)

p

v(a)
p

]
eik

(a)
p j + A

(a)
(p,−)

[
u(a)

p

−v(a)
p

]
e−ik

(a)
p j

+A
(a)
(h,+)

[
u

(a)
h

−v
(a)
h

]
e−ik

(a)
h j + A

(a)
(h,−)

[
u

(a)
h

v
(a)
h

]
eik

(a)
h j .

(26)

The transfer matrix is fully determined once one re-
covers the relations between the amplitudes A

(a)
(p,+),A

(a)
(p,−),

A
(a)
(h,+),A

(a)
(h,−) in the two regions. These are determined by the

interface conditions obtained from Eqs. (19). In a compact
notation, these are given by

a[�][ϒ (a)(E)]

⎡
⎢⎢⎢⎢⎣

A
(a)
(p,+)

A
(a)
(p,−)

A
(a)
(h,+)

A
(a)
(h,−)

⎤
⎥⎥⎥⎥⎦

= �b[�][ϒ (b)(E)]Tb(E; �b)

⎡
⎢⎢⎢⎢⎣

A
(b)
(p,+)

A
(b)
(p,−)

A
(b)
(h,+)

A
(b)
(h,−)

⎤
⎥⎥⎥⎥⎦, (27)

with b = 2(1) if a = 1(2), and the matrix a[�] defined as

a[�] =

⎡
⎢⎢⎣

τe
i
4 � 0 0 0

0 τe− i
4 � 0 0

0 0 wa 
a

0 0 
a wa

⎤
⎥⎥⎦, (28)

the matrix [ϒ (a)(E)] defined as

[ϒ (a)(E)] =

⎡
⎢⎢⎢⎢⎣

eik
(a)
p u(a)

p e−ik
(a)
p u(a)

p e−ik
(a)
h u

(a)
h eik

(a)
h u

(a)
h

eik
(a)
p v(a)

p −e−ik
(a)
p v(a)

p −e−ik
(a)
h v

(a)
h eik

(a)
h v

(a)
h

u(a)
p u(a)

p u
(a)
h u

(a)
h

v(a)
p −v(a)

p −v
(a)
h v

(a)
h

⎤
⎥⎥⎥⎥⎦,

(29)

the matrix �a[�] given by

�a[�] =

⎡
⎢⎢⎢⎣

wa −
a 0 0

−
a wa 0 0

0 0 τe− i
4 � 0

0 0 0 τe
i
4 �

⎤
⎥⎥⎥⎦, (30)

and, finally, the transfer matrix for a homogeneous region of
length � being given by

Ta(E; �) =

⎡
⎢⎢⎢⎢⎣

eik
(a)
p � 0 0 0

0 e−ik
(a)
p � 0 0

0 0 e−ik
(a)
h � 0

0 0 0 eik
(a)
h �

⎤
⎥⎥⎥⎥⎦. (31)

As a result, the transfer matrix for the full ring takes the
form

Mp-wave[E; �; �1; �2] = [ϒ (2)(E)]−1−1
2 [�]�1[�][ϒ (1)(E)]

× T1(E; �1)[ϒ (1)(E)]−1−1
1 [�]

×�2[�][ϒ (2)(E)]T2(E; �2). (32)

Equation (32) is the key ingredient we need to compute the
persistent current in the various regimes of interest. As stated
above, we now derive the analog of Eq. (32) in the case of a
ring made of s-wave superconducting regions.

B. Model Hamiltonian for an s-wave nonhomogeneous
superconducting ring

In the case of a system made of two s-wave superconducting
regions with parameters respectively given by w1,
1,μ1 and
by w2,
2,μ2, and connected to each other with hopping am-
plitude τ , the corresponding (spinful) Hamiltonian is given by

H = −w1

∑
σ

�1−1∑
j=1

{c†j,σ cj+1,σ + c
†
j+1,σ cj,σ }

−μ1

∑
σ

�1∑
j=1

c
†
j,σ cj,σ + 
1

�1∑
j=1

{cj,↑cj,↓ + c
†
j,↓c

†
j,↑}

−w2

∑
σ

�2−1∑
j=1

{d†
j,σ dj+1,σ + d

†
j+1,σ dj,σ }

−μ2

∑
σ

�2∑
j=1

d
†
j,σ dj,σ + 
2

�2∑
j=1

{dj,↑dj,↓ + d
†
j,↓d

†
j,↑}

−
∑

σ

τ
{[

c
†
1,σ d�2,σ + d

†
1,σ c�1,σ

]
e

i
4 �

+ [d†
�2,σ

c1,σ + c
†
�1,σ

d1,σ

]
e− i

4 �
}
. (33)
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Going through the same steps as in the p-wave case, we
eventually find that the transfer matrix of the ring is now given
by

Ms-wave[E; �; �1; �2] = [ϒ̃ (2)(E)]−1̃−1
2 [�]�̃1[�][ϒ̃ (1)(E)]

× T1(E; �1)[ϒ̃ (1)(E)]−1̃−1
1 [�]

× �̃2[�][ϒ̃ (2)(E)]T2(E; �2). (34)

The ̃a[�],�̃a[�] matrices in Eq. (34) are simply obtained
by setting 
a to 0 respectively in Eqs. (28) and (30). The
matrix [ϒ̃ (a)(E)] is given by

[ϒ̃ (a)(E)] =

⎡
⎢⎢⎢⎢⎣

eik
(a)
p u(a)

p e−ik
(a)
p u(a)

p e−ik
(a)
h u

(a)
h eik

(a)
h u

(a)
h

eik
(a)
p v(a)

p e−ik
(a)
p v(a)

p e−ik
(a)
h v

(a)
h eik

(a)
h v

(a)
h

u(a)
p u(a)

p u
(a)
h u

(a)
h

v(a)
p v(a)

p v
(a)
h v

(a)
h

⎤
⎥⎥⎥⎥⎦,

(35)

with u(a),v(a) determined as nontrivial solutions of the alge-
braic system

0 = {E + 2wa cos(ka) + μa}u(a) − 
av
(a),

(36)
0 = −
au

(a) + {E − 2wa cos(ka) − μa}v(a),

for k1,k2 solving the secular equation

E2 = [2w1 cos(k1) + μ1]2 + 
2
1

= [2w2 cos(k2) + μ2]2 + 
2
2, (37)

and k(a)
p ,k

(a)
h defined by

cos
[
k(a)
p

] = − μa

2wa

−
√

E2 − 
2
a

4w2
a

,

cos
[
k

(a)
h

] = − μa

2wa

+
√

E2 − 
2
a

4w2
a

. (38)

Besides the differences in the form of the matrices appear-
ing in Eqs. (32) and (34), an important point to stress is that
both matrices are block factorizable, with the factorization
corresponding to the possibility of regarding the system as
a sequence of homogeneous regions separated by interfaces.
Indeed, the TM for a one-dimensional system comes out to
be simply the ordered product of the matrices corresponding
to the homogeneous regions and of the ones corresponding
to the interfaces, taken in the appropriate sequence. From
this respect, the matrices corresponding to each homogeneous
region and to each interface are sort of “building blocks”
of the global transfer matrix (see Fig. 4 for a sketch of the
factorizability of the matrix).

IV. CALCULATION OF THE PERSISTENT CURRENT

In this section we compute the persistent current in a number
of cases of interest. To highlight the feature related to the
emergence of MFs at the SN interfaces, it is worth comparing
the results obtained in p-wave systems with the ones obtained
in s-wave systems. Therefore, in the following we perform the
calculation in both cases, by using Eq. (13), with the transfer

FIG. 4. Graphical representation of the factorizability of the
transfer matrix: for the specific system depicted in the figure, the
transfer matrix is given by M = T2M1T1M2T2 (from right to left).

matrix computed according to Eq. (32) (p-wave case), or to
Eq. (34) (s-wave case). To keep in touch with the results of
Ref. [29], we begin with the calculation of the current in the
case of a superconducting ring interrupted by a weak link
though, at variance with the discussion of Ref. [29], we will
not assume fermion parity conservation. As stated above, for
comparison, we also compute the current in the case of a ring
made with an s-wave superconductor.

A. Persistent current across a superconducting
ring interrupted by a weak link

A p-wave superconducting ring interrupted by a weak link
can be physically realized at a semiconducting quantum wire
with a sizable spin-orbit coupling (e.g., an InAs wire) deposited
onto a bulk superconducting ring pierced by a magnetic flux
�. The combined effect of spin-orbit coupling, Zeeman spin
splitting, and proximity-induced superconductivity from the
bulk superconductor underneath has been shown to make
the wire effectively behave as a one-dimensional p-wave
superconductor [21,22]. As for what concerns a concrete
proposal of an experimental realization of the p-wave HR,
we refer to Refs. [28,29]. Specifically, we assume that the
weak link is actually realized as a physical interruption of
the superconducting ring with a tiny insulating layer, which
cuts the current within the superconductor, thus allowing the
persistent current to only flow across the semiconducting
nanowire. In fact, among other advantages, this geometry
allows for recovering as only detectable current the one
flowing through the semiconducting wire, which is what we
are eventually interested in. An important point to stress is
that it is typically difficult to keep the ring perfectly isolated
from the substrate, so to avoid fermion parity nonconserving
relaxation processes [29–45]. Moreover, in order for the
grand-canonical-like description of our system we employ
here to be reliable, one has to think of a ring in contact with
a substrate, working as an electronic reservoir. Therefore, we
should not expect fermion parity to be preserved here. For
this reason, though one might in principle account for fermion
parity conservation by implementing some pertinent adapted
version of the approach presented in Ref. [37], throughout
all our paper we assume fermion parity not to be conserved
which, nevertheless, does not affect the possibility of probing
emergent MFs by means of an appropriate persistent current
measurement.

In Fig. 5 we provide a sketch of the system we are
considering here, that is, a homogeneous ring interrupted by
a weak link. The corresponding model Hamiltonian can be
recovered from Eq. (14) in the p-wave case and from Eq. (33)
in the s-wave case, by setting to zero the length of one of the
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FIG. 5. Sketch of the superconducting ring interrupted by a weak
link as introduced and discussed in Ref. [29]. A semiconducting
ring (depicted as a solid black line) is deposited on top of a bulk
superconducting ring, interrupted by a tiny insulating layer (light blue
sector). The superconductor induces superconductivity within the
semiconducting wire by proximity effect. All the current circulating
across the system is due to tunneling effect within the semiconducting
wire.

two regions. In the former case, it is given by

Hp−w = −w

�−1∑
j=1

{c†j cj+1 + c
†
j+1cj } − μ

�∑
j=1

c
†
j cj

+


�−1∑
j=1

{cj cj+1 + c
†
j+1c

†
j }

− τ {c†1c�e
i
2 � + c

†
�c1e

− i
2 �}, (39)

while in the latter case it can be presented as

Hs−w = −w
∑

σ

�−1∑
j=1

{c†j,σ cj+1,σ + c
†
j+1,σ cj,σ }

−μ
∑

σ

�1∑
j=1

c
†
j,σ cj,σ + 


�∑
j=1

{cj,↑cj,↓ + c
†
j,↓c

†
j,↑}

−
∑

σ

τ {c†1,σ c�,σ e
i
2 � + c

†
�,σ c1,σ e− i

2 �}. (40)

Let us note that, in this case, the flux is fully “loaded”
on the single hopping term. The transfer matrix derived from
Eqs. (39) and (40) can therefore be simply expressed in terms
of the ones we provide in Sec. III B by simply setting one of
the two lengths (say �2) to 0. We therefore obtain

Mp−w[E; �; �] = [ϒ(E)]−1−1[2�]�[2�][ϒ(E)]T[E; �],

(41)

and, similarly

Ms−w[E; �; �] = [ϒ̃(E)]−1̃
−1

[2�]�̃[2�][ϒ̃(E)]T[E; �].

(42)

To compute the current, let us start with the ring described
by the TM in Eq. (41). In Fig. 6 we plot I [�] vs � for the
values of the parameters reported in the caption, particularly
for a chemical potential μ = 0. At zero chemical potential,
the p-wave superconductor lies well within the topological
region, with two MFs γL,γR localized at its endpoints. This

I[Φ]

0−2π 2π

0

FIG. 6. Plot of the persistent current I [�] vs � (in units of �0) for
the p-wave mesoscopic ring with a weak link described by Eq. (39).
The parameters are chosen so that μ = 0, 
 = 0.2, and τ = 0.5 (in
units of w), � = 4 (full red curve), � = 8 (dashed green curve), � = 40
(dot-dashed blue curve). The estimated Majorana hybridization length
in this case is �M ≈ 5.

allows us to provide a simple interpretation of the curves
we draw in Fig. 6 at different values of the length � of the
superconductor. The key parameter here is the “hybridization
length” �M between γL and γR , which we estimate according
to the derivation of the Appendix. At μ = 0 and for the values
of the parameters we used, from Eq. (A13) we obtain �M ∼ 5.
Therefore, when considering the largest ring (� = 40), we
may safely neglect the overlap between γL and γR across
the superconducting region and accordingly describe the low-
energy excitations of the system by approximating the fermion
operators in the tunneling term of the total Hamiltonian
[second row of Eq. (39)] by means of the truncated mode
expansion in Eq. (A19). As a result, we obtain the effective
low-energy Hamiltonian Hp;Eff for the ring, given by

Hp;Eff ≈ −ε0 cos

(
�

2

)
{2�†� − 1}, (43)

with ε0 ∝ τ and the Dirac fermion operator � related to γL,γR

by means of Eqs. (A22). We now use Eq. (43) as a main
reference to discuss the behavior of the current for large �. In
fact, while one should, in principle, consider the contributions
arising from all the populated single-quasiparticle states at any
energy (which is exactly done in the calculation we performed
based on our TM approach), based upon arguments similar
to the ones provided in Refs. [35,38], in the large-� limit we
expect that the result for I [�] can be safely recovered by taking
into account only low-energy states of the system. Now, for
−π < � < π , Eq. (43) tells us that the ground state has the �

level populated. As � crosses π , there is a crossing between
the filled- and the empty-� state which, in the absence of
constraints on fermion parity conservation, makes the system
“jump” from the populated to the empty �-fermion state, with
the corresponding jump in the current evidenced at � = π in
the blue curve of Fig. 6, corresponding to � = 40. By symmetry
� → −�, an analogous jump is observed at � = −π . The
total current is periodic, with period equal to 2π , due to the
sequential level crossings at � = 2πk + π , with integer k [22].

At variance, as � = 4, the hybridization between the MFs
across the topological superconductor is no longer negligible.
As a result, at low energy the system is described by an
effective Hamiltonian such as the one in Eq. (A24), with
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I[Φ]

−2π 2π0−2π 0 2π

(b)(a)

FIG. 7. Plot of the persistent current I [�] vs � (in units of �0) for
the p-wave mesoscopic ring with a weak link described by Eq. (39).
The parameters are chosen so that 
 = 0.2 and τ = 0.5 (in units
of w). The curves are plotted for various values of μ at fixed �.
Specifically (a) � = 16, μ = 0.0 (full red curve), μ = 0.9 (dashed
green curve), μ = 1.5 (dot-dashed blue curve) and (b) � = 40, μ =
0.0 (full red curve), μ = 0.9 (dashed green curve), μ = 1.5 (dot-
dashed blue curve).

a modulation with � of the energy splitting between the
empty and the filled state, which never closes (avoided level
crossing). In this case, the persistent current is only supported
by Cooper pair tunneling across the weak link, which restores
a 4π periodicity in � [22]. Again, this is consistent with our
plot in Fig. 6 for � = 4, with the intermediate case � = 8
lying in between the two “asymptotic” cases. As a further
check, we report in Fig. 7 the plots of I [�] generated by
keeping w = 1,
 = 0.2,τ = 0.5 and varying μ, with � = 16
[Fig. 7(a)] and � = 40 [Fig. 7(b)] (note that �M ∼ 5, as
estimated above). From the plots we draw for μ = 0.0,0.9,1.5,
we see that, increasing μ toward the critical value μ = 2
at which the topological phase transition takes place [20],
effectively corresponds to increasing �M . This is expected
from the results of the Appendix, where we show that the
hybridization between γL and γR scales as e−�/�M . Thus,
again our results appear to be consistent with the low-energy
dynamics of our system as inferred from the Appendix and
from the discussion reported in Ref. [22].

By contrast, we now discuss the current across an s-wave
ring. Despite the lack of low-energy MFs in such a system, the
crossover in the periodicity of I [�] from 4π to 2π is known
to take place as the length �S of the superconducting region
crosses over from values lower than the coherence length ξ0

to values higher than ξ0 [19]. Such a crossover corresponds
to a crossover in the “physical nature” of I [�]: from a
4π -persistent current in a mesoscopic, effectively normal,
system to a 2π -periodic current, analogous to the Josephson
supercurrent in an SNS junction [18,19]. In Fig. 8 we plot
the exact results for I [�] obtained using our TM approach
for the system parameters w = 1,
 = 0.2,μ = 0,τ = 0.5 and
for various values of �. In our specific case, having as model
Hamiltonian the one in Eq. (40), as we are setting to 1 the
lattice step, an acceptable estimate for ξ0 is ξ0 ∼ 2w/
. For the
numerical values of the parameters we chose to generate Fig. 8,
this implies ξ0 ∼ 10. Such an estimate is definitely consistent
with our results: on increasing � from � = 4 to � = 40, we
ultimately see a crossover in the periodicity of I [�] definitely
similar to the one we found for the p-wave superconducting
ring with a weak link, though without the jumps in the current
due to the �-fermion level crossings. To conclude this section,
let us stress once more that our technique does provide us

I[Φ]

0−2π 2π

FIG. 8. Plot of the persistent current I [�] vs � (in units of �0) for
the s-wave mesoscopic ring with a weak link described by Eq. (40).
The parameters are chosen so that 
 = 0.2 and τ = 0.5 (in units
of w). The curves are plotted for various values of � at μ = 0.
Specifically � = 4 (full red curve), � = 16 (dashed green curve),
� = 40 (dot-dashed blue curve). The crossover from a 4π periodicity
for � < ξ0 ∼ 10 (see text) to a 2π periodicity for � > ξ0 is apparent.

with the exact result for I [�] at a generic value of the system
parameters, whether the superconductor is p wave, or s wave,
etc. To recover the final result one just needs to construct the
appropriate TM and to numerically compute a single integral
for various values of �. Using the standard approach, based on
the solution of the secular equations for the allowed values of
the momenta at fixed �, and eventually taking the derivative
with respect to � to obtain the current is, in general, much less
straightforward and, typically, exact results cannot be provided
and different approximations must be implemented to attack
different regimes such as the short-ring, or the long-ring limit
(see Ref. [18] for a careful and valuable discussion about this
point). At variance, as we are showing here, our approach
applies to any specific case, with potentially no limitations
at all. It allows us to recover the full plots of the persistent
current at various system scales, which we show in this section
and in the following one: an original result that complements
and extends the analysis of Ref. [29], where the analysis
of the current was performed by just considering how the
relative weight of the first two harmonics (in �) varies, as a
function of the system parameters. In the following, to discuss
a further application of our technique, we consider a hybrid
ring, made by a p-wave superconducting segment of length
�S and a normal segment of length �N : this can be regarded
as a generalization of the ring with a weak link which, as we
are going to discuss, opens the way to a number of interesting
physical effects.

B. Persistent current across a hybrid N-S ring

In this section we discuss the persistent current across a
hybrid ring, composed of a superconducting segment of length
�S and of a normal segment of length �N . Such a system
can be regarded as a generalization of the ring interrupted
by a weak link discussed in Ref. [29], in which one induced
superconductivity by proximity only in a part of the ring,
leaving a finite normal region of length �N . In Fig. 9 we
provide a sketch of the system we discuss here. Again, for
comparison, we consider both cases of a p-wave and of an
s-wave superconducting region. The corresponding model
Hamiltonian can then be obtained from H in Eq. (14) by
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FIG. 9. Sketch of the hybrid N-S ring with the two regions (red
and blue, respectively) separated by two weak links. A possible
practical realization of such a system is the same as discussed before
for the superconducting ring interrupted by a weak link.

setting �1 → �S , �2 → �N , 
1 → 
,
2 = 0 and from H in
Eq. (33), taken in the same limit. To spell out the behavior of
I [�] in the various regimes of interest, let us first focus onto
the p-wave case. Specifically, we compute I [�] at given τ and

 for w1 = w2 ≡ w and for various values of �S = �N ≡ �.
To further simplify the calculation we restrict ourselves to the
particle-hole symmetric case μ = 0.

In Fig. 10(a) we plot I [�] vs � for � = 4,16,40, with the
values for the system’s parameters chosen as in the caption.
The behavior of I [�] depends on the system size in relation
to the length scales determined by the system parameters. At
μ = 0 the p-wave superconductor lies within its topological
phase, with corresponding localized MFs emerging at its
endpoints. Taking again �M as a reference length scale, when
� � �M , the two MFs are hybridized into a Dirac mode
�. As a result, the MFs have no significant effects on the
current, which is 4π periodic, consistently with the expected
behavior of the system as a mesoscopic normal ring [22].
On increasing �, when � > �M , the hybridization between
the MFs becomes negligible and, accordingly, in the absence
of fermion parity conservation, I [�] becomes 2π periodic,
with jumps at � = π + 2πk. In addition to the periodicity,
also the shape of I [�] depends on �. This is due to the

I[Φ] I[Φ]

2π−2π 0 2π−2π 0

(a) (b)

FIG. 10. Plot of I [�] vs � for a hybrid normal-superconducting
ring. (a) Plot of I [�] vs � for a hybrid normal-p-wave super-
conducting ring for w1 = w2 = 1, 
 = 0.2, τ = 0.5, μ = 0, which
corresponds to �M ≈ 6, ξK,M ≈ 16, for �S = �N = 4 (solid red curve),
�S = �N = 16 (dashed green curve), �S = �N = 40 (dot-dashed blue
curve). The crossover to a sawtooth behavior is evident for � = 40.
(b) Plot of I [�] vs � for a hybrid normal-s-wave superconducting
ring for w1 = w2 = 1, 
 = 0.2, τ = 0.5, for �S = �N = 4 (solid
red curve), �S = �N = 16 (dashed green curve), �S = �N = 40 (dot-
dashed blue curve). There is no crossover in the functional form of
I [�], but a mere scaling of I [�] that is ∼�−1

N .

lS
322

1

0

FIG. 11. Plot of the normal and Andreev reflection coefficients at
the SN interface and of the normal transmission and CAR coefficients
for the p-wave superconductor-normal hybrid ring discussed in
Sec. IV B as a function of �S . To generate the plot we have chosen
the system’s parameters so that w1 = w2 = 1, 
 = 0.2, τ = 0.5,
which corresponds to �M ≈ 6. The various curves correspond to
the coefficients as: Full blue curve: Andreev reflection coefficient
at the SN interface; dashed blue curve: normal reflection coefficient
at the SN interface; full red curve: normal transmission across the
superconducting region; and dashed red curve: crossed Andreev
reflection across the superconducting region. Apparently, for �S >

�M , all the processes are suppressed, except the Andreev reflection at
the SN interface, with the corresponding coefficient saturating to 1.

Kondo-like hybridization between the MFs and the excitation
modes within the normal region of the ring, which takes
place when � � ξK,M , with the Kondo-Majorana hybridization
(KMH) length ξK,M ∼ [(2w)2/τ 2] [44]. At the onset of KMH,
I [�] is expected to cross from a discontinuous sinusoidal
dependence on � to a sawtoothlike shape [44]. Physically,
this can be understood by recalling that, as � becomes large,
the systematic cancellation of contributions from high-energy
states makes only low-energy states in the normal region next
to the Fermi level contribute to I [�]. The physical processes
at the SN interfaces that determine these states can be inferred
from Fig. 11, where, as a function of �S , we plot the scattering
coefficients across the superconducting regions corresponding
to normal reflection at the SN interfaces and to normal
transmission across the superconducting region, as well as the
coefficients corresponding to Andreev reflection (AR) at the
interfaces and to “crossed Andreev reflection” (CAR) across
the superconducting region [41,45]. As it clearly appears from
Fig. 11, as soon as �S > �M , all the coefficients drop to 0 but the
one corresponding to AR, which saturates to 1. This evidences
that, as � > �S , AR is the only physical process that takes place
at low energy, which implies the sawtooth behavior in I [�]
evidenced in Fig. 10(a). By comparison, in Fig. 10(b) we plot
I [�] vs � for the same values of the various parameters as in
Fig. 10(a), but for an s-wave superconductor. Here we see that,
on increasing �, the current still shows the crossover from a
4π -periodic curve to a 2π -periodic curve, but that the absence
of low-energy Majorana modes eventually hybridizing with the
modes in the normal region as � � ξK,M yields no crossover
in the functional form of I [�] from a sinusoidal to a sawtooth
behavior. The only relevant additional feature that takes place
on varying � is, indeed, the expected scaling of I [�] ∼ �−1
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I[Φ] I[Φ]

−2π 2π0

(a)

0

−2π 0 2π

0

(b)

FIG. 12. Plot of I [�] vs � for a hybrid normal-superconducting
ring. (a) Plot of I [�] vs � for a hybrid normal-p-wave su-
perconducting ring for w1 = w2 = 1, 
 = 0.2, τ = 0.5, μN = 0,
which corresponds ξK,M ≈ 16, �S = �N = 40 and μS/w = 0.0 (solid
blue curve), μS/w = 1.5 (dashed green curve), μS/w = 1.9 (dot-
dashed red curve), and μS/w = 1.95 (dot-dot-dashed black curve).
(b) Same as in (a), but for a hybrid normal-s-wave superconducting
ring for w1 = w2 = 1, 
 = 0.2, τ = 0.5, μN = 0, �S = �N = 40
and μS/w = 0.0 (solid blue curve), μS/w = 1.0 (dashed green
curve), μS/w = 1.5 (dot-dashed red curve), and μS/w = 1.9 (dot-
dot-dashed black curve). (a) A clear smoothing of the sawtooth
dependence of I [�] on � towards a sinusoidal plot as μS/w increases
towards the critical value μS/w = 2, at which Majorana fermions
disappear.

(see discussion in the next section). Thus, the crossover in the
functional form of I [�] can actually be regarded as a direct
evidence for the existence of low-energy Majorana modes at
the endpoints of the topological superconductor in the p-wave
hybrid ring.

To further substantiate the above picture, in Fig. 12(a) we
again plot I [�] vs � for the system parameters numerically
set as discussed in the caption. In drawing Fig. 12, we hold
�N = �S fixed at 40 (with 
 and w chosen so that �M ∼ 6),
as well as the chemical potential within the normal region
μN = 0. At variance we vary the chemical potential within the
superconducting region μS starting from μS = 0 till μS/w ∼
1.95 (after which the loss of numerical precision appears
not to give us reliable results). As highlighted by Kitaev
[20], as μS/w = 2 the p-wave superconductor undergoes a
(topological) quantum phase transition, characterized by the
disappearance (for μS/w > 2) of the localized MFs at the
endpoints of the superconductor. On approaching the phase
transition from within the topological region, the closer the
system is to the quantum critical point, the larger is the effective
�M . While the actual numerical estimate of �M as a function
of, e.g., μS/w at fixed 
 can in principle be provided from
Eq. (A5) of the Appendix, here we just focus on the consistency
of our exact results with the expectation one gets from the
above discussion. In fact, the estimated KMH length for the
system used to derive I [�] in Fig. 12(a) is ξK,M ≈ 16 [see
the discussion in the caption of Fig. 10(a), which is drawn
at the same values of w and τ ]. In Fig. 12(a) we plot I [�]
for �S = �N = 40, we see full KMH in the normal region
for μN = 0, as evidenced by the sawtooth behavior of the
current and by the corresponding 2π periodicity in �. On
increasing μS towards the critical value corresponding to
the topological quantum phase transition, the nonnegligible
hybridization between the MFs across the superconducting
region is expected to compete with KMH and eventually
to suppress it (in fact, this can be regarded as a “Majorana

analog” of the competition between Kondo effect and RKKY
interaction in the two-impurity Kondo model [46–49], just as
the KMH can be regarded as the Majorana analog of the onset
of the Kondo cloud in a Kondo system [44]). Consistently with
the expectation, we see that, on increasing μS , the sawtooth is
smoothed (with a sizable reduction in the critical current) and
clearly evolves back towards a restoration of the 4π periodicity
that characterizes the regime �S � �M (see discussion above).
For comparison, in Fig. 12(b) we draw similar plots generated
in the s-wave case. No particular changes in the functional
form of the current appear, except the reduction in the value of
the current at a given �. In our view, this result does actually
enforce the reliability of a persistent current measurement as a
tool to detect the presence of MFs at the endpoints of a p-wave
superconductor in the topological phase.

It is important to stress once more that, while our approach
allowed for readily studying the additional consequences of
KMH in the case of a hybrid ring with an extended normal
region, due to the increasing complexity of the system, this
would be hardly doable within an alternative approach, without
resorting to some ad hoc approximations and possibly washing
out some relevant physical effects. This enforces once more the
importance of having an exact analytical formula that applies
independently of the specific values of the system parameters.
Besides the possibility of exactly computing the current in a
number of different physical systems by simply evaluating the
integral in Eq. (13) for different values of �, our approach also
provide a remarkable tool to write, for large enough systems,
I [�] in a power series of the inverse system size which, as
we are going to discuss in the following, greatly simplifies
the various calculations, by even providing explicit analytic
results for the current, in some simple cases.

V. THE LARGE-RING LIMIT

As the ring size goes large, one may recast the integral
formula for I [�], Eq. (13), in an expansion in inverse powers
of the length that gets large. As we discuss in the following,
this leads to a number of simplifications in the calculation of
the current, similar to the ones implemented in Refs. [35,38],
even leading, in some cases, to a closed-form analytic formula
for I [�] vs � at given system parameters. In the following, we
discuss a few examples of calculation of the persistent current
in the large-size limit, also showing how a number of known
results can be easily recovered within our formalism, once the
appropriate limit is taken.

A. The limit of long superconducting region

The limit of long superconducting region is defined by
sending �2 → ∞ in the system described by the model
Hamiltonian in Eq. (14) (p-wave case), or by the Hamiltonian
in Eq. (33) (s-wave case), after setting 
1 = 0, so that region
1 is normal, and by keeping �1 finite. In this limit one expects
to recover the results for a the Josephson current across an
SNS-hybrid junction. To show that this is, in fact, the case, we
start by rewriting det{Mp-wave[E; �; �1; �2] − I} as

det{Mp-wave[E; �; �1; �2] − I}
= c det

{
T−1

2 (E; �2) − [ϒ (2)(E)]−1−1
2 [�]�1[�]
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× [ϒ (1)(E)]T1(E; �1)[ϒ (1)(E)]−1−1
1 [�]

×�2[�][ϒ (2)(E)], (44)

with c being an overall factor independent of � and, similarly,
by rewriting det{Ms-wave[E; �; �1; �2] − I} as

det{Ms-wave[E; �; �1; �2] − I}
= c′ det

{
T−1

2 (E; �2) − [ϒ̃ (2)(E)]−1̃−1
2 [�]�̃1[�]

× [ϒ̃ (1)(E)]T1(E; �1)[ϒ̃ (1)(E)]−1̃−1
1 [�]

× �̃2[�][ϒ̃ (2)(E)]
}
, (45)

with, again, c′ being a constant independent of �. As a next
step, we define the matrix Mp as

Mp = [ϒ (2)(E)]−1−1
2 [�]�1[�][ϒ (1)(E)]T1(E; �1)

·[ϒ (1)(E)]−1−1
1 [�]�2[�][ϒ (2)(E)], (46)

for the p-wave hybrid ring, and

Ms = [ϒ̃ (2)(E)]−1̃−1
2 [�]�̃1[�][ϒ̃ (1)(E)]T1(E; �1)

× [ϒ̃ (1)(E)]−1̃−1
1 [�]�̃2[�][ϒ̃ (2)(E)], (47)

for the s-wave hybrid ring. From Eqs. (46) and (47) we see that
the current in the p-wave and the s-wave hybrid ring Ip,s[�]
can, respectively, be written as

Ip,s[�] = − 1

2πi

∫
�

dE ∂� ln[�p,s[E; �]]

= − 1

4πi

∫
�

dE ∂�

{
ln det

[
T−1

2 (ε; �2) − Mp,s

]
− { ln det

[
T−1

2 (ε; �2) − Mp,s

]}∗}
, (48)

where we have used the reality of the persistent current to go
through the last step in Eq. (48). In order to systematically
take the �2 → ∞-limit, we recall that one has eventually to
deform the integrals over � in Eq. (48) into integrals over
the imaginary axis, which corresponds to E → iω. Along the
imaginary axis, from the dispersion relations for particlelike
and holelike excitations within the superconducting region,
one obtains that the corresponding momenta are defined by

cos
[
k(2)
p

] = − μ2w2

2
(
w2

2 − 
2
2

) − i

2

√
ω2 + 
2

w

w2
2 − 
2

2

,

(49)

cos
[
k

(2)
h

] = − μ2w2

2
(
w2

2 − 
2
2

) + i

2

√
ω2 + 
2

w

w2
2 − 
2

2

,

in the p-wave case, and

cos
[
k(2)
p

] = − μ2

2w2
− i

2

√
ω2 + 
2

2

w2
2

,

(50)

cos
[
k

(2)
h

] = − μ2

2w2
+ i

2

√
ω2 + 
2

2

w2
2

,

in the s-wave case. To solve Eqs. (49) we therefore set

k(2)
p = π

2
+ qp, k

(2)
h = π

2
+ q∗

p, (51)

with

sin[qp] = μ2w2

2
(
w2

2 − 
2
2

) + i

2

√
ω2 + 
2

w

w2
2 − 
2

2

, (52)

while to solve Eqs. (50) we set

k(2)
p = π

2
+ qs, k

(2)
h = π

2
+ q∗

s , (53)

with

sin[qs] = μ2

2w2
+ i

2

√
ω2 + 
2

2

w2
2

. (54)

From the explicit formula for T−1
2;(p,s)(E → iω; �2) along

the imaginary axis in the p-wave and in the s-wave case,
respectively given by

T−1
2;(p,s)(E → iω; �2)

=

⎡
⎢⎢⎢⎣

i−�2e−iq
(2)
p,s�2 0 0 0

0 i�2eiq
(2)
p,s�2 0 0

0 0 i�2ei[q(2)
p,s ]∗�2 0

0 0 0 i−�2e−i[q(2)
p,s ]∗�2

⎤
⎥⎥⎥⎦,

(55)

we may readily compute the integrals in Eq. (48) in the limit
�2 → ∞, obtaining

Ip,s[�] = 1

2π

∫ ∞

−∞
dω ∂� lnGp,s(E → iω), (56)

with Gp,s(E) = M(p,s);(2,2)(E)M(p,s);(4,4)(E) − M(p,s);(2,4)(E)
M(p,s);(4,2)(E) and assuming (as done in Refs. [35,38]) that

(1) All the poles of G(E) lie over the real axis.
(2) G(E) is real if E lies over the real axis (and does not

coincide with a pole of G).
Equation (56) yields the dc-Josephson current in the

infinite-�2 limit, in which the ring can be regarded as an
idealized model for an SNS junction. In the specific case of
s-wave superconductors, Eq. (52) has been derived in Ref. [35]
for a single-channel junction starting from the S-matrix
approach to effectively one-dimensional SNS junctions [32],
and generalized in Ref. [38] to a multichannel junction. In fact,
a comparison between Eq. (56) and Eqs. (7) and (9) of Ref. [35]
also clarifies the identification between Mp,s in Eqs. (46) and
(47) and the transfer matrix for the whole SNS junction, as
introduced and discussed in Ref. [35] for the s-wave case. After
resorting to the effective SNS-junction model, at a second stage
one may implement the technique developed in Refs. [35,38]
to write I [�] in a systematic expansion in inverse powers of
�1. Basically, one considers that because one has

T1(E → iω; �2)

=

⎡
⎢⎢⎢⎣

i�1eiq
(1)
n �1 0 0 0

0 i−�1e−iq
(1)
n �1 0 0

0 0 i−�1e−i[q(1)
n ]∗�1 0

0 0 0 i�1ei[q(1)
n ]∗�1

⎤
⎥⎥⎥⎦,

(57)
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with

sin
[
q(1)

n

] = μ1

2w1
+ i

2

ω

w1
, (58)

then, only low-|ω| regions do effectively contribute to the
integral in Eq. (56). As a result, one may first of all approximate
q(1)

n ≈ q̄ + iσ (ω), with

sin(q̄) = μ1

2w1
,

(59)
σ (ω) = ω

2w1 cos(q̄)
,

then, in integrating Eq. (56), one may rescale ω → ω�1 and
eventually set the rescaled ω at 0 in all the contributions to
the argument of the integral in which ω appears divided by
�1 as ω/�1. Going along this procedure, one may compute
the leading contribution to the current [O(�−1

1 )] by trading
the original model Hamiltonian for a reduced boundary
model, such as the one presented in Ref. [31] for the s-wave
superconductors and the one used in Ref. [44] for the p-wave
superconductor, which allows for recovering simple, closed-
form analytical formulas for I [�].

B. The limit of long normal region

We now discuss the complementary limit of a long normal
region, with �S less than, or comparable to, the coherence
length of the superconducting region ξ0. We first discuss
the general formula and then consider the case of a hybrid
s-wave superconducting ring as a specific example. In order
to address the large-�N limit, let us first of all rewrite
det{Mp-wave (s-wave)[E; �; �1; �2] − I} as

det{Mp-wave (s-wave)[E; �; �1; �2] − I}
= cp,s det{T1(E; �1) − Kp,s[E; �; �2]}, (60)

with cp,s being constants independent of �, and

Kp[E; �; �2] = [ϒ (1)(E)]−1�−1
1 [�]2[�][ϒ (2)(E)]

× T−1
2 (E; �2)[ϒ (2)(E)]−1�−1

2 [�]

×1[�][ϒ (1)(E)],

Ks[E; �; �2] = [ϒ̃ (1)(E)]−1�̃−1
1 [�]̃2[�][ϒ̃ (2)(E)]

× T−1
2 (E; �2)[ϒ̃ (2)(E)]−1�̃−1

2 [�]

× ̃1[�][ϒ̃ (1)(E)]. (61)

Equations (61) correspond to the standard identification we
have employed so far, that is, region 1 has to be identified
with the normal region and region 2 with the (either p-wave,
or s-wave) superconducting region. Therefore, �1 = �N . Now,
in order to recover the large-�N limit, we strictly follow the
derivation of Refs. [35,38], that is, once we have deformed the
integration path to the imaginary axis, we assume that only
low-ω (= −iE) regions do effectively contribute the integral
in Eq. (13). This allows us first of all to approximate the inverse
dispersion relation within the normal region as

kp,h ≈ kF ± iλ(ω), (62)

with −2w1 cos(kF ) = μ1 and λ(ω) = ω
2w sin(kF ) . On substitut-

ing Eqs. (62) into Eqs. (61), we may eventually rewrite Eq. (13)
as

Ip,s[�] = −2ew1 sin(kF )

2π �1
∂�

∫ ∞

0

dz

z
ln{�p,s[z; �; �2]},

(63)
with

�p,s[z; �; �2] = det

⎧⎪⎨
⎪⎩
⎡
⎢⎣

z 0 0 0
0 z−1 0 0
0 0 z 0
0 0 0 z−1

⎤
⎥⎦

−

⎡
⎢⎢⎣

e−ikF �1 0 0 0
0 eikF �1 0 0
0 0 eikF �1 0

0 0 0 e−ikF �1

⎤
⎥⎥⎦

× Kp,s[E = 0; �; �2]

⎫⎪⎬
⎪⎭. (64)

To illustrate the effectiveness of our simplified Eqs. (63)
and (64) we now discuss the application to the case of a
hybrid s-wave superconducting ring. For simplicity we make
the assumptions w1 = w2 ≡ w and μ1 = 0. As a result, using
Eqs. (63) and (64), we obtain the simplified expression for the
current

I [�] = −2ew1 sin(kF )

2π �1
∂�

∫ ∞

0

dz

z

{
∂�a[�; �1](z3 + z) + ∂�b[�; �2]z2

z4 + 1 + a[�; �2](z3 + z) + b[�; �2]z2

}
, (65)

with a[�; �2], b[�; �2] being long, though straightforward to derive, functions of the matrix elements of Ks[E = 0; �; �2].
Eventually, by means of simple manipulations Eq. (65) can be expressed as a closed-form formula only of the four roots zj [�; �2]
(j = 1, . . . ,4) of the polynomial equation z4 + 1 + a[�; �2](z3 + z) + b[�; �2]z2 = 0, which take the generic form

zj [�; �2] = −a[�; �2]

4
+ uj

√
8 + a2[�; �2] − 4b[�; �2]

4

+ vj

1

2

√
−2 + a2[�; �2]

4
− b[�; �2] + uj

a3[�; �2] + 8a[�; �2] − 4a[�; �2]b[�; �2]

2
√

8 − a2[�; �2] − 4b[�; �2]b[�; �2]
, (66)
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with uj ,vj = ±1. Taking into account that
∏4

j=1 zj [�; �2] = 1, one eventually obtains from Eq. (65)

I [�] = −2ew1 sin(kF )

4π�1
∂�

⎧⎨
⎩

4∑
j=1

ln2[zj [�; �2]]

⎫⎬
⎭. (67)

Just as in the case of a long SNS junction [35,38], Eq. (67) only involves data at the Fermi level. This is an additional example
of the remarkable simplifications to which our approach leads, in the large ring limit.

VI. FINITE-TEMPERATURE RESULTS

It is not difficult to generalize our derivation to a system
at temperature T finite, though much lower than the critical
temperature for the superconducting part of the ring. In fact,
at finite T , Eq. (13) generalizes to Eq. (1), with

F [�; T ] =
∑
E

Ef (E), (68)

and f (E) = [1 + eE/T ]−1 being the Fermi distribution func-
tion (having set the Boltzmann constant k = 1). Now, the
integration path � in Eq. (11) must be replaced with the
integration path �̃ obtained as the union of small circles
�n, each one surrounding once one, and only one, energy
eigenvalue. As illustrated in Fig. 13, �̃ can be deformed
to a path obtained as the union of small circles, each one
surrounding once one, and only one, pole of the Fermi function,
that is, a fermionic Matsubara frequency times the imaginary
unit i, iωm = 2πT i(m + 1

2 ). As a result, the finite-T current
can be presented as

I [�; T ] = −eT
∑
ωm

∂�{det[M[iωm; �] − I]}, (69)

that is the appropriate generalization of Eq. (13) to the finite-T
case.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented a technique to exactly
compute the zero-temperature persistent current across an
HR pierced by a magnetic flux � as a single integral of a
known function of the system’s parameters. Our approach

Re(E)Re(E)

Im(E)Im(E)

Re(E)

Im(E)
(a) (b) (c)

FIG. 13. Sequence of deformations in the integration path �̃

eventually allowing us to express I [�; T ] as a sum over the fermionic
Matsubara frequencies ωm = 2πT (m + 1

2 ): (a) The path �̃ obtained
as the union of small circles, each one surrounding one, and only
one, energy eigenvalue. (b) The integral over �̃ can be deformed
to an integral over the union of the two closed path run through
counterclockwise. (c) The integral over the two closed path in (b)
is equal to the integral over a closed path surrounding the poles of
the Fermi function (iωm, displayed as blue full circles in the figure),
run through clockwise. The corresponding overall sign is eventually
canceled by the −1 at the residue of the Fermi function at iωm.

makes use of the properties of the transfer matrix of the
ring, which allows us to circumvent technical difficulties
associated with the secular equation for the energy eigenvalues
of the system. A straightforward generalization of the zero-
temperature formalism allows us to also compute the current
in a ring at a temperature T finite, though much lower than
the superconducting gap. While in general one may readily
numerically compute the integral/sum yielding the current
at a given value of the flux �, a remarkable simplification
takes place in the limit of a large ring size, where resorting
to a systematic expansion in inverse powers of the ring
length allows for deriving the current in analytic closed-form
formulas, applicable to a number of cases of physical interest.

As an example of application of our technique, we
exactly compute the persistent current through a p-wave
superconducting-normal ring as well as in an s-wave
superconducting-normal ring. As a side result, we recover
at once the crossover in the current periodicity, the effects
of localized MFs in the p-wave case (including the signature
of the topological phase transition), the large-size limit, etc.,
which were previously approximatively derived by means of
various approximation schemes, different from case to case
[28,29,35,38].

Throughout all the paper, we grounded our approach
on a description of the ring in terms of a noninteracting
lattice model Hamiltonian for the normal part of the ring,
in terms of a non-self-consistent mean field Hamiltonian
for the superconducting part. The system is assumed to be
“clean,” that is, no disorder effects are taken into account
and no interaction between the electrons is assumed. As a
further development of our research, we plan to generalize
our approach, so to introduce the effect of disorder by means
of a pertinently chosen impurity potential and by eventually
ensemble averaging over the disorder realization [50,51], and
the effect of the interaction, by adopting a pertinently adapted
version of the fermion renormalization group approach intro-
duced in Refs. [52–54] for weakly interacting systems and
generalized in Ref. [55] to the strongly interacting case. This
might potentially provide an useful method to also spell out the
dynamics of fractionalized excitations in correlated systems
[56–58]. Moreover, by simply sending to infinity the length
of the superconducting part of the ring, our approach provides
an exact formula for the Josephson current across an SNS
junction, which can be readily applied to cases hard to deal
with using alternative techniques, such as in the case of the
anomalous Josephson effect in nanowires [59–61].

These, and other potentially interesting generalizations of
our approach, do actually lie beyond the range of this paper,
and we plan to address them as a future development of our
work.
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APPENDIX: EXACT WAVE FUNCTIONS FOR SUBGAP
STATES AT A FINITE-LENGTH KITAEV CHAIN

In this Appendix we discuss in detail the derivation of
the exact wave function of subgap states in an open Kitaev
chain, of finite length �S . To do so, we employ a simplified
and pertinently adapted version of the solution of the Kitaev
model with open boundary conditions [62,63]. While for
finite-�S we find a single Dirac fermion level, which can be
either empty or filled with a corresponding finite energy gap
EM , as �S → ∞, the states become degenerate in energy at
the Fermi level, and appropriate linear combinations of the
corresponding wave functions become localized at the two
endpoints of the chain, eventually corresponding to the two
zero-energy Majorana solutions of Kitaev’s model [20]. The
starting point is the dispersion relation in Eqs. (23) which, for
subgap solutions (|E| < 
w) yields the allowed values of the
(complex conjugate) particle and hole momenta defined by

cos(kp) = − wμ

2(w2 − 
2)
− i

2

√

2

w − E2

w2 − 
2
,

cos(kh) = − wμ

2(w2 − 
2)
+ i

2

√

2

w − E2

w2 − 
2
. (A1)

Equations (A1) are readily solved by setting kp = π −
qR + iqI and kh = (kp)∗ = π − qR − iqI , with

cos(qR) cosh(qI ) = wμ

2(w2 − 
2)
,

sin(qR) sinh(qI ) = 1

2

√

2

w − E2

w2 − 
2
. (A2)

As a result, the general formula for a subgap solution will
be given by[

uj

vj

]
= (−1)j

{
A(p,+)

[
u

v

]
e−iqRj e−qI j

+A(p,−)

[
u

−v

]
eiqRj eqI j + A(h,+)

[
u∗
v∗

]
eiqRj e−qI j

+A(h,−)

[
u∗

−v∗

]
e−iqRj eqI j

}
, (A3)

with u,v solutions of the algebraic system

{E + 2w cos(kp) + μ}u − 2i
 sin(kp)v = 0,

2i
 sin(kp)u + {E − 2w cos(kp) − μ}v = 0. (A4)

The actual energy eigenstates are determined as nontrivial
solutions such as the one in Eq. (A3) satisfying the boundary
conditions on the “ghost sites” given by [u0

v0
] = [u�+1

v�+1
] = 0. It is

therefore straightforward to verify that this implies the secular
equation for the energy eigenvalues given by

[Im m(uv∗)]2 sinh2[qI (� + 1)]

= [Re e(uv∗)]2 sin2[qR(� + 1)]. (A5)

Equations (A3), (A4), and (A5) can be used to estimate
the energy of the subgap levels and the corresponding wave
function for any value of μ. Indeed, we use them to numerically
estimate the energy gap and to accordingly infer the overlap
scale between the localized MFs at given values of the
system’s parameters. Specifically, if one is only interested
in the low-energy physics of a finite-size one-dimensional
topological superconductor coupled to normal conductors at
each of its endpoints, the whole topological superconductor
can be traded for an effective Hamiltonian involving only
the low-energy subgap degrees of freedom discussed above,
with parameters effectively determined by the actual system
parameters. To illustrate how the procedure works, let us focus
onto the simple case μ = 0, � even. In this case, kp and kh are
simply given by

kp = π

2
+ iλ(E),

(A6)
kh = π

2
− iλ(E),

with

sinh[λ(E)] = 1

2

√
4
2 − E2

w2 − 
2
. (A7)

As a result, Eq. (A3) can now be presented as[
uj

vj

]
= A(p,+)

[
u

v

]
ij e−λ(E)j + A(p,−)

[
u

−v

]
i−j eλ(E)j

+A(h,+)

[
u∗
v∗

]
i−j e−λ(E)j + A(h,−)

[
u∗

−v∗

]
ij eλ(E)j ,

(A8)

with [
up

vp

]
= 1√

2

[
e

i
2 sgn(E)ϑ

isgn(E)e− i
2 sgn(E)ϑ

]
,

(A9)[
uh

vh

]
= 1√

2

[−isgn(E)e− i
2 sgn(E)ϑ

e
i
2 sgn(E)ϑ

]
,

and

ϑ = atan

[
2w sinh[λ(E)]

|E|
]
. (A10)

It is straightforward, though tedious, to show that the secular
equation for the subgap energy eigenvalues is now given by

(� + 1)λ(E) = ± sinh−1

[
2w

E
sinh[λ(E)]

]
, (A11)

which is solved by setting

|E| = ε = 2


[
cosh[λ(E)]

cosh[(� + 1)λ(E)]

]
≈ 2
e−�λ(E)

≈ 2
 exp

{
−� sinh−1

[

√

w2 − 
2

]}
. (A12)

Therefore, from Eq. (A12), we readily estimate that the
hybridization length scale between the MFs �M is given

205125-15



NAVA, GIULIANO, CAMPAGNANO, AND GIULIANO PHYSICAL REVIEW B 94, 205125 (2016)

by

�M ∼
{

sinh−1

[

√

w2 − 
2

]}−1

. (A13)

From Eq. (A3) we may therefore construct the wave
functions corresponding to the positive- and to the negative-
energy subgap solutions. As a result, one obtains for the
positive subgap energy solution of the BdG equations[
uj

vj

]
+

= c

{
e

ξ

2

[
e

i
2 ϑ

ie− i
2 ϑ

]
ij e−jλ(E) + ie− ξ

2

[
e

i
2 ϑ

−ie− i
2 ϑ

]
i−j ejλ(E)

+ e
ξ

2

[−ie− i
2 ϑ

−e
i
2 ϑ

]
i−j e−jλ(E)

− ie− ξ

2

[−ie− i
2 ϑ

e
i
2 ϑ

]
ij ejλ(E)

}
, (A14)

with

c = 1

4

√
2 sinh[λ(E)]

sinh[ξ [E] − λ(E)]
, (A15)

and ξ [E] = sinh−1 [ 2w
E

sinh[λ(E)]]. Similarly, one obtains for
the negative-energy subgap solution of the BdG equations[
uj

vj

]
−

= −c

{
e

ξ

2

[
e− i

2 ϑ

−ie
i
2 ϑ

]
ij e−jλ(E) − ie− ξ

2

[
e− i

2 ϑ

ie
i
2 ϑ

]
i−j ejλ(E)

+ e
ξ

2

[
ie

i
2 ϑ

−e− i
2 ϑ

]
i−j e−jλ(E) + ie− ξ

2

[
ie

i
2 ϑ

e− i
2 ϑ

]
ij ejλ(E)

}
.

(A16)

From Eqs. (A14) and (A16) we therefore find that the
eigenmodes corresponding to the ± solutions are respectively
given by

�+ =
�∑

j=1

{[uj ]∗+cj + [vj ]∗+c
†
j },

�− =
�∑

j=1

{[uj ]∗−cj + [vj ]∗−c
†
j }, (A17)

which shows that, as expected, one recovers the relation

�+ = �
†
− ≡ �. (A18)

On inverting Eqs. (A17) and truncating the mode expansion
of the real space lattice operators by retaining low-energy
modes only, we therefore get

cj ≈ [uj ]+� + [vj ]∗+�†,

c
†
j ≈ [vj ]+� + [uj ]∗+�†. (A19)

Now, on calling {dj ,d
†
j } and �N the length of the normal

part of the ring, the fermion operators on the normal side, one
may rewrite the tunneling contribution to the Hamiltonian in
Eq. (14) as

Hτ = −τ
{[

c
†
1d�N

+ d
†
1c�N

]
e

i
4 � + [d†

�N
c1 + c

†
�d1
]
e− i

4 �
}
.

(A20)
Using the truncated expansions in Eqs. (A19) and the

explicit form of the wave functions evaluated at j = 1,�, one
eventually approximates Eq. (A20) as

Hτ = tL
{
γL

[
e

i
4 �d�N

− e− i
4 �d

†
�N

]}
+ itR{γR[e− i

4 �d1 + e
i
4 �d

†
1]}, (A21)

with

γL = e−i π
4 � + ei π

4 �†,

γR = −i{e−i π
4 � − ei π

4 �†}. (A22)

and tL = tR = ϒτ , with

u1,+ = −e−i π
4 ϒ,

v1,+ = −e−i π
4 ϒ,

u�,+ = −e−i π
4 ϒ,

v�,+ = e−i π
4 ϒ. (A23)

Finally, to recover the energy bias between the Dirac modes,
we add a term of the form

H� = 2ε{2�†� − 1} = −2εiγLγR. (A24)

In general, tL,tR are smooth functions of μ. The dependence
of ε on μ can be inferred by numerically solving Eq. (A5), as
we did in the main text, to also derive the dependence of �M

on the chemical potential.
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