
PHYSICAL REVIEW B 94, 205124 (2016)

Systematic construction of spin liquids on the square lattice from tensor
networks with SU(2) symmetry

Matthieu Mambrini,1 Román Orús,2 and Didier Poilblanc1
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We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to
(i) the onsite physical spin S, (ii) the local Hilbert space V ⊗4 of the four virtual (composite) spins attached to each
site, and (iii) the irreducible representations of the C4v point group of the square lattice. We apply our scheme
to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled
pair states (PEPS) with bond dimension D � 6. All known SU(2)-symmetric PEPS on the square lattice are
recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class
can be associated a (D − 1)-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and
defined in terms of D-independent tensors of a given bond dimension D. In addition, generic (low-dimensional)
families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or
(ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1) (spin nematics
or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral
spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In
particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a
gapless edge described by a SU(2)2 Wess-Zumino-Witten model.
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I. INTRODUCTION

The study of quantum many-body entanglement has pro-
vided many key insights into the structure of quantum states
of matter. Low-energy states of quantum lattice systems obey
typically the so-called “area law” of the entanglement entropy
[1–3]. As such, the area law is a huge constraint on the classes
of states that capture the relevant properties of matter at low
energies. A more refined study has shown that, in fact, those
states are captured by the so-called tensor network states, or
simply “tensor networks” [4,5]. Such states obey naturally
the area law, and are at the basis of many theoretical and
numerical developments in the study of quantum many-body
systems and beyond [6]. Examples of such states are, e.g.,
matrix product states (MPS) [7], projected entangled pair states
(PEPS) [8,9], and the multiscale entanglement renormalization
Ansatz (MERA) [10]. These structures are, respectively,
behind the so-called density matrix renormalization group
algorithm (DMRG) for one-dimensional (1D) systems [11],
PEPS algorithms for two-dimensional (2D) systems [12], and
entanglement renormalization [13].

The description of quantum many-body states in terms of
tensor networks has several advantages. Apart from naturally
obeying the area law (and therefore capturing the correct
expected entanglement behavior), tensor network (TN) states
can also be manipulated efficiently (either exactly or ap-
proximately). Another advantage is the fact that both lattice
and internal symmetries can be naturally incorporated. For
instance, a description in terms of symmetric tensors [14,15]
can lead to important computational advantages [16–20], and
helps in the theoretical classification of phases of matter
[21]. Moreover, gauge symmetries can also be naturally
incorporated [22], hence offering a natural framework to
describe lattice gauge theories [23,24].

In a seminal paper [25], Jiang and Ran made the first
attempt to organize PEPS into crude classes distinguished

by short-range physics, related to the fractionalization of
both onsite symmetries and space-group symmetries. In their
work, the authors introduced (quite generally) the notion of
projective symmetry group (PSG) for PEPS, enabling to deal
a priori with gauge equivalence between tensors. Using lattice
quantum numbers, the authors predicted a number of district
classes for spin- 1

2 spin liquids on the kagome lattice. More
recently, a similar framework was applied to classify (trivial)
spin-1 PEPS on the square lattice [26].

Our goal in this paper is to produce a simple classification
scheme of all rank-5 SU(2) spin rotational symmetric ten-
sors. We characterize the tensors according to three criteria:
(i) the onsite physical spin S, (ii) the local Hilbert space
V ⊗4 of the four virtual (composite) spins attached to each
site, and (iii) the irreducible representations of the C4v point
group of the square lattice. Using this scheme, we produce
explicit expressions for all SU(2)-symmetric translationally
and rotationally invariant PEPS with bond dimension D � 6.
As we shall see, one can recover all known SU(2)-symmetric
PEPS on the square lattice as particular cases in our classi-
fication. Generically, to each of our symmetry class can be
associated a (D − 1)-dimensional manifold of spin liquids
(potentially) preserving lattice symmetries and defined in
terms of D-independent tensors of a given bond dimension
D. In addition, generic (low-dimensional) families of PEPS
explicitly breaking particular point-group lattice symmetries
(lattice nematics) and/or time-reversal symmetry (chiral spin
liquids [27,28]) can also be constructed. Finally, we apply
this framework to search for new topological chiral spin
liquids characterized by well-defined chiral edge modes, as
revealed by their entanglement spectrum, and show how the
symmetrization of a given double-layer PEPS leads to a chiral
topological state with a gapless edge described by a SU(2)2

Wess-Zumino-Witten (WZW) model [29].
The paper is organized as follows: In Sec. II, we elaborate

on the specifics of our classification [30], show how many
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FIG. 1. (a) Square lattice invariant under C4v point-group symme-
tries (reflection axes are shown). The generators of the point group are,
e.g., the 90◦ rotation R, the reflection Rx , and the inversion I = RxRy .
(b) A generic rank-5 PEPS tensor with one physical index s and four
virtual indices u, l, d , and r .

remarkable states of matter fit into it, explain the procedure to
construct spin liquids, and point out the connection to previous
work. In Sec. III, we explain several attempts to obtain PEPS
corresponding to higher-spin chiral topological quantum spin
liquids. In particular, we show how a double-layer PEPS leads
to a chiral topological state with a gapless edge described
by a SU(2)2 WZW model, which we characterize through its
entanglement spectrum (ES). We also discuss how the PEPS
tensor of such double-layer wave function can be expanded as
a sum of “fundamental” SU(2)-invariant PEPS tensors, which
we also characterize. In Sec. IV, we wrap up our conclusions
and outline several directions for future work. Finally, in
Appendix A we review the calculation of entanglement
spectrum (ES) from 2D PEPS, and in Appendixes B and C
we provide the coefficients for the PEPS tensors of several
remarkable and simple states, and of all tensors entering the
decomposition of the double-layer CSL, respectively.

II. CLASSIFICATION OF SU(2)-SYMMETRIC PEPS
ON THE SQUARE LATTICE

A. Construction

We consider here a square lattice [as shown in Fig. 1(a)]
with physical spin-S site degrees of freedom. Hence, d =
2S + 1 basis states are assigned on each site. Here, we
explicitly consider transitionally invariant states described by
a PEPS built from a single tensor A, as the one shown in
Fig. 1(b). Each physical site has four virtual spins attached
labeled on the figure by u, l, d, and r along the up, left,
down, and right directions, respectively. The virtual states |vα〉
belong to some representation V of SU(2) of total dimension D

which, generically, is a direct sum V = ⊕Vi of N irreducible
representations (IRREP) Vi of SU(2), each of partial dimension
2Vi + 1 and D = ∑N

i=1(2Vi + 1).
The corresponding translationally invariant PEPS [3] is

obtained by assigning the same tensor A on every physical
site. Physically, the site tensor A simply encodes a projector
that maps the virtual space V ⊗4 onto all 2S + 1 components
of the physical spin S. From the bond point of view, every
pair of the nearest-neighbor (NN) virtual spins is projected to
a block-diagonal virtual spin-singlet state. By construction,
the obtained wave function is a global spin singlet, i.e.,
invariant under SU(2) rotations. For a bipartite lattice as the
square lattice one can perform a simple spin rotation (by π

around the Y -spin axis) on all sites of a given sublattice that
transforms the virtual bond singlets into diagonal maximally
entangled NN pair states |S〉 = ∑D

α=1 |vαvα〉. In this way, the
SU(2)-invariant PEPS becomes a simple contraction of the
tensor network of the A’s.

Our construction can also be easily generalized to states
that are not SU(2) singlets, i.e., have a total (average) spin
component. For this, one could eventually build up tensors
that transform under S �= 0 IRREPS of SU(2) (sometimes
dubbed “covariant” states). In this paper, however, we consider
only “invariant” states under SU(2), i.e., singlets, which for
simplicity we also call “symmetric.”

The 2S + 1 components As of a tensor A encode the
projectors Ps : V ⊗4 → |s〉 onto the |s〉 ≡ |S,Sz = s〉 physical
state. Hence, the problem of enumerating all SU(2)-invariant
PEPS reduces to the finding of all (orthogonal) projectors that
map any virtual space V ⊗4 onto any spin-S Hilbert space.
Reversely, it amounts to enumerate all D4 orthogonal spin-S
wave functions that can be constructed out of the (⊕Vi)⊗4

basis states. In other words, we shall use the one-to-one
correspondence between projectors and wave functions and
extract the tensor components from the wave functions. One
can write the physical state |s〉 as

|s〉 =
∑

α1,α2,α3,α4

As(α1,α2,α3,α4)|α1,α2,α3,α4〉, (1)

in terms of the D4 virtual basis states |α1,α2,α3,α4〉 and of the
tensor elements As(α1,α2,α3,α4). Since we can always find a
set of D4 orthogonal wave functions, the corresponding basic
tensors fulfill the “orthonormalization” property

∑
α1,α2,α3,α4

[As(α1,α2,α3,α4)]∗Bs ′(α1,α2,α3,α4) = δss ′δAB,

(2)

where the left-hand side defines some tensor inner product
As · Bs ′ . We have performed such a program analytically using
Mathematica for all possible virtual spaces with D � 6. To
reduce the cost of the computation, it is advantageous to use
spin and (lattice) point-group symmetries. First, it is conve-
nient to decompose the virtual space V ⊗4 into all disconnected
subspaces given by the occupations nocc = {n1, . . . ,nN } of the
N spins Vi (

∑N
i=1 ni = 4), each subspace providing a different

class of tensors. Second, we use the Sz quantum number of the
(physical) wave function. In fact, we start by computing all
Sz = S wave functions (or equivalently all projectors onto the
maximum Sz = S subspace) and then apply the spin-lowering
operator S− written in the virtual basis states. Simultaneously,
we classify the various spin-S wave functions according to
their point symmetry, i.e., according to the representations of
the C4v point group: A1 (s wave), B1 (dx2−y2 wave), E (doubly
degenerate p wave), A2 (g wave), and B2 (dxy wave). To
accomplish such a purpose, we simply need to diagonalize, in
the space spanned by the (⊕Vi)⊗4 virtual basis attached to a
given site, simultaneously (i) the total spin operator, (ii) the 90◦
rotation operator R, (iii) the reflection symmetry Rx operator,
and (iv) the inversion I = RxRy operator [see Fig. 1(a)]. In
practice, to perform this task efficiently, we have constructed
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in the V ⊗4 basis, the combined (non-Hermitian) operator

Oσ,σz,ρ,δ,ν = σS2 + σzSz + ρR + δRx + νD, (3)

where the diagonal operator D has specific diagonal ele-
ments characterizing each nocc sector. The (real) coefficients
σ,σz,ρ,δ,ν are all chosen of very different magnitudes,
e.g., 108,106,104,102,1, in order to sort out the various
eigenvalues (of order 1). Note that tensors belonging to the
A1, B1, A2, and B2 symmetry classes are purely real while
the E-symmetric tensors are intrinsically complex and come
in complex conjugated pairs.

As a simple example, let us consider the case V = 1
2 which

contains 24 = 16 basis states, all in the unique nocc = {4}
sector (V here is a simple IRREP). Diagonalizing Oσ,σz,ρ,δ,ν

(omitting the D part) gives 16 states (or tensor components)
which can be grouped into two singlets (S = 0), three triplets
(S = 1), and one quintuplet (S = 2), in agreement with the
decomposition ( 1

2 )⊗4 = (0 ⊕ 1)⊗2 = 2(0) ⊕ 3(1) ⊕ (2). The
S = 0 outcomes correspond to “classical” TN, not considered
afterwards. Inspection of the eigenvalues associated to R and
Rx reveals that one of the triplet states (or tensors) has B1

symmetry, while the other two form a complex conjugate pair
of E symmetry. On the other hand, the unique S = 2 tensor
is fully symmetric (A1 IRREP) and corresponds to the spin-2
AKLT state (see below).

Using the method described above, we have generated all
SU(2)-invariant tensors up to D = 6. A subset of the list of
tensors with D � 5 and 1

2 � S � 2 is displayed in Table I,
while the complete list for D � 6 is given as Supplemental
Material [30]. The columns correspond to different physical
spins (limited to S � 2). Vertically, the tensors are classified
according to the representation V = ⊕Vi of the virtual spins.
Each line corresponds to a subclass given by a disconnected
set of (virtual) basis states characterized by the occupation
numbers nocc of the N spins Vi .

It should be mentioned that all the tensors produced in our
systematic procedure do not lead necessarily to different PEPS
due to remaining gauge degrees of freedom. Indeed, imposing
SU(2) and point-group symmetries does not completely fix the
gauge and some freedom remains. Typically, tensors which
have identical nonzero tensor elements up to a sign are gauge
equivalent as can be checked case by case. Table I shows
explicitly all gauge-equivalent tensors.

B. Remarkable PEPS in this scheme

Some of the low-D PEPS obtained using our systematic
construction and listed in Table I have already been introduced
in recent literature and/or correspond to well-known states
of matter. Let us briefly list a few of them below, together
with some simple generalizations (see tensor expressions in
Appendix B).

1. Spin-S,S even integer, AKLT states

The simplest 2D Affleck-Kennedy-Lieb-Tasaki (AKLT)
[31] state is obtained by decomposing a physical spin 2 on each
site into four virtual spin- 1

2 spins, pairing every NN virtual spin

into singlet and, finally, applying the projector P : 1
2

⊗4 → 2

onto the fully symmetric S = 2 subspace on every site. This
state is known to have short-range correlations, and is given
by the A1 tensor of the V = 1

2 line/S = 2 column of Table I.
This construction can be straightforwardly extended to higher
physical spins by projecting four virtual spin- k

2 ,k ∈ N∗, onto
the fully symmetric spin-S,S = 2k, physical subspace. This is
realized by the unique V = k

2 ,S = 2k,A1 tensor of dimension
D = k + 1 (see Appendix B for k = 1 and Supplemental
Material [30] for k = 1, . . . ,5). The 2D spin-S AKLT states
can serve as useful examples of trivial (featureless) states
or states with symmetry-protected topological order [32] for
k even integer (S = 4p) or k odd integer (S = 4p + 2),
respectively.

2. Spin-S,S odd integer, featureless paramagnets

Starting with four V = 1
2 virtual spins attached to each site

and paired up into NN singlets, as in the AKLT construction,
but projecting them onto S = 1 onsite physical spins gives rise
to a spin-1 featureless paramagnet [33], also with short-range
correlations. This is given by the V = 1

2 ,S = 1,B1 tensor of
Table I. This construction can be straightforwardly generalized
to higher physical spins by simply projecting four virtual
spin- k

2 ,k ∈ N∗, onto spin-S,S = 2k − 1, physical subspace.
This is always realized by the unique V = k

2 ,S = 2k − 1,B1

tensor of dimension D = k + 1 (see Appendix B for k = 1 and
Supplemental Material [30] for k = 1, . . . ,5). We believe such
states with S > 1 are also featureless paramagnets. Note that,
for all k, the B1 tensor comes always in pair with a (complex)
E tensor which leads to a real wave function and might also
have interesting properties.

3. Spin- 1
2 resonating valence bond state

The resonating valence bond (RVB) state is a spin- 1
2 spin

liquid defined by an equal-weight superposition of all nearest-
neighbor (NN) singlet configurations [34]. It is exactly given
by the V = 1

2 ⊕ 0, nocc = {1,3}, A1 (named A(1)
1 from now

on) or B1 tensors (named B(1)
1 from now on) of the S = 1

2
column of Table I. The NN RVB state was shown to be a Z2

topological spin liquid on the kagome lattice [35–37]. On the
square lattice it exhibits an extended U(1) gauge symmetry
and is critical [36,38] (see below for the discussion of gauge
symmetry).

4. Long-range spin- 1
2 RVB state

The long-range (LR) RVB state is obtained by assuming a
distribution of longer-range singlet bonds beyond NN (yet still
connecting two different sublattices). It is obtained within the
PEPS formalism by linearly combining the V = 1

2 ⊕ 0, nocc =
{3,1}, A1 (named A(2)

1 from now on) tensor with the previous
A(1)

1 NN RVB tensor

ALR RVB = λ1A(1)
1 + λ2A(2)

1 , (4)

with λ1,λ2 ∈ R. Alternatively, one can use the gauge-
equivalent B1 tensors, named B(1)

1 and B(2)
1 . The singlet

bond distribution is controlled by the relative (real) weight
between the two tensors. Such a spin liquid Ansatz turned
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TABLE I. List of all SU(2)-symmetric basic rank-5 tensors for physical spin 1
2 � S � 2 and bond dimension D � 5. The virtual (physical)

spin degrees of freedom V (S) are displayed vertically (horizontally). Whenever the virtual spin is a direct sum V = ⊕Vi , we decompose
the virtual space V ⊗4 into all subspaces given by the occupations nocc of the spins Vi . Note that, when two tensor classes are related by
“color exchange,” we keep only one of them in the list (e.g., for V = 1

2 ⊕ 0 ⊕ 0 nocc = {1,2,1} is omitted since it is the “color conjugate” of
nocc = {1,1,2}). Tensors are labeled according to their C4v point symmetry, A1 (s wave), B1 (dx2−y2 wave), E (doubly degenerate p wave), A2

(g wave), B2 (dxy wave). Subscripts (a),(b), etc., are used to differentiate nonequivalent tensors of the same class. Gauge-equivalent tensors
(i.e., giving rise to the same PEPS) are listed between brackets, next to their gauge-related partners. Tensors giving rise to simple known wave
functions are highlighted in boldface (see text for a description and Supplemental Material [30] for expressions).

V \ S 1/2 1 3/2 2

1
2 B1 E A1

1
2 ⊕ 0

nocc = {1,3} A1[B1] E

nocc = {2,2} A(a)
1 A(b)

1 [B1] E B2

nocc = {3,1} A1[B1] E(a,b) A2[B2] A1[B1] E

1 B1 E(a,b) A2 A
(a)
1 [B1] A

(b)
1 E B2

1
2 ⊕ 0 ⊕ 0

nocc = {1,1,2} A
(a,b)
1 [B (a,b)

1 ]

E(a−c) A2[B2]
nocc = {2,1,1} A

(a,b)
1 [B (a,b)

1 ] E(a−c) A2[B2]
1
2 ⊕ 1

2

nocc = {1,3} A
(a,b)
1 [B (a,b)

1 ] E(a−c) A2[B2] A1[B1] E

nocc = {2,2} A
(a,b)
1 [B (a,b)

1 ] B
(c)
1 E(a−e) A

(a)
2 A

(b)
2 [B2] A

(a)
1 A

(b)
1 [B1] E B2

1 ⊕ 0

nocc = {1,3} A1[B1] E

nocc = {2,2} B1[A2] E(a,b) A(a)
1 [B2] A(b)

1 [B1] E

nocc = {3,1} A
(a,b)
1 [B (a,b)

1 ] E(a−c) A2[B2] A1[B1] E

3
2 B

(a)
1 B

(b)
1 E(a−c) A2 A

(a−c)
1 B1 E(a) E(b) A2[B (a)

2 ] B
(b)
2

1
2 ⊕ 0 ⊕ 0 ⊕ 0

nocc = {1,1,1,1} A
(a−c)
1 [B (a−c)

1 ] E(a−f )

A
(a,b)
2 [B (a,b)

2 ]
1
2 ⊕ 1

2 ⊕ 0

nocc = {1,2,1} A
(a−c)
1 [B (a−c)

1 ] E(a−f ) A
(a,b)
1 [B (a,b)

1 ] E(a−c)A2[B2]

A
(a−c)
2 [B (a−c)

2 ]
nocc = {1,1,2} A

(a,b)
1 [B (a,b)

1 ] E(a−c) A2[B2]

1 ⊕ 0 ⊕ 0

nocc = {1,1,2} A
(a,b)
1 [B (a,b)

1 ] E(a−c) A2[B2]

nocc = {2,1,1} A1[B1] E(a−c) A
(a,b)
2 [B (a,b)

2 ] A
(a,b)
1 [B (a,b)

1 ] E(a−c) A2[B2]

1 ⊕ 1
2

nocc = {1,3} A
(a,b)
1 [B (a,b)

1 ] E(a−c) A2[B2] A
(a,b)
1 [B (a,b)

1 ] E(a−c) A2[B2]

nocc = {2,2} A
(a−c)
1 [B (a−c)

1 ] A
(d,e)
1 E(a−e) A

(a,b)
1 [B (a,b)

1 ] B
(c)
1 E(a−e)

nocc = {3,1} A
(a,b)
1 [B (a,b)

1 ] E(a−d) A
(a,b)
2 [B (a,b)

2 ] B
(c,d)
2 A

(a−c)
1 [B (a−c)

1 ] E(a−e) A2[B2] B2

A
(a,b)
2 [B (a,b)

2 ] A
(a,b)
2 [B (a,b)

2 ]

3
2 ⊕ 0

nocc = {1,3} A1[B1] E

nocc = {2,2} A
(a)
1 A

(b)
1 [B1] E B2 B1[A2] E(a,b)

nocc = {3,1} A1[B1] E(a,b) A2[B2] A
(a,b)
1 [B (a,b)

1 ] E(a−d) A
(a,b)
2 [B (a,b)

2 ]

2 B
(a,b)
1 [A(a,b)

2 ] E(a−d) A
(a,b)
1 [B (a,b)

1 ] A
(c,d)
1

E(a−c) A2[B (a)
2 ] B

(b,c)
2

out to be an excellent variational state for the frustrated J1-J2

antiferromagnetic Heisenberg model on the square lattice [39].
It is interesting to notice that this Ansatz is in fact the most
general D = 3 SU(2)-invariant PEPS.

5. NN fermionic spin- 1
2 RVB

The NN fermionic-RVB (fRVB) is defined as an equal-
weight superposition of dimer coverings where each (cen-
trosymmetric) dimer is written in the fermionic representation.
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It can be rewritten as a spin- 1
2 NN RVB state where, e.g.,

vertical dimers are assigned a complex factor i providing a
completely different sign structure [40] than the above NN
RVB state. This (real) wave function is given by the unique
S = 1

2 , V = 1
2 ⊕ 0, nocc = {1,3}, complex E tensor [41].

6. Generalized spin-S NN RVB

The spin-1 RVB state can be obtained by attaching a single
S = 1 virtual spin on every site (accompanied by 3 spin
0). All NN virtual spins 1

2 are again paired up into singlets
which resonate. The S = 1, V = 1 ⊕ 0, nocc = {1,3}, A1 (or
B1) tensor corresponds exactly to such a spin liquid. This
scheme can be generalized to any spin-S NN RVB and is
always described by a single V = S ⊕ 0, nocc = {1,3}, A1

(or B1) tensor. The cases corresponding to S = 1 and 3
2 are

highlighted in Table I and the corresponding tensors are given
in Appendix B (see Supplemental Material [30] for all physical
spin S up to S = 2).

7. Spin-S resonating AKLT loop (RAL) state

As shown by Li et al. [42], the spin-1 RAL state involves
two virtual spin 1

2 and two virtual spin 0 attached to every
site, i.e., the virtual subspace is V = 1

2 ⊕ 0, nocc = {2,2}.
Physically, NN virtual spin 1

2 are paired up into singlets (as
in the RVB state) and all virtual spins are then projected
locally onto physical spins 1 to produce AKLT loops. The two
S = 1, V = 1

2 ⊕ 0, nocc = {2,2},A(a)
1 and A

(b)
1 tensors encode

the two possible site configurations of the loops with 180◦
or 90◦ angles. The RAL state on the square lattice is critical
since the dimer-dimer correlations decay as a power law [42].
Since the 1D AKLT chain can be extended to higher physical
spin (see above for the 2D case), it is easy to generalize the
RAL to a gas of resonating spin-S AKLT chains, for all S

integer. It is given by the only two V = S
2 ⊕ 0 (D = S + 2),

nocc = {2,2}, A
(a)
1 and A

(b)
1 tensors. The cases corresponding to

S = 1 and 2 are highlighted in Table I and the corresponding
S = 1 tensors are given in Appendix B (see Supplemental
Material [30] for all integer physical spin S up to S = 4).

8. Spin- 1
2 chiral spin liquid

The chiral spin liquid (CSL) is obtained by linearly com-
bining the two previous A(1)

1 and A(2)
1 (with real coefficients)

and the V = 1
2 ⊕ 0, nocc = {3,1}, A2 tensor (named A2 from

now on) with a pure-imaginary coefficient [43,44]. The PEPS
obtained from the resulting tensor [see Fig. 2(a)]

Achiral = λ1A(1)
1 + λ2A(2)

1 + iλcA2, (5)

with λ1,λ2,λc ∈ R, breaks time-reversal symmetry (provided
λ2λc �= 0) and transforms into its complex conjugate state
under any of the reflection symmetries of Fig. 1(a). It exhibits
clear SU(2)1 edge modes although there is some evidence for
critical (singlet) bulk correlations.

C. Constructing spin liquids and beyond

1. Generic spin liquids

From a few of the previous examples, we see that tensors
can be linearly combined to give new interesting states. In

FIG. 2. (a) The three tensors of the spin- 1
2 CSL involving the three

virtual states of the 1
2 ⊕ 0 (spin) representation: |↑〉 and |↓〉 on the full

lines, and |0〉 on the dotted lines. (b) The natural basis of virtual states
of the double-layer tensor |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉 (∈ 1

2 ⊗ 1
2 , spin

1
2 on top and bottom layers), |↑0〉, |↓0〉,|0↑〉, and |0↓〉 (∈ 1

2 ⊕ 1
2 , spin

1
2 on top or bottom layer), and |00〉 (∈ 0) is transformed (by a simple
unitary transformation) into symmetric/antisymmetric states w.r.t to
the exchange of layers.

fact, adding D (real) tensors T (a) as
∑D

a=1 λaT
(a) (involving

D real coefficients λa) belonging to the same “class,” i.e.,
characterized by the same physical (S) and virtual (V ) degrees
of freedom and by the same IRREP of the point group C4v , will
lead to a (D − 1)-dimensional family of completely symmetric
spin liquids which (potentially) do not break any symmetry,
neither SU(2) nor point-group symmetries. The numbers D of
tensors which can be combined in each SU(2) (V,S) symmetry
class to give rise to fully symmetric spin-S spin liquids are
given in Table II for D � 6 and S � 2. Note that the counting
of tensors of a given bond dimension includes all those of
smaller bond dimensions which can be combined in each class.
Note also that, for a given linear combination of tensors, there
is a priori no guarantee that all correlations remain short range
in such a symmetric state and the absence of spontaneous
symmetry breaking in the thermodynamic limit should, in
principle, always be verified. We observe that the typical
dimensions of the PEPS families do not grow too fast, from
D ∼ 3–10 for D = 4 up to D ∼ 10–40 for D = 6. Also, it is
interesting to notice that a subset of the symmetry classes does
not provide a variational representation of half-integer spin S.

2. Lattice nematics

If theD T (a) tensors belong to (at least) two different IRREP
of the point group (while still involving the same virtual and
physical degrees of freedom), the resulting PEPS will explic-
itly break the point-group symmetry. For example, combining
A1 and B1 tensors, or A2 and B2 tensors, will produce a nematic
state where vertical and horizontal directions will become
nonequivalent (e.g., observables will acquire different mean
values). As a concrete example, let us consider the V = 1,

S = 2, gauge-equivalent A
(a)
1 and B1 tensors of Table I. It is
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TABLE II. Sets of the numbers D1/D2/D3/D4/D5 of basic tensors belonging to the five A1,B1,A2,B2 and (doubly degenerate) E IRREP
of C4v , respectively, which can be combined in each SU(2) (V,S) symmetry class to give rise to fully symmetric spin-S spin liquids, for
D � 6 and 1

2 � S � 2. Note each class defined by a direct sum V = ⊕Vi of N SU(2) IRREP includes all basic tensors of all subclasses
defined by nocc = (n1,n2, . . . nN ) with 0 � ni � 4 and

∑
i ni = 4. For instance, the V = 1

2 ⊕ 1
2 ⊕ 0 (D = 5) class includes the V = 1

2 (D = 2),
V = 1

2 ⊕ 0 (D = 3), and V = 1
2 ⊕ 1

2 (D = 4) classes.

V \ S 1
2 1 3

2 2

1
2 0/0/0/0/0 0/1/0/0/1 0/0/0/0/0 1/0/0/0/0
1
2 ⊕ 0 2/2/1/1/3 2/2/0/1/2 1/1/0/0/1 1/0/0/0/0

1 0/0/0/0/0 0/1/1/0/2 0/0/0/0/0 2/1/0/1/1
1
2 ⊕ 0 ⊕ 0 8/8/4/4/12 6/5/1/3/6 2/2/0/0/2 1/0/0/0/0
1
2 ⊕ 1

2 0/0/0/0/0 6/9/4/3/13 0/0/0/0/0 6/3/0/1/3

1 ⊕ 0 0/0/0/0/0 3/5/3/1/8 0/0/0/0/0 5/3/1/3/4
3
2 0/0/0/0/0 0/2/1/0/3 0/0/0/0/0 3/1/1/2/2
1
2 ⊕ 0 ⊕ 0 ⊕ 0 21/21/12/12/33 12/10/3/6/13 3/3/0/0/3 1/0/0/0/0
1
2 ⊕ 1

2 ⊕ 0 10/10/8/8/18 12/13/5/6/18 6/6/2/2/8 6/3/0/1/3

1 ⊕ 0 ⊕ 0 0/0/0/0/0 11/14/9/6/23 0/0/0/0/0 10/7/3/6/10

1 ⊕ 1
2 4/4/3/3/7 5/5/3/4/8 5/5/3/3/8 5/4/2/2/6

3
2 ⊕ 0 1/1/1/1/2 2/3/1/1/4 3/3/2/2/5 3/2/2/2/4

2 0/0/0/0/0 0/2/2/0/4 0/0/0/0/0 4/2/1/3/3
1
2 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 44/44/28/28/72 20/17/6/10/23 4/4/0/0/4 1/0/0/0/0
1
2 ⊕ 1

2 ⊕ 0 ⊕ 0 28/28/20/20/48 25/24/11/14/35 12/12/4/4/16 6/3/0/1/3
1
2 ⊕ 1

2 ⊕ 1
2 0/0/0/0/0 33/39/24/21/63 0/0/0/0/0 21/15/3/6/18

1 ⊕ 0 ⊕ 0 ⊕ 0 0/0/0/0/0 27/31/22/18/53 0/0/0/0/0 17/13/6/10/19

1 ⊕ 1
2 ⊕ 0 11/11/8/8/19 13/13/8/9/21 11/11/7/7/18 10/8/4/5/12

1 ⊕ 1 0/0/0/0/0 9/13/13/9/26 0/0/0/0/0 19/15/7/11/22
3
2 ⊕ 0 ⊕ 0 2/2/2/2/4 6/6/2/3/8 10/10/6/6/16 4/4/5/4/9
3
2 ⊕ 1

2 0/0/0/0/0 7/12/8/5/20 0/0/0/0/0 15/10/7/10/17

2 ⊕ 0 0/0/0/0/0 1/4/5/2/9 0/0/0/0/0 10/7/3/6/10
5
2 0/0/0/0/0 0/3/2/0/5 0/0/0/0/0 5/2/2/4/4

likely that these tensors produce a paramagnet similar to the
S = 2 AKLT state, although with gapped edge states. The
linear combination A

(a)
1 + B1 (A(a)

1 − B1) of the two tensors
gives a product of decoupled vertical (horizontal) spin-2
AKLT chains times a collection of independent horizontal
(vertical) NN dimers (constructed from pairs of all the
remaining virtual spin 1 not involved in the chains). Any partial
superposition like cos θ A

(a)
1 + sin θ B1,θ ∈]0,π/2[ will give

a lattice nematic state interpolating between the isotropic
paramagnet and the array of AKLT chains.

3. Breaking SU(2) symmetry down to U(1): Spin nematics and
Néel antiferromagnets

By breaking the global SU(2) spin rotation invariance down
to U(1) one can construct, within our framework, two enlarged
families of anisotropic quantum magnets. If TR symmetry
and space-group symmetry are independently conserved, one
obtains anisotropic spin nematics [45] for which the spin Z

axis becomes nonequivalent from the two equivalent X and
Y spin axis. If the combination of TR with a unit translation
is conserved, one gets Néel-type quantum magnets with a

finite staggered magnetization. In order to achieve this goal,
one should remember that our PEPS are defined in a physical
basis where all spins on the B sublattice have been rotated by
π . Each Sz component (over the d = 2S + 1 components) of
a given tensor hence contributes to a finite amplitude of the
(physical) staggered magnetization S̃

stag
z = Sz in the original

unrotated basis.
The procedure to construct anisotropic magnets is therefore

simple: (i) One sorts out all tensors according to the virtual
space V (as before) and to some maximum value Smax of
|Sz|, defining the physical Hilbert space Sz ∈ [−Smax,Smax], by
merging classes of different SU(2) spin S with the same orbital
symmetry (i.e., IRREP of C4v). (ii) One groups all tensors into
Sz = ±|Sz| pairs of tensors T

(a)
± (where a labels the pairs)

related by the Sz ↔ −Sz symmetry (for Sz �= 0). (iii) One
then constructs the linear superposition of the (normalized)
onsite tensors for each local Sz = s|Sz| physical index as∑

a,s λa,sT
(a)
s . Generically, such a family of PEPS exhibits a

finite staggered magnetization (in the original unrotated basis)
as in a Néel state unless we further impose λa,s = λa,−s to
construct nematic states. Note that long-range order (LRO) in
the XY (spin) plane may still spontaneously appear in some do-
mains of the parameter space, despite the local U(1) symmetry.
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4. Complex E tensors, TR-symmetry breaking,
and chiral spin liquids

It is important to notice that, if the D tensors belong to
the A1, B1, A2, or B2 IRREP, the resulting tensor is real
and, hence, invariant under time-reversal (TR) symmetry. For
complex coefficients, or when E tensors are combined, the
resulting state generically breaks TR, except at fine-tuned
parameter subsets. Although chiral spin liquids with protected
chiral edge modes have to be searched in these classes of
PEPS, we believe they probably span a tiny fraction of the
TR-symmetry breaking PEPS manifold. Note also that not all
E tensors give complex PEPS. For example, combining the
three S = 1

2 , V = 1
2 ⊕ 0, complex E tensors (one tensor with

nocc = {1,3} and two tensors with nocc = {3,1}) surprisingly
gives a real [SU(2)-symmetric] wave function. We believe
this PEPS family can be viewed physically as an extension
of the NN fRVB (see above) in terms of fRVB states with
longer-range (fermionic) dimers. Similarly, the two PEPS
given by the unique S = 1, V = 1

2 ⊕ 0,E tensor and by the
unique S = 3

2 , V = 1
2 ⊕ 0,E tensor are also real. Hence, we

believe that the spin- 1
2 , spin-1, and spin- 3

2 PEPS originated
from the V = 1

2 ⊕ 0,E tensors can probably all be mapped to
real fermionic PEPS (fPEPS).

5. Gauge symmetry and topological order

Whether or not a PEPS of a given family exhibits topolog-
ical order is a rather subtle issue. The existence of a gauge
symmetry, i.e., an invariant gauge group (IGG), plays a crucial
role and is often a necessary condition. The AKLT states and
the featureless paramagnets above have simple N = 1 virtual
spaces with a single spin species in the four directions nocc = 4.
This is connected to IGG = I, characteristic of topologically
trivial states.

Gauge symmetry [like Z2 or U(1)] can also be present,
depending on the different nocc sectors involved in the
construction of the variational manifold. For instance, the NN
RVB state is defined by a unit tensor with V = 1

2 ⊕ 0 and
nocc = {1,3} which, in practice, implies that one and only one
singlet dimer is attached to every site [35]. This local constraint
implies that the number of dimers cut by a line winding
around an infinite cylinder is conserved, hence providing an
infinite number of topological sectors associated to a U(1)
gauge symmetry [36]. On the other hand, the LR RVB state
mixes nocc = {1,3} and nocc = {3,1} tensors so that, then, only
the parity of the number of dimers cut by a circumference
is conserved, hence reducing the number of sectors to two
and the gauge symmetry to Z2. More generally, the gauge
symmetry can usually be inferred from the set of numbers of
occupation [n1

occ,n
2
occ, . . . ,n

D
occ] of the D superposed tensors.

In general, one can always use a minimal global virtual basis
V = ⊕Vi , direct sum of N IRREP Vi of SU(2), for which all
the occupation numbers n

j
occ are given by sets of N numbers,

i.e., n
j
occ = {nj

1, . . . ,n
j

N } and
∑

i n
j

i = 4, ∀ j . Subsequently,
topological order can be characterized from the symmetry
[15]. However, (i) an extended gauge symmetry can emerge
in the thermodynamic limit as, e.g., the U(1) symmetry in the
case of the Z2 LR RVB state; (ii) reversely, a mechanism of
“confinement” can suppress the topological order associated to

the underlying gauge symmetry [46]. In any case, topological
order can always be inferred from a thorough investigation
of the transfer operator [46], and not only from the local
symmetry of the tensor.

D. Connection with previous work

Based on the original framework introduced by Jiang and
Ran [25] and the notion of projective symmetry group, Lee and
Han provided a classification of (trivial) spin-1 PEPS on the
square lattice [26], in terms of lattice quantum numbers. In our
classification scheme, we have recovered their results which
correspond to a subset of our S = 1 tensors: the V = 1

2 (D =
2), B1 tensor, the V = 1 (D = 3), B1 and A2 tensors, the V =
1 ⊕ 0 (D = 4), B1,nocc = {1,3} (RVB state) and nocc = {2,2}
(RAL state) tensors. While each tensor has (emergent) U(1)
IGG symmetry, a linear combination of them eliminates this
gauge symmetry and produces a trivial state. Note that these
authors did not report about either the S = 1,E tensors or the
S = 1,V = 1 ⊕ 0 (D = 4), nocc = {3,1} tensors enumerated
in Table I. Combining, e.g., the S = 1,V = 1 ⊕ 0 (D = 4),
nocc = {1,3}, and nocc = {3,1} tensors preserves a Z2 IGG
and may lead to a topological spin liquid.

III. APPLICATION: SEARCH FOR HIGHER-SPIN
(S > 1

2 ) CSL

One of the applications of our classification is the system-
atic construction of CSL beyond the physical S = 1

2 and virtual
V = 1

2 ⊕ 0 IRREPs, already realized. Our goal is to construct a
family of TR-symmetry breaking PEPS with linear dispersing
chiral edge modes described by a CFT beyond SU(2)1. To
characterize the edge modes, we analyze the entanglement
spectrum (ES) of the corresponding PEPS when wrapped
around an infinite cylinder and splitted in two parts (left and
right), as explained in Appendix A. We describe below several
natural routes to find such CSL.

A. Complex E tensors

One of the first natural candidates would be the above
E tensors which are intrinsically complex. Therefore, their
corresponding PEPS can potentially break TR symmetry and,
hence, be relevant topological CSL. However, we have found
that some of the simplest, small D,E PEPS wave functions
are purely real as seen above (hence showing a perfectly
momentum-symmetric entanglement spectrum), probably due
to the fact that they can be re-casted in the form of real
fPEPS wave functions, as it is the case for the fRVB state.
In this respect, we found that the ES of the NN fRVB state
is completely degenerate, hence saturating the upper bound of
the entanglement measures [e.g., the entanglement entropy per
unit length −Tr(ρ ln ρ)/Nv].

In addition, all complex E PEPS we have tested turned
out to show no well-defined chiral edge modes, although
breaking TR symmetry. For example, this is the case of the
PEPS associated to the S = 1, V = 1, E(a) tensor (see Table I
and Supplemental Material [30]) whose ES is shown in Fig. 3.
In fact, it is not clear, however, whether any E tensor could
give rise to a topological CSL whenever S > 1

2 .
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(0)

(0)

(1)

(0)

(1)+(2)

(1)

(1)

(1)

(1)
(1)

(1)

FIG. 3. Entanglement spectrum computed on a Nv = 10 (infinite)
cylinder (with χ = 20) of the PEPS constructed from the S = 1, V =
1, E(a) tensor. Data are plotted vs momentum (modulus π ) along
cylinder circumference. Note the spectrum is not symmetric w.r.t.
k = π/2, reflecting TR-symmetry breaking of the PEPS. States can
be grouped into SU(2) multiplets, and (s) labels 2s + 1 degenerate
states. Note the spectrum does not seem to fit a simple (chiral) CFT
like SU(2)2.

B. A1 + i A2 PEPS

Inspired by previous studies, another promising route to
construct CSL is to consider tensors of mixed A1 + iA2

(point-group) symmetry, where both the real and imaginary
components can be a sum of tensors belonging to any given A1

and A2 classes involving identical virtual and physical degrees
of freedom. This is a direct generalization of Eq. (5). This
procedure guarantees that the PEPS, if complex, transforms
into its (orthogonal) complex conjugate state under any of the
reflection symmetries of Fig. 1(a), a necessary condition for
a CSL. However, this construction does not necessarily imply
that the PEPS breaks TR symmetry and the wave function can,
in some cases, be purely real (up to a global phase). In addition,
even if the PEPS breaks TR symmetry, there is no guarantee
that it exhibits linear dispersing edge modes described by a
CFT characteristic of a topological CSL. Before describing a
successful case (the double-layer CSL and PEPS connected to
it), we will show below an example of some failure.

C. Naive spin-S generalizations of the spin- 1
2 CSL

It is known that some families of critical (nonchiral) spin-S
chains [47,48] bear a low-energy description in terms of the
SU(2)k Wess-Zumino-Witten models with levels k = 2S. It
is therefore tempting to speculate that (chiral) SU(2)k edge
modes can originate from Vi = k

2 virtual spins effectively
interacting on the edge. Indeed, the S = 1

2 CSL discussed
above, which bears SU(2)1 edge modes, involves V = 1

2 ⊕ 0
virtual states. In fact, inspecting Table I, one sees that the
construction for S = 1

2 can be easily extended for any spin
S assuming V = S ⊕ 0: one can always combine the unique
nocc = {1,3} spin-S RVB tensor (in bold case in Table I) with

FIG. 4. Diagram corresponding to Eq. (6) : the two layers of
tensors Achiral are symmetrized by the isommetry S, which projects
the physical dimensions in the three-dimensional spin-1 subspace of
1
2 ⊗ 1

2 , giving rise to the tensor Adouble.

both the nocc = {3,1}, A1 tensors (with a real coefficient)
and the nocc = {3,1}, A2 tensor(s) (with pure-imaginary
coefficients). We have computed the ES at a few points
of the three-dimensional (four-dimensional) family of PEPS
corresponding to the case S = 1 (S = 3

2 ) which turned out to
be always gapped, ruling out chiral topological order.

D. Double-layer CSL and SU(2)2 edge states

To go beyond the above naive construction, we shall
follow here a strategy borrowed from the field of the
fractional quantum Hall states (FQHS) [49,50]. Recently,
using interpretation of FQHS as conformal blocks in certain
rational conformal field theories [50], MPS representations
of FQHS were exploited [51,52], providing unprecedented
numerical accuracy [53]. While the (Abelian) Laughlin state
can be written as a simple MPS, the non-Abelian states can
be constructed as multilayer fractional quantum Hall wave
functions upon symmetrization over the layer index [54,55].
Very recently, symmetrization of topologically ordered PEPS
was shown to be a powerful method for constructing new
topological models [56]. Here, we will apply this procedure
by considering two layers of the CSL defined by Eq. (5). The
double-layer tensor [Achiral]⊗2 is symmetrized w.r.t the 1

2 ⊗ 1
2

physical variables

Adouble = S[Achiral ⊗ Achiral] , (6)

hence projecting onto the S = 1 physical state (see Fig. 4).
More precisely, its Sz = +1,0,−1 (physical) components are
given by

Adouble|1 = Achiral| 1
2
⊗ Achiral| 1

2
,

Adouble|0 = 1√
2

{
Achiral| 1

2
⊗ Achiral|− 1

2

+Achiral|− 1
2
⊗ Achiral|+ 1

2

}
,

Adouble|−1 = Achiral|− 1
2
⊗ Achiral|− 1

2
, (7)
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(0)+(1)+(2)

(0)

(1/2)

(1/2)

(1/2)+(3/2)

(1/2)+(3/2)

2(1/2)+2(3/2)

(1)

3(1)

?

FIG. 5. Same as Fig. 3 for the PEPS obtained from the double-
layer tensor of Eq. (6), Nv = 6 and χ = 14. Whenever possible,
the multiplet content of the levels is shown, following notations of
Table III. The dashed lines are guides to the eye emphasizing the
linear dispersion of the modes.

where the virtual variables of the double-layer tensor on the
left-hand side are given by the tensor product of the virtual
variables of the two single-layer CSL tensors on the right-hand
side. For convenience, we then realize a (unitary) change of
the D = 9 virtual basis, from the [ 1

2 ⊕ 0]top ⊗ [ 1
2 ⊕ 0]bottom

natural basis to the “symmetric” basis 1 ⊕ 1
2 ⊕ 1

2 ⊕ 0s ⊕ 0
described in Fig. 2(b), where the two spin- 1

2 representations
correspond now to spin- 1

2 states symmetric and antisymmetric
w.r.t. layer exchange, respectively, and the spin-0s and spin-
0 representations contain the 1√

2
(↑↓ − ↓↑) and 00 singlets,

respectively. It can be seen easily (see later for details) that
Adouble inherits from Achiral SU(2) spin rotation symmetry and
lattice A1 + iA2 (orbital) symmetry. It is therefore expected to
break TR symmetry while preserving all lattice symmetries, a
key property of chiral spin liquids.

We have computed the ES of the double-layer tensor for
λ1 = λ2 = λc(=1/

√
3) on an infinite Nv = 6 cylinder and

results are shown in Fig. 5. Linearly dispersing branches are
clearly seen. A lot of resemblance with the chiral SU(2)2

TABLE III. Towers of states of the SU(2)2 WZW model, in each
of the three sectors characterized by the primary fields j = 0, 1

2 ,1
(listed in each column) and conformal weights 1

4 j (j + 1). Each line
corresponds to a Virasoro level indexed by n. For each sector and
each level, the (quasi)degenerate states can be grouped in terms of
exact SU(2) multiplets like n0(0) + n1(1) + · · · (meaning n0 singlets,
n1 triplets, etc.). The numbers in square brackets correspond to the
total number of states in each group of levels.

n\j 0 1
2 1

0 (0) [1] ( 1
2 ) [2] (1) [3]

1 (1) [3] ( 1
2 ) + ( 3

2 ) [6] (0)+(1) [4]

2 (0)+(1)+(2) [9] 2( 1
2 ) + 2( 3

2 ) [12] (0)+2(1)+(2) [12]

3 (0)+3(1)+(2) [15] 4( 1
2 ) + 3( 3

2 ) + ( 5
2 ) [26] 2(0)+3(1)+2(2) [21]

FIG. 6. All combinations (up to global ±π/2 or π rotations)
obtained by expending the Achiral tensors [according to Eq. (5)]
simultaneously in the top and bottom layers of the (symmetrized)
double-layer CSL (leftmost column), leading to orthonormal tensors
(rightmost column) belonging to different representations of the
virtual states (middle column).
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(0)

(1)
(1)

(1)
(1)

(0)
(0)

(0)

(0)

(1)
2(0)+(1/2)

(0)

(1)
(0)

(1)

(0)

(1)

(0)

(0)+(1/2)

(1) (1)
(1)

2(1)

(0)

(0) (0)
(0)

(0)

2(0)+(1/2)

(0)

(1)

(1) (0)(1)
(0) (0) (0)+(1/2)

FIG. 7. ES for the PEPS obtained from various subsets of Eq. (8), and Nv = 8, χ = 20: (a) S1 and G1 tensors ( 1
2 ⊕ 1

2 ,D = 4); (b) S3, S4,
and G4 tensors (1 ⊕ 0,D = 4); (c) S1, S6, and G1 tensors ( 1

2 ⊕ 1
2 ⊕ 0s ,D = 5); (d) S3, S4, S5, G4, and G5 tensors (1 ⊕ 0 ⊕ 0s ,D = 5).

CFT spectrum is seen. The later shown in Table III contains
three sectors labeled by the primary fields j = 0, 1

2 ,1. The
lowest branch of the ES agrees perfectly with the content
of the j = 0 sector. We also observe two almost degenerate
branches with some energy offset, but with the same slope,
each compatible with the theoretical expectation for the j = 1

2
sector. It should be noted that, although an energy offset of 3

16 of
the (average) level spacing is expected for the j = 1

2 branch,
a larger offset (by a factor ∼4) is observed which could be
plausibly attributed to finite perimeter (Nv) and finite-χ effects
in the ES calculation (see Appendix A).

E. Decomposition in terms of elementary tensors

The double-layer tensor involves D = 9 virtual states,
making hard the computation of the ES on larger cylinders
and with larger MPS dimension χ to permit a more definite
assignment of the edge theory. In addition, it is not clear
whether the observation of exact SU(2)2 edge modes requires
some degree of “fine tuning.” For these two reasons, it is a
good idea to try to construct simpler (i.e., with lower bond
dimension D) PEPS which, potentially, could exhibit chiral
edge modes. Our strategy is here to “break up” the double-layer
tensor Adouble into independent parts defined by smaller virtual
spaces V but still exhibiting SU(2) spin rotation and A1 + iA2

lattice symmetries. To do so, we expend the Achiral tensors
according to Eq. (5) simultaneously in the top and bottom

layers. Figure 6 shows all possible combinations depending on
the relative orientation of the various contributions in the two
layers. In fact, it can be shown that each part leads to the sum of
a few orthonormal SU(2) spin symmetric real S and G tensors,
whose virtual states belong to a smaller representation, subset
of the overall Hilbert space V = [ 1

2 ⊕ 0]⊗2. The S tensors
and G tensors belong to the A1 (s-wave) and A2 (g-wave)
IRREP and appear with real and pure-imaginary coefficients,
respectively, so that each part of the decomposition bears an
overall A1 + iA2 symmetry. More precisely, we can write

Adouble =
∑

α

sαSα +
∑

β

gβGβ (8)

with

s1 = λ1λ2√
2

, s2 = 1

2

√
3λ2

1,

s3 = λ2
1

2
, s

(a)
4 = 7λ2

2 − 3λ2
c

12
√

2
,

s
(b)
4 = 1

12

√
5

2

(
λ2

2 + 3λ2
c

)
, s

(a)
5 = λ2

2

3
√

2
,

s
(b)
5 = 1

12

(−λ2
2 − 3λ2

c

)
, s

(a)
6 = 5λ2

2 + 3λ2
c

12
√

2
,

s
(b)
6 = 1

12
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FIG. 8. Same as Fig. 7 for other subsets of Eq. (8), and χ = 10: (a) Nv = 8, for S1, G1, S2, S6, S9, and G9 tensors ( 1
2 ⊕ 1

2 ⊕ 0 ⊕ 0s ,D = 6);
(b) Nv = 6, for S1, G1, S7, and G7 tensors (1 ⊕ 1

2 ⊕ 1
2 ,D = 7); (c) Nv = 6, for S1, S6, S7, G1, and G7 (1 ⊕ 1

2 ⊕ 1
2 ⊕ 0s ,D = 8); (d) Nv = 6,

for S1, S2, S3, S4, S7, S10, G1, G4, and G7 (1 ⊕ 1
2 ⊕ 1

2 ⊕ 0,D = 8).
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√
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√
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(b)
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s9 = λ1λ2

2
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2

√
5λ1λ2,

g1 = − iλ1λc√
2

, g4 = − iλ2λc√
3

,

g5 = − iλ2λc√
6

, g7 = −i

√
5

6
λ2λc,

g8 = i

√
2

3
λ2λc, g9 = −1

2
iλ1λc,

g10 = 1

2
i
√

5λ1λc,

where the subscripts of the S (s) and G (g) tensors (coeffi-
cients) label the different virtual spin representations according
to Fig. 6. The exact expressions of all S and G spin-1 tensors

are provided in Appendix B, written in the same D = 9 overall
basis so that any linear combination of tensors can easily be
performed.

We have applied the above decomposition (8) for the same
choice of the parameters λ1 = λ2 = λc(=1/

√
3) and computed

the ES of a few ad hoc linear combinations of S and G tensors
(to keep the A1 + iA2 symmetry) of larger and larger bond
dimension D. Keeping only the S1 and G1 tensors, on one
hand, or the S3, S4, and G4 tensors on the other hand, enables
to restrict the bond dimension to the same D = 4 small value,
although the two PEPS involve completely different virtual
degrees of freedom: 1

2 ⊕ 1
2 in the first case and 1 ⊕ 0 in the

second case. We have found that their corresponding ES shown
in Figs. 7(a) and 7(b), respectively, seem to be both gapped.

By adding, gradually, more virtual degrees of freedom to
the previous cases, it is interesting to see whether the gap in
the ES closes. For instance, adding the S6 tensors to the S1

and G1 tensors enlarges the virtual space to 1
2 ⊕ 1

2 ⊕ 0s and
D = 5. However, as seen in Fig. 7(c), the gap seems to persist.
Similarly, adding the S5 and G5 tensors to the S3, S4, and G4

tensors enlarges the virtual space to 1 ⊕ 0 ⊕ 0s and D = 5,
but does not close the gap either [see Fig. 7(d)].

Next, we have considered the virtual representations V =
1
2 ⊕ 1

2 ⊕ 0 ⊕ 0s (D = 6) involving the S1, G1, S2, S6, S9, and
G9 tensors, V = 1 ⊕ 1

2 ⊕ 1
2 (D = 7) involving the S1, G1, S7,

and G7 tensors, V = 1 ⊕ 1
2 ⊕ 1

2 ⊕ 0s (D = 8) involving the
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S1, S6, S7, G1, and G7 tensors and V = 1 ⊕ 1
2 ⊕ 1

2 ⊕ 0 (D =
8) involving the S1, S2, S3, S4, S7, G1, G4, and G7 tensors.
Results are compared in Figs. 8(a)–8(d). As the number of
tensors and the bond dimension increase, one does not observe
any systematic trend, rather the ES changes in some erratic
fashion. The latter seems nevertheless to remain gapped,
although in Fig. 8(b) the (pseudo)energy scale becomes very
small. In any case, the ES remains very different from the chiral
ES of the D = 9 double-layer CSL shown in Fig. 5. This is
a clear indication that there is a large degree of fine tuning in
the latter wave function. In other words, just imposing SU(2)
spin rotation and A1 + iA2 orbital symmetries, as it was done
for the single-layer CSL, is not sufficient to obtain a CSL.
One reason might be that for SU(2)2 CFT, (i) spin-1 degrees
of freedom would be needed on the boundary but (ii) spin-1
chains are generically in the gapped Haldane phase. A gapless
spectrum in a spin-1 chain requires fine tuning [47,48].

IV. CONCLUSIONS AND OUTLOOK

In this paper we have elaborated a classification scheme
of all rank-5 SU(2)-symmetric tensors according to the onsite
physical spin S, the local Hilbert space of the bond degrees
of freedom, and the irreducible representations of the C4v

point group of the square lattice. We have shown how many
remarkable (Mott-insulating) states of matter fall naturally into
this classification. More generally, we have explained how our
scheme can be used to systematically construct families of
translationally invariant many-body singlet states, preserving
or breaking discrete (point-group) lattice symmetries, spin
liquids, and (lattice) nematics, respectively. However, we bring
here a few words of caution: first, we should mention that
LRO [associated, e.g., to spontaneous translation and/or SU(2)
symmetry breaking] may still appear in the thermodynamic
limit in some parameter regions, the PEPS being in that
case a fully symmetric “Shrödinger cat state.” Note that
the existence of LRO in our symmetric PEPS can only
be diagnosed by a thorough numerical investigation, e.g.,
inspecting the low-energy spectrum of the transfer operator
[46]. Second, it is likely that not all translationally invariant
and spin rotationally symmetric spin liquids (on the square
lattice) can be expressed in terms of a PEPS based on a single
onsite SU(2)-symmetric tensor. However, we believe our
classification encompasses a very large manifold of symmetric
spin liquids. Spin liquids not generated by our classification
may include, e.g., those requiring a two-site (gauge) unit cell
such as the (translationally invariant) π -flux PEPS of the PSG
classification [25] or those requiring a different type of virtual
particles such as fermions, Majoranas, anyons, etc.

We have also used our construction to systematically search
for higher-spin (S > 1

2 ) topological chiral spin liquids. One of
our constructions uses a symmetrization over a double-layer
PEPS, showing gapless chiral edge modes corresponding to
a non-Abelian SU(2)2 Wess-Zumino-Witten model, which we
have determined via the analysis of its entanglement spectrum.
This family of CSL can be seen as a two-dimensional manifold
(spanned by the parameters λ2/λ1 and λc/λ1) imbedded
in a much larger PEPS family (characterized by arbitrary
superpositions of the S and G tensors). This suggests that,
more generally, non-Abelian CSL live on (relatively small)

fine-tuned manifolds of large PEPS families. Also, we believe
that our construction can be extended to k layers, then showing
SU(2)k gapless chiral edge modes.

We envisage these results as the first step of a broader
research program, concerning the search of quantum spin
liquids with tensor networks. Further work will involve, for
instance, using the tensors produced in our classification in
order to produce Ansätze for the numerical simulation of the
frustrated Heisenberg model on the square lattice (improving
the results of Ref. [39]), extending the classification scheme
to the kagome lattice, and using it to propose variational
wave functions to search for new spin liquids for the kagome
Heisenberg antiferromagnet.

Another straightforward extension of our classification is
to enlarge the physical space to more degrees of freedom,
e.g., to include extra U(1)-charge degrees of freedom [41] to
describe hole doping a Mott (spin liquid or antiferromagnetic)
insulator, or more orbital degrees of freedom [N > 2 with
SU(N) symmetry]. To build wave functions with specified U(1)
charge, covariant tensors can be constructed. Lastly, we note
that our PEPS are, by construction, translationally invariant.
However, it is also straightforward to describe states breaking
translation invariance by considering different tensors at every
site of a given supercell. All these problems, and more, will be
addressed in future work along these lines.
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APPENDIX A: ENTANGLEMENT SPECTRUM
FROM 2D PEPS

2D PEPS are a natural arena to study the so-called entan-
glement spectrum (ES) [57] (see for instance Refs. [58,59]). In
this appendix, we review briefly what are the main ingredients
of the calculations of ES in the context of 2D PEPS with tensor
network methods, which we have used in several sections of
this paper to characterize the edge modes.

Consider a 2D PEPS |�〉 wrapped around a cylinder
of circumference Nv , as in Fig. 9(a). For the sake of this
calculation, we consider the cylinder to be infinitely long [58].
We now split the cylinder in two parts, say, left (L) and right
(R). As explained in Ref. [58], the reduced density matrix of
half an infinite cylinder, e.g., for L, is given by

ρ = U

√
σT

L σR

√
σT

L U †, (A1)

with σL/R the reduced density operators in L/R for the virtual
spaces across the bipartition, and U an isometry obtained from
the contraction of the PEPS tensors. Technically, σL/R are
computed as the dominant left/right eigenvectors of the PEPS
transfer matrix T [see Fig. 9(b)]. From this equation, it is
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FIG. 9. (a) 2D PEPS wrapped around a cylinder of width Nv , and
split into two parts L and R. (b) Transfer matrix T of the PEPS.

clear that ρ has the same eigenvalues than
√

σT
L σR

√
σT

L since
both operators are related only by an isometry (which leaves
the spectrum invariant). Moreover,

√
σT

L σR

√
σT

L shares the
spectrum with σT

L σR , and shares the same quantum numbers
for the eigenvectors [44]. This is particularly convenient since
square roots are difficult to implement in the context of tensor
network methods.

The calculation of σL/R on an infinite cylinder for a
2D PEPS is a well-posed tensor network problem that can
be solved using many different strategies. Here, we use a
similar approach to the one used in Refs. [44,60]. Long
story short: we compute this dominant eigenvector using the
infinite Time-Evolving Block Decimation (iTEBD) method
for nonunitary evolutions [61,62]. More specifically, for a
given set of tensors in the transfer matrix T , we compute
the tensors for σL/R assuming Nv → ∞ using iTEBD. The
resulting dominant eigenvector can be written as an MPO of
bond dimension χ , which is then wrapped around a circle
of length Nv , and constitutes our approximated σL/R . This
approach is remarkably efficient, and in practice provides
very accurate results, including the ones in this paper. The
computational cost of this calculation is O(χ3D6 + χ2D8)
[60]. Moreover, in this calculation it is usually possible to fix
topological and/or parity sectors if needed, by feeding this as
an input in the initial vector of iTEBD.

The diagonalization of σT
L σR then proceeds by using

Krylov-subspace methods (e.g., Lanczos). Such methods rely
on matrix-vector multiplications which, in our case, can be
done very efficiently since the matrix σT

L σR has an explicit ten-
sor network structure in terms of the MPOs for σL and σR . At

TABLE IV. Conventions for labeling virtual states for V =
S1 ⊕ . . . ⊕ Sp .

Virtual state
(Sz) Tensor index

S1 0

S1 − 1 1

. . . . . .

−S1 2S1

S2 2S1 + 1

S2 − 1 2S1 + 2

. . . . . .

−Sp 2(S1 + . . . Sp) + (p − 1)

this point, it is also possible to fix the total z component of the
spin, which is a good quantum number in our SU(2)-invariant
setting, just by fixing it in the initial vector used in Krylov
methods. Finally, momentum in the transverse direction is also
a good quantum number, which can be extracted a posteriori
by checking how the corresponding eigenvectors transform
under the action of the translation operator.

APPENDIX B: PEPS TENSORS OF SIMPLE STATES

1. Conventions for labeling virtual states

We list below the tensors of the states described in the text.
We first provide the conventions used to label the virtual states
|α〉. Considering a virtual subspace V = S1 ⊕ . . . ⊕ Sp the
labels run from 0 to 2(S1 + · · · + Sp) + (p − 1) by decreasing
order of Sz as explicitly described in Table IV. The resulting
tensor coefficients are found in Tables V–XLIII.

2. S = 2 AKLT state

TABLE V. The S = 2 AKLT state. V = 1
2 , nocc = {4}, S =

2, Pg = A1.

Sz = +2 Sz = +1

T2(0,0,0,0) = 1 T1(0,0,0,1) = 1
2

T1(0,0,1,0) = 1
2

T1(0,1,0,0) = 1
2

T1(1,0,0,0) = 1
2

Sz = 0

T0(0,0,1,1) = 1√
6

T0(0,1,0,1) = 1√
6

T0(0,1,1,0) = 1√
6

T0(1,0,0,1) = 1√
6

T0(1,0,1,0) = 1√
6

T0(1,1,0,0) = 1√
6

Sz = −1 Sz = −2

T−1(0,1,1,1) = 1
2 T−2(1,1,1,1) = 1

T−1(1,0,1,1) = 1
2

T−1(1,1,0,1) = 1
2

T−1(1,1,1,0) = 1
2
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3. Spin-1 featureless paramagnet
TABLE VI. The tensor of the spin-1 featureless paramagnet. V =

1
2 , nocc = {4}, S = 1, Pg = B1.

Sz = +1 Sz = 0 Sz = −1

T1(0,0,0,1) = 1
2 T0(0,1,0,1) = 1√

2
T−1(0,1,1,1) = 1

2

T1(0,0,1,0) = − 1
2 T0(1,0,1,0) = − 1√

2
T−1(1,0,1,1) = − 1

2

T1(0,1,0,0) = 1
2 T−1(1,1,0,1) = 1

2

T1(1,0,0,0) = − 1
2 T−1(1,1,1,0) = − 1

2

4. Spin- 1
2 resonating valence bond state: Gauge-equivalent A(1)

1

and B(1)
1 tensors

TABLE VII. The A(1)
1 tensor of the NN resonating valence bond

(NN RVB) state. V = 1
2 ⊕ 0, nocc = {1,3}, S = 1

2 , Pg = A1.

Sz = +1/2 Sz = −1/2

T 1
2
(0,2,2,2) = 1

2 T− 1
2
(1,2,2,2) = 1

2

T 1
2
(2,0,2,2) = 1

2 T− 1
2
(2,1,2,2) = 1

2

T 1
2
(2,2,0,2) = 1

2 T− 1
2
(2,2,1,2) = 1

2

T 1
2
(2,2,2,0) = 1

2 T− 1
2
(2,2,2,1) = 1

2

TABLE VIII. The B(1)
1 tensor of the NN resonating valence bond

(NN RVB) state. V = 1
2 ⊕ 0, nocc = {1,3}, S = 1

2 , Pg = B1.

Sz = +1/2 Sz = + − 1/2

T 1
2
(0,2,2,2) = 1

2 T− 1
2
(1,2,2,2) = 1

2

T 1
2
(2,0,2,2) = − 1

2 T− 1
2
(2,1,2,2) = − 1

2

T 1
2
(2,2,0,2) = 1

2 T− 1
2
(2,2,1,2) = 1

2

T 1
2
(2,2,2,0) = − 1

2 T− 1
2
(2,2,2,1) = − 1

2

5. Gauge-equivalent A(2)
1 and B(2)

1 RVB tensors

TABLE IX. The A(2)
1 RVB tensor. V = 1

2 ⊕ 0, nocc = {3,1}, S =
1
2 , Pg = A1.

Sz = +1/2 Sz = −1/2

T 1
2
(0,0,1,2) = − 1

2
√

6
T− 1

2
(0,1,1,2) = 1

2
√

6

T 1
2
(0,0,2,1) = − 1

2
√

6
T− 1

2
(0,1,2,1) = − 1√

6

T 1
2
(0,1,0,2) = 1√

6
T− 1

2
(0,2,1,1) = 1

2
√

6

T 1
2
(0,1,2,0) = − 1

2
√

6
T− 1

2
(1,0,1,2) = − 1√

6

T 1
2
(0,2,0,1) = 1√

6
T− 1

2
(1,0,2,1) = 1

2
√

6

T 1
2
(0,2,1,0) = − 1

2
√

6
T− 1

2
(1,1,0,2) = 1

2
√

6

T 1
2
(1,0,0,2) = − 1

2
√

6
T− 1

2
(1,1,2,0) = 1

2
√

6

T 1
2
(1,0,2,0) = 1√

6
T− 1

2
(1,2,0,1) = 1

2
√

6

T 1
2
(1,2,0,0) = − 1

2
√

6
T− 1

2
(1,2,1,0) = − 1√

6

T 1
2
(2,0,0,1) = − 1

2
√

6
T− 1

2
(2,0,1,1) = 1

2
√

6

T 1
2
(2,0,1,0) = 1√

6
T− 1

2
(2,1,0,1) = − 1√

6

T 1
2
(2,1,0,0) = − 1

2
√

6
T− 1

2
(2,1,1,0) = 1

2
√

6

TABLE X. The B(2)
1 RVB tensor. V = 1

2 ⊕ 0, nocc = {3,1}, S =
1
2 , Pg = B1.

Sz = +1/2 Sz = −1/2

T 1
2
(0,0,1,2) = − 1

2
√

6
T− 1

2
(0,1,1,2) = 1

2
√

6

T 1
2
(0,0,2,1) = 1

2
√

6
T− 1

2
(0,1,2,1) = 1√

6

T 1
2
(0,1,0,2) = 1√

6
T− 1

2
(0,2,1,1) = 1

2
√

6

T 1
2
(0,1,2,0) = 1

2
√

6
T− 1

2
(1,0,1,2) = − 1√

6

T 1
2
(0,2,0,1) = 1√

6
T− 1

2
(1,0,2,1) = − 1

2
√

6

T 1
2
(0,2,1,0) = − 1

2
√

6
T− 1

2
(1,1,0,2) = 1

2
√

6

T 1
2
(1,0,0,2) = − 1

2
√

6
T− 1

2
(1,1,2,0) = − 1

2
√

6

T 1
2
(1,0,2,0) = − 1√

6
T− 1

2
(1,2,0,1) = 1

2
√

6

T 1
2
(1,2,0,0) = − 1

2
√

6
T− 1

2
(1,2,1,0) = − 1√

6

T 1
2
(2,0,0,1) = 1

2
√

6
T− 1

2
(2,0,1,1) = − 1

2
√

6

T 1
2
(2,0,1,0) = − 1√

6
T− 1

2
(2,1,0,1) = 1√

6

T 1
2
(2,1,0,0) = 1

2
√

6
T− 1

2
(2,1,1,0) = − 1

2
√

6

6. Spin- 1
2 NN fermionic RVB state (NN fRVB)

TABLE XI. The spin- 1
2 NN fermionic RVB (NN fRVB) tensor.

V = 1
2 ⊕ 0, nocc = {1,3}, S = 1

2 , Pg = E.

Sz = +1/2 Sz = −1/2

T 1
2
(0,2,2,2) = 1

2 T− 1
2
(1,2,2,2) = 1

2

T 1
2
(2,0,2,2) = ± i

2 T− 1
2
(2,1,2,2) = ± i

2

T 1
2
(2,2,0,2) = − 1

2 T− 1
2
(2,2,1,2) = − 1

2

T 1
2
(2,2,2,0) = ∓ i

2 T− 1
2
(2,2,2,1) = ∓ i

2

7. Gauge-equivalent A2 and B2 RVB tensors

TABLE XII. The A2 RVB tensor. V = 1
2 ⊕ 0, nocc = {3,1}, S =

1
2 , Pg = A2.

Sz = +1/2 Sz = −1/2

T 1
2
(0,0,1,2) = 1

2
√

2
T− 1

2
(0,1,1,2) = 1

2
√

2

T 1
2
(0,0,2,1) = − 1

2
√

2
T− 1

2
(0,2,1,1) = − 1

2
√

2

T 1
2
(0,1,2,0) = 1

2
√

2
T− 1

2
(1,0,2,1) = − 1

2
√

2

T 1
2
(0,2,1,0) = − 1

2
√

2
T− 1

2
(1,1,0,2) = − 1

2
√

2

T 1
2
(1,0,0,2) = − 1

2
√

2
T− 1

2
(1,1,2,0) = 1

2
√

2

T 1
2
(1,2,0,0) = 1

2
√

2
T− 1

2
(1,2,0,1) = 1

2
√

2

T 1
2
(2,0,0,1) = 1

2
√

2
T− 1

2
(2,0,1,1) = 1

2
√

2

T 1
2
(2,1,0,0) = − 1

2
√

2
T− 1

2
(2,1,1,0) = − 1

2
√

2
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TABLE XIII. TheA2 RVB tensor. V = 1
2 ⊕ 0, nocc = {3,1}, S =

1
2 , Pg = B2.

Sz = +1/2 Sz = −1/2

T 1
2
(0,0,1,2) = 1

2
√

2
T− 1

2
(0,1,1,2) = 1

2
√

2

T 1
2
(0,0,2,1) = 1

2
√

2
T− 1

2
(0,2,1,1) = − 1

2
√

2

T 1
2
(0,1,2,0) = − 1

2
√

2
T− 1

2
(1,0,2,1) = 1

2
√

2

T 1
2
(0,2,1,0) = − 1

2
√

2
T− 1

2
(1,1,0,2) = − 1

2
√

2

T 1
2
(1,0,0,2) = − 1

2
√

2
T− 1

2
(1,1,2,0) = − 1

2
√

2

T 1
2
(1,2,0,0) = 1

2
√

2
T− 1

2
(1,2,0,1) = 1

2
√

2

T 1
2
(2,0,0,1) = − 1

2
√

2
T− 1

2
(2,0,1,1) = − 1

2
√

2

T 1
2
(2,1,0,0) = 1

2
√

2
T− 1

2
(2,1,1,0) = 1

2
√

2

8. Spin-1 resonating loop (RAL) state

TABLE XIV. The tensors of the spin-1 resonating loop (RAL)
state. V = 1

2 ⊕ 0, nocc = {2,2}, S = 1, Pg = A1.

Sz = +1 Sz = 0 Sz = −1

T
(a)

1 (0,0,2,2) = 1
2 T

(a)
0 (0,1,2,2) = 1

2
√

2
T

(a)
−1 (1,1,2,2) = 1

2

T
(a)

1 (0,2,2,0) = 1
2 T

(a)
0 (0,2,2,1) = 1

2
√

2
T

(a)
−1 (1,2,2,1) = 1

2

T
(a)

1 (2,0,0,2) = 1
2 T

(a)
0 (1,0,2,2) = 1

2
√

2
T

(a)
−1 (2,1,1,2) = 1

2

T
(a)

1 (2,2,0,0) = 1
2 T

(a)
0 (1,2,2,0) = 1

2
√

2
T

(a)
−1 (2,2,1,1) = 1

2

T
(a)

0 (2,0,1,2) = 1
2
√

2

T
(a)

0 (2,1,0,2) = 1
2
√

2

T
(a)

0 (2,2,0,1) = 1
2
√

2

T
(a)

0 (2,2,1,0) = 1
2
√

2

Sz = +1 Sz = 0 Sz = −1

T
(b)

1 (0,2,0,2) = 1√
2

T
(b)

0 (0,2,1,2) = 1
2 T

(b)
−1 (1,2,1,2) = 1√

2

T
(b)

1 (2,0,2,0) = 1√
2

T
(b)

0 (1,2,0,2) = 1
2 T

(b)
−1 (2,1,2,1) = 1√

2

T
(b)

0 (2,0,2,1) = 1
2

T
(b)

0 (2,1,2,0) = 1
2

9. Generalized spin-S NN RVB state

TABLE XV. The tensor of the generalized spin-1 NN RVB state.
V = 1 ⊕ 0, nocc = {1,3}, S = 1, Pg = A1.

Sz = +1 Sz = 0 Sz = −1

T1(0,3,3,3) = 1
2 T0(1,3,3,3) = 1

2 T−1(2,3,3,3) = 1
2

T1(3,0,3,3) = 1
2 T0(3,1,3,3) = 1

2 T−1(3,2,3,3) = 1
2

T1(3,3,0,3) = 1
2 T0(3,3,1,3) = 1

2 T−1(3,3,2,3) = 1
2

T1(3,3,3,0) = 1
2 T0(3,3,3,1) = 1

2 T−1(3,3,3,2) = 1
2

TABLE XVI. The tensor of the generalized spin-1 NN RVB state.
V = 1 ⊕ 0, nocc = {1,3}, S = 1, Pg = B1.

Sz = +1 Sz = 0 Sz = −1

T1(0,3,3,3) = 1
2 T0(1,3,3,3) = 1

2 T−1(2,3,3,3) = 1
2

T1(3,0,3,3) = − 1
2 T0(3,1,3,3) = − 1

2 T−1(3,2,3,3) = − 1
2

T1(3,3,0,3) = 1
2 T0(3,3,1,3) = 1

2 T−1(3,3,2,3) = 1
2

T1(3,3,3,0) = − 1
2 T0(3,3,3,1) = − 1

2 T−1(3,3,3,2) = − 1
2

TABLE XVII. The tensor of the generalized spin- 3
2 NN RVB

state. V = 3
2 ⊕ 0, nocc = {1,3}, S = 3

2 , Pg = A1.

Sz = +3/2 Sz = +1/2

T 3
2
(0,4,4,4) = 1

2 T 1
2
(1,4,4,4) = 1

2

T 3
2
(4,0,4,4) = 1

2 T 1
2
(4,1,4,4) = 1

2

T 3
2
(4,4,0,4) = 1

2 T 1
2
(4,4,1,4) = 1

2

T 3
2
(4,4,4,0) = 1

2 T 1
2
(4,4,4,1) = 1

2

Sz = −1/2 Sz = −3/2

T− 1
2
(2,4,4,4) = 1

2 T− 3
2
(3,4,4,4) = 1

2

T− 1
2
(4,2,4,4) = 1

2 T− 3
2
(4,3,4,4) = 1

2

T− 1
2
(4,4,2,4) = 1

2 T− 3
2
(4,4,3,4) = 1

2

T− 1
2
(4,4,4,2) = 1

2 T− 3
2
(4,4,4,3) = 1

2

TABLE XVIII. The tensor of the generalized spin- 3
2 NN RVB

state. V = 3
2 ⊕ 0, nocc = {1,3}, S = 3

2 , Pg = B1.

Sz = +3/2 Sz = +1/2

T 3
2
(0,4,4,4) = 1

2 T 1
2
(1,4,4,4) = 1

2

T 3
2
(4,0,4,4) = − 1

2 T 1
2
(4,1,4,4) = − 1

2

T 3
2
(4,4,0,4) = 1

2 T 1
2
(4,4,1,4) = 1

2

T 3
2
(4,4,4,0) = − 1

2 T 1
2
(4,4,4,1) = − 1

2

Sz = −1/2 Sz = −3/2

T− 1
2
(2,4,4,4) = 1

2 T− 3
2
(3,4,4,4) = 1

2

T− 1
2
(4,2,4,4) = − 1

2 T− 3
2
(4,3,4,4) = − 1

2

T− 1
2
(4,4,2,4) = 1

2 T− 3
2
(4,4,3,4) = 1

2

T− 1
2
(4,4,4,2) = − 1

2 T− 3
2
(4,4,4,3) = − 1

2

APPENDIX C: S AND G TENSORS OBTAINED FROM THE
DECOMPOSITION OF THE DOUBLE-LAYER CSL

Here, one uses the same set of indices for all tensors,
according to Fig. 2(b).
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TABLE XIX. S1.

Sz = +1 Sz = 0 Sz = −1

T1(2,2,6,7) = 1
4
√

3
T0(2,2,7,7) = 1

2
√

6
T−1(2,5,7,7) = 1

4
√

3

T1(2,2,7,6) = 1
4
√

3
T0(2,7,2,7) = − 1√

6
T−1(2,7,5,7) = − 1

2
√

3

T1(2,5,6,6) = − 1
4
√

3
T0(2,7,7,2) = 1

2
√

6
T−1(2,7,7,5) = 1

4
√

3

T1(2,6,2,7) = − 1
2
√

3
T0(5,5,6,6) = − 1

2
√

6
T−1(5,2,7,7) = 1

4
√

3

T1(2,6,5,6) = 1
2
√

3
T0(5,6,5,6) = 1√

6
T−1(5,5,6,7) = − 1

4
√

3

T1(2,6,6,5) = − 1
4
√

3
T0(5,6,6,5) = − 1

2
√

6
T−1(5,5,7,6) = − 1

4
√

3

T1(2,6,7,2) = 1
4
√

3
T0(6,5,5,6) = − 1

2
√

6
T−1(5,6,5,7) = 1

2
√

3

T1(2,7,2,6) = − 1
2
√

3
T0(6,5,6,5) = 1√

6
T−1(5,6,7,5) = − 1

4
√

3

T1(2,7,6,2) = 1
4
√

3
T0(6,6,5,5) = − 1

2
√

6
T−1(5,7,2,7) = − 1

2
√

3

T1(5,2,6,6) = − 1
4
√

3
T0(7,2,2,7) = 1

2
√

6
T−1(5,7,5,6) = 1

2
√

3

T1(5,6,2,6) = 1
2
√

3
T0(7,2,7,2) = − 1√

6
T−1(5,7,6,5) = − 1

4
√

3

T1(5,6,6,2) = − 1
4
√

3
T0(7,7,2,2) = 1

2
√

6
T−1(5,7,7,2) = 1

4
√

3

T1(6,2,2,7) = 1
4
√

3
T−1(6,5,5,7) = − 1

4
√

3

T1(6,2,5,6) = − 1
4
√

3
T−1(6,5,7,5) = 1

2
√

3

T1(6,2,6,5) = 1
2
√

3
T−1(6,7,5,5) = − 1

4
√

3

T1(6,2,7,2) = − 1
2
√

3
T−1(7,2,5,7) = 1

4
√

3

T1(6,5,2,6) = − 1
4
√

3
T−1(7,2,7,5) = − 1

2
√

3

T1(6,5,6,2) = 1
2
√

3
T−1(7,5,2,7) = 1

4
√

3

T1(6,6,2,5) = − 1
4
√

3
T−1(7,5,5,6) = − 1

4
√

3

T1(6,6,5,2) = − 1
4
√

3
T−1(7,5,6,5) = 1

2
√

3

T1(6,7,2,2) = 1
4
√

3
T−1(7,5,7,2) = − 1

2
√

3

T1(7,2,2,6) = 1
4
√

3
T−1(7,6,5,5) = − 1

4
√

3

T1(7,2,6,2) = − 1
2
√

3
T−1(7,7,2,5) = 1

4
√

3

T1(7,6,2,2) = 1
4
√

3
T−1(7,7,5,2) = 1

4
√

3

TABLE XX. G1.

Sz = +1 Sz = 0 Sz = −1

T1(2,2,6,7) = − 1
4 T0(2,5,7,6) = 1

2
√

2
T−1(2,5,7,7) = 1

4

T1(2,2,7,6) = 1
4 T0(2,6,7,5) = − 1

2
√

2
T−1(2,7,7,5) = − 1

4

T1(2,5,6,6) = 1
4 T0(5,2,6,7) = − 1

2
√

2
T−1(5,2,7,7) = − 1

4

T1(2,6,6,5) = − 1
4 T0(5,7,6,2) = 1

2
√

2
T−1(5,5,6,7) = − 1

4

T1(2,6,7,2) = − 1
4 T0(6,2,5,7) = 1

2
√

2
T−1(5,5,7,6) = 1

4

T1(2,7,6,2) = 1
4 T0(6,7,5,2) = − 1

2
√

2
T−1(5,6,7,5) = − 1

4

T1(5,2,6,6) = − 1
4 T0(7,5,2,6) = − 1

2
√

2
T−1(5,7,6,5) = 1

4

T1(5,6,6,2) = 1
4 T0(7,6,2,5) = 1

2
√

2
T−1(5,7,7,2) = 1

4

T1(6,2,2,7) = 1
4 T−1(6,5,5,7) = 1

4

T1(6,2,5,6) = 1
4 T−1(6,7,5,5) = − 1

4

T1(6,5,2,6) = − 1
4 T−1(7,2,5,7) = 1

4

T1(6,6,2,5) = 1
4 T−1(7,5,2,7) = − 1

4

T1(6,6,5,2) = − 1
4 T−1(7,5,5,6) = − 1

4

T1(6,7,2,2) = − 1
4 T−1(7,6,5,5) = 1

4

T1(7,2,2,6) = − 1
4 T−1(7,7,2,5) = 1

4

T1(7,6,2,2) = 1
4 T−1(7,7,5,2) = − 1

4

TABLE XXI. S2.

Sz = +1 Sz = 0 Sz = −1

T1(2,2,8,8) = 1
2
√

3
T0(2,5,8,8) = 1

2
√

6
T−1(5,5,8,8) = 1

2
√

3

T1(2,8,2,8) = 1
2
√

3
T0(2,8,5,8) = 1

2
√

6
T−1(5,8,5,8) = 1

2
√

3

T1(2,8,8,2) = 1
2
√

3
T0(2,8,8,5) = 1

2
√

6
T−1(5,8,8,5) = 1

2
√

3

T1(6,6,8,8) = − 1
2
√

3
T0(5,2,8,8) = 1

2
√

6
T−1(7,7,8,8) = − 1

2
√

3

T1(6,8,6,8) = − 1
2
√

3
T0(5,8,2,8) = 1

2
√

6
T−1(7,8,7,8) = − 1

2
√

3

T1(6,8,8,6) = − 1
2
√

3
T0(5,8,8,2) = 1

2
√

6
T−1(7,8,8,7) = − 1

2
√

3

T1(8,2,2,8) = 1
2
√

3
T0(6,7,8,8) = − 1

2
√

6
T−1(8,5,5,8) = 1

2
√

3

T1(8,2,8,2) = 1
2
√

3
T0(6,8,7,8) = − 1

2
√

6
T−1(8,5,8,5) = 1

2
√

3

T1(8,6,6,8) = − 1
2
√

3
T0(6,8,8,7) = − 1

2
√

6
T−1(8,7,7,8) = − 1

2
√

3

T1(8,6,8,6) = − 1
2
√

3
T0(7,6,8,8) = − 1

2
√

6
T−1(8,7,8,7) = − 1

2
√

3

T1(8,8,2,2) = 1
2
√

3
T0(7,8,6,8) = − 1

2
√

6
T−1(8,8,5,5) = 1

2
√

3

T1(8,8,6,6) = − 1
2
√

3
T0(7,8,8,6) = − 1

2
√

6
T−1(8,8,7,7) = − 1

2
√

3

T0(8,2,5,8) = 1
2
√

6

T0(8,2,8,5) = 1
2
√

6

T0(8,5,2,8) = 1
2
√

6

T0(8,5,8,2) = 1
2
√

6

T0(8,6,7,8) = − 1
2
√

6

T0(8,6,8,7) = − 1
2
√

6

T0(8,7,6,8) = − 1
2
√

6

T0(8,7,8,6) = − 1
2
√

6

T0(8,8,2,5) = 1
2
√

6

T0(8,8,5,2) = 1
2
√

6

T0(8,8,6,7) = − 1
2
√

6

T0(8,8,7,6) = − 1
2
√

6

TABLE XXII. S3.

Sz = +1 Sz = 0 Sz = −1

T1(0,8,8,8) = 1
2 T0(1,8,8,8) = 1

2 T−1(4,8,8,8) = 1
2

T1(8,0,8,8) = 1
2 T0(8,1,8,8) = 1

2 T−1(8,4,8,8) = 1
2

T1(8,8,0,8) = 1
2 T0(8,8,1,8) = 1

2 T−1(8,8,4,8) = 1
2

T1(8,8,8,0) = 1
2 T0(8,8,8,1) = 1

2 T−1(8,8,8,4) = 1
2

TABLE XXIII. S
(a)
4 .

Sz = +1 Sz = 0 Sz = −1

T1(0,0,4,8) = 1
4
√

2
T0(0,1,8,4) = 1

4
√

2
T−1(0,4,4,8) = 1

4
√

2

T1(0,0,8,4) = 1
4
√

2
T0(0,4,1,8) = 1

4
√

2
T−1(0,4,8,4) = 1

2
√

2

T1(0,1,1,8) = − 1
4
√

2
T0(0,4,8,1) = 1

4
√

2
T−1(0,8,4,4) = 1

4
√

2

T1(0,4,0,8) = 1
2
√

2
T0(0,8,1,4) = 1

4
√

2
T−1(1,1,4,8) = − 1

4
√

2

T1(0,4,8,0) = 1
4
√

2
T0(1,0,4,8) = 1

4
√

2
T−1(1,1,8,4) = − 1

4
√

2

T1(0,8,0,4) = 1
2
√

2
T0(1,1,1,8) = − 1

2
√

2
T−1(1,4,8,1) = − 1

4
√

2
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TABLE XXIII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(0,8,1,1) = − 1
4
√

2
T0(1,1,8,1) = − 1

2
√

2
T−1(1,8,4,1) = − 1

4
√

2

T1(0,8,4,0) = 1
4
√

2
T0(1,4,0,8) = 1

4
√

2
T−1(4,0,4,8) = 1

2
√

2

T1(1,0,8,1) = − 1
4
√

2
T0(1,8,0,4) = 1

4
√

2
T−1(4,0,8,4) = 1

4
√

2

T1(1,1,0,8) = − 1
4
√

2
T0(1,8,1,1) = − 1

2
√

2
T−1(4,1,1,8) = − 1

4
√

2

T1(1,1,8,0) = − 1
4
√

2
T0(1,8,4,0) = 1

4
√

2
T−1(4,4,0,8) = 1

4
√

2

T1(1,8,0,1) = − 1
4
√

2
T0(4,0,1,8) = 1

4
√

2
T−1(4,4,8,0) = 1

4
√

2

T1(4,0,0,8) = 1
4
√

2
T0(4,0,8,1) = 1

4
√

2
T−1(4,8,0,4) = 1

4
√

2

T1(4,0,8,0) = 1
2
√

2
T0(4,1,8,0) = 1

4
√

2
T−1(4,8,1,1) = − 1

4
√

2

T1(4,8,0,0) = 1
4
√

2
T0(4,8,1,0) = 1

4
√

2
T−1(4,8,4,0) = 1

2
√

2

T1(8,0,0,4) = 1
4
√

2
T0(8,0,4,1) = 1

4
√

2
T−1(8,0,4,4) = 1

4
√

2

T1(8,0,1,1) = − 1
4
√

2
T0(8,1,0,4) = 1

4
√

2
T−1(8,1,1,4) = − 1

4
√

2

T1(8,0,4,0) = 1
2
√

2
T0(8,1,1,1) = − 1

2
√

2
T−1(8,4,0,4) = 1

2
√

2

T1(8,1,1,0) = − 1
4
√

2
T0(8,1,4,0) = 1

4
√

2
T−1(8,4,1,1) = − 1

4
√

2

T1(8,4,0,0) = 1
4
√

2
T0(8,4,0,1) = 1

4
√

2
T−1(8,4,4,0) = 1

4
√

2

TABLE XXIV. S
(b)
4 .

Sz = +1 Sz = 0 Sz = −1

T1(0,0,4,8) = − 3
4
√

10
T0(0,1,4,8) = − 1√

10
T−1(0,4,4,8) = − 3

4
√

10

T1(0,0,8,4) = − 3
4
√

10
T0(0,1,8,4) = 1

4
√

10
T−1(0,4,8,4) = 1

2
√

10

T1(0,1,1,8) = − 1
4
√

10
T0(0,4,1,8) = 1

4
√

10
T−1(0,8,4,4) = − 3

4
√

10

T1(0,1,8,1) = 1√
10

T0(0,4,8,1) = 1
4
√

10
T−1(1,1,4,8) = − 1

4
√

10

T1(0,4,0,8) = 1
2
√

10
T0(0,8,1,4) = 1

4
√

10
T−1(1,1,8,4) = − 1

4
√

10

T1(0,4,8,0) = − 3
4
√

10
T0(0,8,4,1) = − 1√

10
T−1(1,4,1,8) = 1√

10

T1(0,8,0,4) = 1
2
√

10
T0(1,0,4,8) = 1

4
√

10
T−1(1,4,8,1) = − 1

4
√

10

T1(0,8,1,1) = − 1
4
√

10
T0(1,0,8,4) = − 1√

10
T−1(1,8,1,4) = 1√

10

T1(0,8,4,0) = − 3
4
√

10
T0(1,1,1,8) = 1

2
√

10
T−1(1,8,4,1) = − 1

4
√

10

T1(1,0,1,8) = 1√
10

T0(1,1,8,1) = 1
2
√

10
T−1(4,0,4,8) = 1

2
√

10

T1(1,0,8,1) = − 1
4
√

10
T0(1,4,0,8) = 1

4
√

10
T−1(4,0,8,4) = − 3

4
√

10

T1(1,1,0,8) = − 1
4
√

10
T0(1,4,8,0) = − 1√

10
T−1(4,1,1,8) = − 1

4
√

10

T1(1,1,8,0) = − 1
4
√

10
T0(1,8,0,4) = 1

4
√

10
T−1(4,1,8,1) = 1√

10

T1(1,8,0,1) = − 1
4
√

10
T0(1,8,1,1) = 1

2
√

10
T−1(4,4,0,8) = − 3

4
√

10

T1(1,8,1,0) = 1√
10

T0(1,8,4,0) = 1
4
√

10
T−1(4,4,8,0) = − 3

4
√

10

T1(4,0,0,8) = − 3
4
√

10
T0(4,0,1,8) = 1

4
√

10
T−1(4,8,0,4) = − 3

4
√

10

T1(4,0,8,0) = 1
2
√

10
T0(4,0,8,1) = 1

4
√

10
T−1(4,8,1,1) = − 1

4
√

10

T1(4,8,0,0) = − 3
4
√

10
T0(4,1,0,8) = − 1√

10
T−1(4,8,4,0) = 1

2
√

10

T1(8,0,0,4) = − 3
4
√

10
T0(4,1,8,0) = 1

4
√

10
T−1(8,0,4,4) = − 3

4
√

10

T1(8,0,1,1) = − 1
4
√

10
T0(4,8,0,1) = − 1√

10
T−1(8,1,1,4) = − 1

4
√

10

T1(8,0,4,0) = 1
2
√

10
T0(4,8,1,0) = 1

4
√

10
T−1(8,1,4,1) = 1√

10

T1(8,1,0,1) = 1√
10

T0(8,0,1,4) = − 1√
10

T−1(8,4,0,4) = 1
2
√

10

T1(8,1,1,0) = − 1
4
√

10
T0(8,0,4,1) = 1

4
√

10
T−1(8,4,1,1) = − 1

4
√

10

T1(8,4,0,0) = − 3
4
√

10
T0(8,1,0,4) = 1

4
√

10
T−1(8,4,4,0) = − 3

4
√

10

T0(8,1,1,1) = 1
2
√

10

T0(8,1,4,0) = 1
4
√

10

T0(8,4,0,1) = 1
4
√

10

T0(8,4,1,0) = − 1√
10

TABLE XXV. G4.

Sz = +1 Sz = 0 Sz = −1

T1(0,0,4,8) = 1
4 T0(0,1,8,4) = − 1

4 T−1(0,4,4,8) = − 1
4

T1(0,0,8,4) = − 1
4 T0(0,4,1,8) = − 1

4 T−1(0,8,4,4) = 1
4

T1(0,1,1,8) = − 1
4 T0(0,4,8,1) = 1

4 T−1(1,1,4,8) = 1
4

T1(0,4,8,0) = 1
4 T0(0,8,1,4) = 1

4 T−1(1,1,8,4) = − 1
4

T1(0,8,1,1) = 1
4 T0(1,0,4,8) = 1

4 T−1(1,4,8,1) = 1
4

T1(0,8,4,0) = − 1
4 T0(1,4,0,8) = 1

4 T−1(1,8,4,1) = − 1
4

T1(1,0,8,1) = 1
4 T0(1,8,0,4) = − 1

4 T−1(4,0,8,4) = 1
4

T1(1,1,0,8) = 1
4 T0(1,8,4,0) = − 1

4 T−1(4,1,1,8) = − 1
4

T1(1,1,8,0) = − 1
4 T0(4,0,1,8) = − 1

4 T−1(4,4,0,8) = 1
4

T1(1,8,0,1) = − 1
4 T0(4,0,8,1) = 1

4 T−1(4,4,8,0) = − 1
4

T1(4,0,0,8) = − 1
4 T0(4,1,8,0) = − 1

4 T−1(4,8,0,4) = − 1
4

T1(4,8,0,0) = 1
4 T0(4,8,1,0) = 1

4 T−1(4,8,1,1) = 1
4

T1(8,0,0,4) = 1
4 T0(8,0,4,1) = − 1

4 T−1(8,0,4,4) = − 1
4

T1(8,0,1,1) = − 1
4 T0(8,1,0,4) = 1

4 T−1(8,1,1,4) = 1
4

T1(8,1,1,0) = 1
4 T0(8,1,4,0) = 1

4 T−1(8,4,1,1) = − 1
4

T1(8,4,0,0) = − 1
4 T0(8,4,0,1) = − 1

4 T−1(8,4,4,0) = 1
4

TABLE XXVI. S
(a)
5 .

Sz = +1 Sz = 0 Sz = −1

T1(0,3,3,8) = 1
2
√

2
T0(1,3,3,8) = 1

2
√

2
T−1(3,3,4,8) = 1

2
√

2

T1(0,8,3,3) = 1
2
√

2
T0(1,8,3,3) = 1

2
√

2
T−1(3,3,8,4) = 1

2
√

2

T1(3,0,8,3) = 1
2
√

2
T0(3,1,8,3) = 1

2
√

2
T−1(3,4,8,3) = 1

2
√

2

T1(3,3,0,8) = 1
2
√

2
T0(3,3,1,8) = 1

2
√

2
T−1(3,8,4,3) = 1

2
√

2

T1(3,3,8,0) = 1
2
√

2
T0(3,3,8,1) = 1

2
√

2
T−1(4,3,3,8) = 1

2
√

2

T1(3,8,0,3) = 1
2
√

2
T0(3,8,1,3) = 1

2
√

2
T−1(4,8,3,3) = 1

2
√

2

T1(8,0,3,3) = 1
2
√

2
T0(8,1,3,3) = 1

2
√

2
T−1(8,3,3,4) = 1

2
√

2

T1(8,3,3,0) = 1
2
√

2
T0(8,3,3,1) = 1

2
√

2
T−1(8,4,3,3) = 1

2
√

2

TABLE XXVII. S
(b)
5 .

Sz = +1 Sz = 0 Sz = −1

T1(0,3,8,3) = 1
2 T0(1,3,8,3) = 1

2 T−1(3,4,3,8) = 1
2

T1(3,0,3,8) = 1
2 T0(3,1,3,8) = 1

2 T−1(3,8,3,4) = 1
2

T1(3,8,3,0) = 1
2 T0(3,8,3,1) = 1

2 T−1(4,3,8,3) = 1
2

T1(8,3,0,3) = 1
2 T0(8,3,1,3) = 1

2 T−1(8,3,4,3) = 1
2

TABLE XXVIII. G5.

Sz = +1 Sz = 0 Sz = −1

T1(0,3,3,8) = 1
2
√

2
T0(1,3,3,8) = 1

2
√

2
T−1(3,3,4,8) = − 1

2
√

2

T1(0,8,3,3) = − 1
2
√

2
T0(1,8,3,3) = − 1

2
√

2
T−1(3,3,8,4) = 1

2
√

2

T1(3,0,8,3) = − 1
2
√

2
T0(3,1,8,3) = − 1

2
√

2
T−1(3,4,8,3) = − 1

2
√

2

T1(3,3,0,8) = − 1
2
√

2
T0(3,3,1,8) = − 1

2
√

2
T−1(3,8,4,3) = 1

2
√

2

T1(3,3,8,0) = 1
2
√

2
T0(3,3,8,1) = 1

2
√

2
T−1(4,3,3,8) = 1

2
√

2

T1(3,8,0,3) = 1
2
√

2
T0(3,8,1,3) = 1

2
√

2
T−1(4,8,3,3) = − 1

2
√

2

T1(8,0,3,3) = 1
2
√

2
T0(8,1,3,3) = 1

2
√

2
T−1(8,3,3,4) = − 1

2
√

2

T1(8,3,3,0) = − 1
2
√

2
T0(8,3,3,1) = − 1

2
√

2
T−1(8,4,3,3) = 1

2
√

2
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TABLE XXIX. S
(a)
6 .

Sz = +1 Sz = 0 Sz = −1

T1(2,2,3,3) = − 1
2
√

2
T0(2,3,3,5) = − 1

4 T−1(3,3,5,5) = − 1
2
√

2

T1(2,3,3,2) = − 1
2
√

2
T0(2,5,3,3) = − 1

4 T−1(3,3,7,7) = 1
2
√

2

T1(3,2,2,3) = − 1
2
√

2
T0(3,2,5,3) = − 1

4 T−1(3,5,5,3) = − 1
2
√

2

T1(3,3,2,2) = − 1
2
√

2
T0(3,3,2,5) = − 1

4 T−1(3,7,7,3) = 1
2
√

2

T1(3,3,6,6) = 1
2
√

2
T0(3,3,5,2) = − 1

4 T−1(5,3,3,5) = − 1
2
√

2

T1(3,6,6,3) = 1
2
√

2
T0(3,3,6,7) = 1

4 T−1(5,5,3,3) = − 1
2
√

2

T1(6,3,3,6) = 1
2
√

2
T0(3,3,7,6) = 1

4 T−1(7,3,3,7) = 1
2
√

2

T1(6,6,3,3) = 1
2
√

2
T0(3,5,2,3) = − 1

4 T−1(7,7,3,3) = 1
2
√

2

T0(3,6,7,3) = 1
4

T0(3,7,6,3) = 1
4

T0(5,2,3,3) = − 1
4

T0(5,3,3,2) = − 1
4

T0(6,3,3,7) = 1
4

T0(6,7,3,3) = 1
4

T0(7,3,3,6) = 1
4

T0(7,6,3,3) = 1
4

TABLE XXX. S
(b)
6 .

Sz = +1 Sz = 0 Sz = −1

T1(2,3,2,3) = − 1
2 T0(2,3,5,3) = − 1

2
√

2
T−1(3,5,3,5) = − 1

2

T1(3,2,3,2) = − 1
2 T0(3,2,3,5) = − 1

2
√

2
T−1(3,7,3,7) = 1

2

T1(3,6,3,6) = 1
2 T0(3,5,3,2) = − 1

2
√

2
T−1(5,3,5,3) = − 1

2

T1(6,3,6,3) = 1
2 T0(3,6,3,7) = 1

2
√

2
T−1(7,3,7,3) = 1

2

T0(3,7,3,6) = 1
2
√

2

T0(5,3,2,3) = − 1
2
√

2

T0(6,3,7,3) = 1
2
√

2

T0(7,3,6,3) = 1
2
√

2

TABLE XXXI. S
(a)
7 .

Sz = +1 Sz = 0 Sz = −1

T1(0,2,4,2) = − 1
2
√

3
T0(0,2,4,5) = − 1

2
√

6
T−1(0,5,4,5) = − 1

2
√

3

T1(0,6,4,6) = 1
2
√

3
T0(0,5,4,2) = − 1

2
√

6
T−1(0,7,4,7) = 1

2
√

3

T1(1,2,1,2) = 1
2
√

3
T0(0,6,4,7) = 1

2
√

6
T−1(1,5,1,5) = 1

2
√

3

T1(1,6,1,6) = − 1
2
√

3
T0(0,7,4,6) = 1

2
√

6
T−1(1,7,1,7) = − 1

2
√

3

T1(2,0,2,4) = − 1
2
√

3
T0(1,2,1,5) = 1

2
√

6
T−1(4,5,0,5) = − 1

2
√

3

T1(2,1,2,1) = 1
2
√

3
T0(1,5,1,2) = 1

2
√

6
T−1(4,7,0,7) = 1

2
√

3

T1(2,4,2,0) = − 1
2
√

3
T0(1,6,1,7) = − 1

2
√

6
T−1(5,0,5,4) = − 1

2
√

3

T1(4,2,0,2) = − 1
2
√

3
T0(1,7,1,6) = − 1

2
√

6
T−1(5,1,5,1) = 1

2
√

3

T1(4,6,0,6) = 1
2
√

3
T0(2,0,5,4) = − 1

2
√

6
T−1(5,4,5,0) = − 1

2
√

3

TABLE XXXI. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(6,0,6,4) = 1
2
√

3
T0(2,1,5,1) = 1

2
√

6
T−1(7,0,7,4) = 1

2
√

3

T1(6,1,6,1) = − 1
2
√

3
T0(2,4,5,0) = − 1

2
√

6
T−1(7,1,7,1) = − 1

2
√

3

T1(6,4,6,0) = 1
2
√

3
T0(4,2,0,5) = − 1

2
√

6
T−1(7,4,7,0) = 1

2
√

3

T0(4,5,0,2) = − 1
2
√

6

T0(4,6,0,7) = 1
2
√

6

T0(4,7,0,6) = 1
2
√

6

T0(5,0,2,4) = − 1
2
√

6

T0(5,1,2,1) = 1
2
√

6

T0(5,4,2,0) = − 1
2
√

6

T0(6,0,7,4) = 1
2
√

6

T0(6,1,7,1) = − 1
2
√

6

T0(6,4,7,0) = 1
2
√

6

T0(7,0,6,4) = 1
2
√

6

T0(7,1,6,1) = − 1
2
√

6

T0(7,4,6,0) = 1
2
√

6

TABLE XXXII. S
(b)
7 .

Sz = +1 Sz = 0 Sz = −1

T1(0,2,1,5) = −
√

3
10

4 T0(0,2,4,5) = − 1
2
√

30
T−1(0,5,4,5) = 1

4
√

15

T1(0,2,4,2) = 1
4
√

15
T0(0,5,1,5) =

√
3
5

4 T−1(0,7,4,7) = − 1
4
√

15

T1(0,5,0,5) =
√

3
5

2 T0(0,5,4,2) = − 1
2
√

30
T−1(1,2,4,5) = −

√
3

10

4

T1(0,5,1,2) = −
√

3
10

4 T0(0,6,4,7) = 1
2
√

30
T−1(1,5,1,5) = 1

2
√

15

T1(0,6,1,7) =
√

3
10

4 T0(0,7,1,7) = −
√

3
5

4 T−1(1,5,4,2) = −
√

3
10

4

T1(0,6,4,6) = − 1
4
√

15
T0(0,7,4,6) = 1

2
√

30
T−1(1,6,4,7) =

√
3

10

4

T1(0,7,0,7) = −
√

3
5

2 T0(1,2,1,5) = − 1√
30

T−1(1,7,1,7) = − 1
2
√

15

T1(0,7,1,6) =
√

3
10

4 T0(1,2,4,2) =
√

3
5

4 T−1(1,7,4,6) =
√

3
10

4

T1(1,2,0,5) = −
√

3
10

4 T0(1,5,0,5) =
√

3
5

4 T−1(2,1,5,4) = −
√

3
10

4

T1(1,2,1,2) = 1
2
√

15
T0(1,5,1,2) = − 1√

30
T−1(2,4,2,4) =

√
3
5

2

T1(1,5,0,2) = −
√

3
10

4 T0(1,6,1,7) = 1√
30

T−1(2,4,5,1) = −
√

3
10

4

T1(1,6,0,7) =
√

3
10

4 T0(1,6,4,6) = −
√

3
5

4 T−1(4,2,1,5) = −
√

3
10

4

T1(1,6,1,6) = − 1
2
√

15
T0(1,7,0,7) = −

√
3
5

4 T−1(4,2,4,2) =
√

3
5

2

T1(1,7,0,6) =
√

3
10

4 T0(1,7,1,6) = 1√
30

T−1(4,5,0,5) = 1
4
√

15

T1(2,0,2,4) = 1
4
√

15
T0(2,0,5,4) = − 1

2
√

30
T−1(4,5,1,2) = −

√
3

10

4

T1(2,0,5,1) = −
√

3
10

4 T0(2,1,2,4) =
√

3
5

4 T−1(4,6,1,7) =
√

3
10

4

T1(2,1,2,1) = 1
2
√

15
T0(2,1,5,1) = − 1√

30
T−1(4,6,4,6) = −

√
3
5

2

T1(2,1,5,0) = −
√

3
10

4 T0(2,4,2,1) =
√

3
5

4 T−1(4,7,0,7) = − 1
4
√

15

T1(2,4,2,0) = 1
4
√

15
T0(2,4,5,0) = − 1

2
√

30
T−1(4,7,1,6) =

√
3

10

4

T1(4,2,0,2) = 1
4
√

15
T0(4,2,0,5) = − 1

2
√

30
T−1(5,0,5,4) = 1

4
√

15

T1(4,6,0,6) = − 1
4
√

15
T0(4,2,1,2) =

√
3
5

4 T−1(5,1,2,4) = −
√

3
10

4
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TABLE XXXII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(5,0,2,1) = −
√

3
10

4 T0(4,5,0,2) = − 1
2
√

30
T−1(5,1,5,1) = 1

2
√

15

T1(5,0,5,0) =
√

3
5

2 T0(4,6,0,7) = 1
2
√

30
T−1(5,4,2,1) = −

√
3

10

4

T1(5,1,2,0) = −
√

3
10

4 T0(4,6,1,6) = −
√

3
5

4 T−1(5,4,5,0) = 1
4
√

15

T1(6,0,6,4) = − 1
4
√

15
T0(4,7,0,6) = 1

2
√

30
T−1(6,1,7,4) =

√
3

10

4

T1(6,0,7,1) =
√

3
10

4 T0(5,0,2,4) = − 1
2
√

30
T−1(6,4,6,4) = −

√
3
5

2

T1(6,1,6,1) = − 1
2
√

15
T0(5,0,5,1) =

√
3
5

4 T−1(6,4,7,1) =
√

3
10

4

T1(6,1,7,0) =
√

3
10

4 T0(5,1,2,1) = − 1√
30

T−1(7,0,7,4) = − 1
4
√

15

T1(6,4,6,0) = − 1
4
√

15
T0(5,1,5,0) =

√
3
5

4 T−1(7,1,6,4) =
√

3
10

4

T1(7,0,6,1) =
√

3
10

4 T0(5,4,2,0) = − 1
2
√

30
T−1(7,1,7,1) = − 1

2
√

15

T1(7,0,7,0) = −
√

3
5

2 T0(6,0,7,4) = 1
2
√

30
T−1(7,4,6,1) =

√
3

10

4

T1(7,1,6,0) =
√

3
10

4 T0(6,1,6,4) = −
√

3
5

4 T−1(7,4,7,0) = − 1
4
√

15

T0(6,1,7,1) = 1√
30

T0(6,4,6,1) = −
√

3
5

4

T0(6,4,7,0) = 1
2
√

30

T0(7,0,6,4) = 1
2
√

30

T0(7,0,7,1) = −
√

3
5

4

T0(7,1,6,1) = 1√
30

T0(7,1,7,0) = −
√

3
5

4

T0(7,4,6,0) = 1
2
√

30

TABLE XXXIII. S
(c)
7 .

Sz = +1 Sz = 0 Sz = −1

T1(0,0,5,5) = 1
3
√

2
T0(0,1,5,5) = 1

6
√

2
T−1(1,1,5,5) = 1

6
√

2

T1(0,0,7,7) = − 1
3
√

2
T0(0,1,7,7) = − 1

6
√

2
T−1(1,1,7,7) = − 1

6
√

2

T1(0,1,2,5) = − 1
6 T0(0,4,2,5) = − 1

6 T−1(1,4,2,5) = − 1
6

T1(0,1,6,7) = 1
6 T0(0,4,6,7) = 1

6 T−1(1,4,6,7) = 1
6

T1(0,5,2,1) = − 1
6 T0(0,5,2,4) = − 1

6 T−1(1,5,2,4) = − 1
6

T1(0,5,5,0) = 1
3
√

2
T0(0,5,5,1) = 1

6
√

2
T−1(1,5,5,1) = 1

6
√

2

T1(0,7,6,1) = 1
6 T0(0,7,6,4) = 1

6 T−1(1,7,6,4) = 1
6

T1(0,7,7,0) = − 1
3
√

2
T0(0,7,7,1) = − 1

6
√

2
T−1(1,7,7,1) = − 1

6
√

2

T1(1,0,5,2) = − 1
6 T0(1,0,5,5) = 1

6
√

2
T−1(2,2,4,4) = 1

3
√

2

T1(1,0,7,6) = 1
6 T0(1,0,7,7) = − 1

6
√

2
T−1(2,4,1,5) = − 1

6

T1(1,1,2,2) = 1
6
√

2
T0(1,1,2,5) = − 1

12 T−1(2,4,4,2) = 1
3
√

2

T1(1,1,6,6) = − 1
6
√

2
T0(1,1,5,2) = − 1

12 T−1(2,5,1,4) = − 1
6

T1(1,2,2,1) = 1
6
√

2
T0(1,1,6,7) = 1

12 T−1(4,1,5,2) = − 1
6

T1(1,2,5,0) = − 1
6 T0(1,1,7,6) = 1

12 T−1(4,1,7,6) = 1
6

T1(1,6,6,1) = − 1
6
√

2
T0(1,2,2,4) = 1

6
√

2
T−1(4,2,2,4) = 1

3
√

2

T1(1,6,7,0) = 1
6 T0(1,2,5,1) = − 1

12 T−1(4,2,5,1) = − 1
6

TABLE XXXIII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(2,1,0,5) = − 1
6 T0(1,4,2,2) = 1

6
√

2
T−1(4,4,2,2) = 1

3
√

2

T1(2,1,1,2) = 1
6
√

2
T0(1,4,6,6) = − 1

6
√

2
T−1(4,4,6,6) = − 1

3
√

2

T1(2,2,1,1) = 1
6
√

2
T0(1,5,2,1) = − 1

12 T−1(4,6,6,4) = − 1
3
√

2

T1(2,5,0,1) = − 1
6 T0(1,5,5,0) = 1

6
√

2
T−1(4,6,7,1) = 1

6

T1(5,0,0,5) = 1
3
√

2
T0(1,6,6,4) = − 1

6
√

2
T−1(5,1,1,5) = 1

6
√

2

T1(5,0,1,2) = − 1
6 T0(1,6,7,1) = 1

12 T−1(5,1,4,2) = − 1
6

T1(5,2,1,0) = − 1
6 T0(1,7,6,1) = 1

12 T−1(5,2,4,1) = − 1
6

T1(5,5,0,0) = 1
3
√

2
T0(1,7,7,0) = − 1

6
√

2
T−1(5,5,1,1) = 1

6
√

2

T1(6,1,0,7) = 1
6 T0(2,1,1,5) = − 1

12 T−1(6,4,1,7) = 1
6

T1(6,1,1,6) = − 1
6
√

2
T0(2,1,4,2) = 1

6
√

2
T−1(6,4,4,6) = − 1

3
√

2

T1(6,6,1,1) = − 1
6
√

2
T0(2,2,1,4) = 1

6
√

2
T−1(6,6,4,4) = − 1

3
√

2

T1(6,7,0,1) = 1
6 T0(2,2,4,1) = 1

6
√

2
T−1(6,7,1,4) = 1

6

T1(7,0,0,7) = − 1
3
√

2
T0(2,4,0,5) = − 1

6 T−1(7,1,1,7) = − 1
6
√

2

T1(7,0,1,6) = 1
6 T0(2,4,1,2) = 1

6
√

2
T−1(7,1,4,6) = 1

6

T1(7,6,1,0) = 1
6 T0(2,5,0,4) = − 1

6 T−1(7,6,4,1) = 1
6

T1(7,7,0,0) = − 1
3
√

2
T0(2,5,1,1) = − 1

12 T−1(7,7,1,1) = − 1
6
√

2

T0(4,0,5,2) = − 1
6

T0(4,0,7,6) = 1
6

T0(4,1,2,2) = 1
6
√

2

T0(4,1,6,6) = − 1
6
√

2

T0(4,2,2,1) = 1
6
√

2

T0(4,2,5,0) = − 1
6

T0(4,6,6,1) = − 1
6
√

2

T0(4,6,7,0) = 1
6

T0(5,0,1,5) = 1
6
√

2

T0(5,0,4,2) = − 1
6

T0(5,1,0,5) = 1
6
√

2

T0(5,1,1,2) = − 1
12

T0(5,2,1,1) = − 1
12

T0(5,2,4,0) = − 1
6

T0(5,5,0,1) = 1
6
√

2

T0(5,5,1,0) = 1
6
√

2

T0(6,1,1,7) = 1
12

T0(6,1,4,6) = − 1
6
√

2

T0(6,4,0,7) = 1
6

T0(6,4,1,6) = − 1
6
√

2

T0(6,6,1,4) = − 1
6
√

2

T0(6,6,4,1) = − 1
6
√

2

T0(6,7,0,4) = 1
6

T0(6,7,1,1) = 1
12

T0(7,0,1,7) = − 1
6
√

2

T0(7,0,4,6) = 1
6

T0(7,1,0,7) = − 1
6
√

2

T0(7,1,1,6) = 1
12

T0(7,6,1,1) = 1
12

T0(7,6,4,0) = 1
6

T0(7,7,0,1) = − 1
6
√

2

T0(7,7,1,0) = − 1
6
√

2
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TABLE XXXIV. S
(d)
7 .

Sz = +1 Sz = 0 Sz = −1

T1(0,0,5,5) = 1
6
√

13
T0(0,1,5,5) = 1

12
√

13
T−1(0,4,5,5) = 3

4
√

13

T1(0,0,7,7) = − 1
6
√

13
T0(0,1,7,7) = − 1

12
√

13
T−1(0,4,7,7) = − 3

4
√

13

T1(0,1,2,5) = − 1
6
√

26
T0(0,2,5,4) = 3

4
√

26
T−1(0,5,5,4) = 3

4
√

13

T1(0,1,6,7) = 1
6
√

26
T0(0,4,2,5) = 7

12
√

26
T−1(0,7,7,4) = − 3

4
√

13

T1(0,2,2,4) = 3
4
√

13
T0(0,4,5,2) = 3

4
√

26
T−1(1,1,5,5) = − 2

3
√

13

T1(0,4,2,2) = 3
4
√

13
T0(0,4,6,7) = − 7

12
√

26
T−1(1,1,7,7) = 2

3
√

13

T1(0,4,6,6) = − 3
4
√

13
T0(0,4,7,6) = − 3

4
√

26
T−1(1,4,2,5) = − 1

6
√

26

T1(0,5,2,1) = − 1
6
√

26
T0(0,5,2,4) = 7

12
√

26
T−1(1,4,6,7) = 1

6
√

26

T1(0,5,5,0) = 1
6
√

13
T0(0,5,5,1) = 1

12
√

13
T−1(1,5,2,4) = − 1

6
√

26

T1(0,6,6,4) = − 3
4
√

13
T0(0,6,7,4) = − 3

4
√

26
T−1(1,5,5,1) = − 2

3
√

13

T1(0,7,6,1) = 1
6
√

26
T0(0,7,6,4) = − 7

12
√

26
T−1(1,7,6,4) = 1

6
√

26

T1(0,7,7,0) = − 1
6
√

13
T0(0,7,7,1) = − 1

12
√

13
T−1(1,7,7,1) = 2

3
√

13

T1(1,0,5,2) = − 1
6
√

26
T0(1,0,5,5) = 1

12
√

13
T−1(2,2,4,4) = 1

6
√

13

T1(1,0,7,6) = 1
6
√

26
T0(1,0,7,7) = − 1

12
√

13
T−1(2,4,1,5) = − 1

6
√

26

T1(1,1,2,2) = − 2
3
√

13
T0(1,1,2,5) = − 5

6
√

26
T−1(2,4,4,2) = 1

6
√

13

T1(1,1,6,6) = 2
3
√

13
T0(1,1,5,2) = − 5

6
√

26
T−1(2,5,1,4) = − 1

6
√

26

T1(1,2,2,1) = − 2
3
√

13
T0(1,1,6,7) = 5

6
√

26
T−1(4,0,5,5) = 3

4
√

13

T1(1,2,5,0) = − 1
6
√

26
T0(1,1,7,6) = 5

6
√

26
T−1(4,0,7,7) = − 3

4
√

13

T1(1,6,6,1) = 2
3
√

13
T0(1,2,2,4) = 1

12
√

13
T−1(4,1,5,2) = − 1

6
√

26

T1(1,6,7,0) = 1
6
√

26
T0(1,2,5,1) = − 5

6
√

26
T−1(4,1,7,6) = 1

6
√

26

T1(2,0,4,2) = 3
4
√

13
T0(1,4,2,2) = 1

12
√

13
T−1(4,2,2,4) = 1

6
√

13

T1(2,1,0,5) = − 1
6
√

26
T0(1,4,6,6) = − 1

12
√

13
T−1(4,2,5,1) = − 1

6
√

26

T1(2,1,1,2) = − 2
3
√

13
T0(1,5,2,1) = − 5

6
√

26
T−1(4,4,2,2) = 1

6
√

13

T1(2,2,0,4) = 3
4
√

13
T0(1,5,5,0) = 1

12
√

13
T−1(4,4,6,6) = − 1

6
√

13

T1(2,2,1,1) = − 2
3
√

13
T0(1,6,6,4) = − 1

12
√

13
T−1(4,5,5,0) = 3

4
√

13

T1(2,2,4,0) = 3
4
√

13
T0(1,6,7,1) = 5

6
√

26
T−1(4,6,6,4) = − 1

6
√

13

T1(2,4,0,2) = 3
4
√

13
T0(1,7,6,1) = 5

6
√

26
T−1(4,6,7,1) = 1

6
√

26

T1(2,5,0,1) = − 1
6
√

26
T0(1,7,7,0) = − 1

12
√

13
T−1(4,7,7,0) = − 3

4
√

13

T1(4,0,2,2) = 3
4
√

13
T0(2,0,4,5) = 3

4
√

26
T−1(5,0,4,5) = 3

4
√

13

T1(4,0,6,6) = − 3
4
√

13
T0(2,1,1,5) = − 5

6
√

26
T−1(5,1,1,5) = − 2

3
√

13

T1(4,2,2,0) = 3
4
√

13
T0(2,1,4,2) = 1

12
√

13
T−1(5,1,4,2) = − 1

6
√

26

T1(4,6,6,0) = − 3
4
√

13
T0(2,2,1,4) = 1

12
√

13
T−1(5,2,4,1) = − 1

6
√

26

T1(5,0,0,5) = 1
6
√

13
T0(2,2,4,1) = 1

12
√

13
T−1(5,4,0,5) = 3

4
√

13

T1(5,0,1,2) = − 1
6
√

26
T0(2,4,0,5) = 7

12
√

26
T−1(5,5,0,4) = 3

4
√

13

T1(5,2,1,0) = − 1
6
√

26
T0(2,4,1,2) = 1

12
√

13
T−1(5,5,1,1) = − 2

3
√

13

T1(5,5,0,0) = 1
6
√

13
T0(2,5,0,4) = 7

12
√

26
T−1(5,5,4,0) = 3

4
√

13

T1(6,0,4,6) = − 3
4
√

13
T0(2,5,1,1) = − 5

6
√

26
T−1(6,4,1,7) = 1

6
√

26

T1(6,1,0,7) = 1
6
√

26
T0(2,5,4,0) = 3

4
√

26
T−1(6,4,4,6) = − 1

6
√

13

T1(6,1,1,6) = 2
3
√

13
T0(4,0,2,5) = 3

4
√

26
T−1(6,6,4,4) = − 1

6
√

13

T1(6,4,0,6) = − 3
4
√

13
T0(4,0,5,2) = 7

12
√

26
T−1(6,7,1,4) = 1

6
√

26

TABLE XXXIV. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(6,6,0,4) = − 3
4
√

13
T0(4,0,6,7) = − 3

4
√

26
T−1(7,0,4,7) = − 3

4
√

13

T1(6,6,1,1) = 2
3
√

13
T0(4,0,7,6) = − 7

12
√

26
T−1(7,1,1,7) = 2

3
√

13

T1(6,6,4,0) = − 3
4
√

13
T0(4,1,2,2) = 1

12
√

13
T−1(7,1,4,6) = 1

6
√

26

T1(6,7,0,1) = 1
6
√

26
T0(4,1,6,6) = − 1

12
√

13
T−1(7,4,0,7) = − 3

4
√

13

T1(7,0,0,7) = − 1
6
√

13
T0(4,2,2,1) = 1

12
√

13
T−1(7,6,4,1) = 1

6
√

26

T1(7,0,1,6) = 1
6
√

26
T0(4,2,5,0) = 7

12
√

26
T−1(7,7,0,4) = − 3

4
√

13

T1(7,6,1,0) = 1
6
√

26
T0(4,5,2,0) = 3

4
√

26
T−1(7,7,1,1) = 2

3
√

13

T1(7,7,0,0) = − 1
6
√

13
T0(4,6,6,1) = − 1

12
√

13
T−1(7,7,4,0) = − 3

4
√

13

T0(4,6,7,0) = − 7
12

√
26

T0(4,7,6,0) = − 3
4
√

26

T0(5,0,1,5) = 1
12

√
13

T0(5,0,4,2) = 7
12

√
26

T0(5,1,0,5) = 1
12

√
13

T0(5,1,1,2) = − 5
6
√

26

T0(5,2,0,4) = 3
4
√

26

T0(5,2,1,1) = − 5
6
√

26

T0(5,2,4,0) = 7
12

√
26

T0(5,4,0,2) = 3
4
√

26

T0(5,5,0,1) = 1
12

√
13

T0(5,5,1,0) = 1
12

√
13

T0(6,0,4,7) = − 3
4
√

26

T0(6,1,1,7) = 5
6
√

26

T0(6,1,4,6) = − 1
12

√
13

T0(6,4,0,7) = − 7
12

√
26

T0(6,4,1,6) = − 1
12

√
13

T0(6,6,1,4) = − 1
12

√
13

T0(6,6,4,1) = − 1
12

√
13

T0(6,7,0,4) = − 7
12

√
26

T0(6,7,1,1) = 5
6
√

26

T0(6,7,4,0) = − 3
4
√

26

T0(7,0,1,7) = − 1
12

√
13

T0(7,0,4,6) = − 7
12

√
26

T0(7,1,0,7) = − 1
12

√
13

T0(7,1,1,6) = 5
6
√

26

T0(7,4,0,6) = − 3
4
√

26

T0(7,6,0,4) = − 3
4
√

26

T0(7,6,1,1) = 5
6
√

26

T0(7,6,4,0) = − 7
12

√
26

T0(7,7,0,1) = − 1
12

√
13

T0(7,7,1,0) = − 1
12

√
13
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TABLE XXXV. S
(e)
7 .

Sz = +1 Sz = 0 Sz = −1

T1(0,0,5,5) = 3
2
√

130
T0(0,1,5,5) = 3

4
√

130
T−1(0,4,5,5) = 1

4
√

130

T1(0,0,7,7) = − 3
2
√

130
T0(0,1,7,7) = − 3

4
√

130
T−1(0,4,7,7) = − 1

4
√

130

T1(0,1,2,5) = 7
8
√

65
T0(0,2,5,4) = − 3

2
√

65
T−1(0,5,5,4) = 1

4
√

130

T1(0,1,5,2) = −
√

13
5

8 T0(0,4,2,5) = 1√
65

T−1(0,7,7,4) = − 1
4
√

130

T1(0,1,6,7) = − 7
8
√

65
T0(0,4,5,2) = − 3

2
√

65
T−1(1,1,5,5) = 1

2
√

130

T1(0,1,7,6) =
√

13
5

8 T0(0,4,6,7) = − 1√
65

T−1(1,1,7,7) = − 1
2
√

130

T1(0,2,2,4) = 1
4
√

130
T0(0,4,7,6) = 3

2
√

65
T−1(1,2,5,4) = −

√
13
5

8

T1(0,2,5,1) = −
√

13
5

8 T0(0,5,2,4) = 1√
65

T−1(1,4,2,5) = 7
8
√

65

T1(0,4,2,2) = 1
4
√

130
T0(0,5,5,1) = 3

4
√

130
T−1(1,4,5,2) = −

√
13
5

8

T1(0,4,6,6) = − 1
4
√

130
T0(0,6,7,4) = 3

2
√

65
T−1(1,4,6,7) = − 7

8
√

65

T1(0,5,2,1) = 7
8
√

65
T0(0,7,6,4) = − 1√

65
T−1(1,4,7,6) =

√
13
5

8

T1(0,5,5,0) = 3
2
√

130
T0(0,7,7,1) = − 3

4
√

130
T−1(1,5,2,4) = 7

8
√

65

T1(0,6,6,4) = − 1
4
√

130
T0(1,0,5,5) = 3

4
√

130
T−1(1,5,5,1) = 1

2
√

130

T1(0,6,7,1) =
√

13
5

8 T0(1,0,7,7) = − 3
4
√

130
T−1(1,6,7,4) =

√
13
5

8

T1(0,7,6,1) = − 7
8
√

65
T0(1,1,2,5) = − 1

2
√

65
T−1(1,7,6,4) = − 7

8
√

65

T1(0,7,7,0) = − 3
2
√

130
T0(1,1,5,2) = − 1

2
√

65
T−1(1,7,7,1) = − 1

2
√

130

T1(1,0,2,5) = −
√

13
5

8 T0(1,1,6,7) = 1
2
√

65
T−1(2,1,4,5) = −

√
13
5

8

T1(1,0,5,2) = 7
8
√

65
T0(1,1,7,6) = 1

2
√

65
T−1(2,2,4,4) = 3

2
√

130

T1(1,0,6,7) =
√

13
5

8 T0(1,2,2,4) = 3
4
√

130
T−1(2,4,1,5) = 7

8
√

65

T1(1,0,7,6) = − 7
8
√

65
T0(1,2,5,1) = − 1

2
√

65
T−1(2,4,4,2) = 3

2
√

130

T1(1,1,2,2) = 1
2
√

130
T0(1,4,2,2) = 3

4
√

130
T−1(2,5,1,4) = 7

8
√

65

T1(1,1,6,6) = − 1
2
√

130
T0(1,4,6,6) = − 3

4
√

130
T−1(2,5,4,1) = −

√
13
5

8

T1(1,2,2,1) = 1
2
√

130
T0(1,5,2,1) = − 1

2
√

65
T−1(4,0,5,5) = 1

4
√

130

T1(1,2,5,0) = 7
8
√

65
T0(1,5,5,0) = 3

4
√

130
T−1(4,0,7,7) = − 1

4
√

130

T1(1,5,2,0) = −
√

13
5

8 T0(1,6,6,4) = − 3
4
√

130
T−1(4,1,2,5) = −

√
13
5

8

T1(1,6,6,1) = − 1
2
√

130
T0(1,6,7,1) = 1

2
√

65
T−1(4,1,5,2) = 7

8
√

65

T1(1,6,7,0) = − 7
8
√

65
T0(1,7,6,1) = 1

2
√

65
T−1(4,1,6,7) =

√
13
5

8

T1(1,7,6,0) =
√

13
5

8 T0(1,7,7,0) = − 3
4
√

130
T−1(4,1,7,6) = − 7

8
√

65

T1(2,0,1,5) = −
√

13
5

8 T0(2,0,4,5) = − 3
2
√

65
T−1(4,2,2,4) = 3

2
√

130

T1(2,0,4,2) = 1
4
√

130
T0(2,1,1,5) = − 1

2
√

65
T−1(4,2,5,1) = 7

8
√

65

T1(2,1,0,5) = 7
8
√

65
T0(2,1,4,2) = 3

4
√

130
T−1(4,4,2,2) = 3

2
√

130

T1(2,1,1,2) = 1
2
√

130
T0(2,2,1,4) = 3

4
√

130
T−1(4,4,6,6) = − 3

2
√

130

T1(2,2,0,4) = 1
4
√

130
T0(2,2,4,1) = 3

4
√

130
T−1(4,5,2,1) = −

√
13
5

8

T1(2,2,1,1) = 1
2
√

130
T0(2,4,0,5) = 1√

65
T−1(4,5,5,0) = 1

4
√

130

T1(2,2,4,0) = 1
4
√

130
T0(2,4,1,2) = 3

4
√

130
T−1(4,6,6,4) = − 3

2
√

130

T1(2,4,0,2) = 1
4
√

130
T0(2,5,0,4) = 1√

65
T−1(4,6,7,1) = − 7

8
√

65

T1(2,5,0,1) = 7
8
√

65
T0(2,5,1,1) = − 1

2
√

65
T−1(4,7,6,1) =

√
13
5

8

T1(2,5,1,0) = −
√

13
5

8 T0(2,5,4,0) = − 3
2
√

65
T−1(4,7,7,0) = − 1

4
√

130

T1(4,0,2,2) = 1
4
√

130
T0(4,0,2,5) = − 3

2
√

65
T−1(5,0,4,5) = 1

4
√

130

TABLE XXXV. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(4,0,6,6) = − 1
4
√

130
T0(4,0,5,2) = 1√

65
T−1(5,1,1,5) = 1

2
√

130

T1(4,2,2,0) = 1
4
√

130
T0(4,0,6,7) = 3

2
√

65
T−1(5,1,4,2) = 7

8
√

65

T1(4,6,6,0) = − 1
4
√

130
T0(4,0,7,6) = − 1√

65
T−1(5,2,1,4) = −

√
13
5

8

T1(5,0,0,5) = 3
2
√

130
T0(4,1,2,2) = 3

4
√

130
T−1(5,2,4,1) = 7

8
√

65

T1(5,0,1,2) = 7
8
√

65
T0(4,1,6,6) = − 3

4
√

130
T−1(5,4,0,5) = 1

4
√

130

T1(5,1,0,2) = −
√

13
5

8 T0(4,2,2,1) = 3
4
√

130
T−1(5,4,1,2) = −

√
13
5

8

T1(5,2,0,1) = −
√

13
5

8 T0(4,2,5,0) = 1√
65

T−1(5,5,0,4) = 1
4
√

130

T1(5,2,1,0) = 7
8
√

65
T0(4,5,2,0) = − 3

2
√

65
T−1(5,5,1,1) = 1

2
√

130

T1(5,5,0,0) = 3
2
√

130
T0(4,6,6,1) = − 3

4
√

130
T−1(5,5,4,0) = 1

4
√

130

T1(6,0,1,7) =
√

13
5

8 T0(4,6,7,0) = − 1√
65

T−1(6,1,4,7) =
√

13
5

8

T1(6,0,4,6) = − 1
4
√

130
T0(4,7,6,0) = 3

2
√

65
T−1(6,4,1,7) = − 7

8
√

65

T1(6,1,0,7) = − 7
8
√

65
T0(5,0,1,5) = 3

4
√

130
T−1(6,4,4,6) = − 3

2
√

130

T1(6,1,1,6) = − 1
2
√

130
T0(5,0,4,2) = 1√

65
T−1(6,6,4,4) = − 3

2
√

130

T1(6,4,0,6) = − 1
4
√

130
T0(5,1,0,5) = 3

4
√

130
T−1(6,7,1,4) = − 7

8
√

65

T1(6,6,0,4) = − 1
4
√

130
T0(5,1,1,2) = − 1

2
√

65
T−1(6,7,4,1) =

√
13
5

8

T1(6,6,1,1) = − 1
2
√

130
T0(5,2,0,4) = − 3

2
√

65
T−1(7,0,4,7) = − 1

4
√

130

T1(6,6,4,0) = − 1
4
√

130
T0(5,2,1,1) = − 1

2
√

65
T−1(7,1,1,7) = − 1

2
√

130

T1(6,7,0,1) = − 7
8
√

65
T0(5,2,4,0) = 1√

65
T−1(7,1,4,6) = − 7

8
√

65

T1(6,7,1,0) =
√

13
5

8 T0(5,4,0,2) = − 3
2
√

65
T−1(7,4,0,7) = − 1

4
√

130

T1(7,0,0,7) = − 3
2
√

130
T0(5,5,0,1) = 3

4
√

130
T−1(7,4,1,6) =

√
13
5

8

T1(7,0,1,6) = − 7
8
√

65
T0(5,5,1,0) = 3

4
√

130
T−1(7,6,1,4) =

√
13
5

8

T1(7,1,0,6) =
√

13
5

8 T0(6,0,4,7) = 3
2
√

65
T−1(7,6,4,1) = − 7

8
√

65

T1(7,6,0,1) =
√

13
5

8 T0(6,1,1,7) = 1
2
√

65
T−1(7,7,0,4) = − 1

4
√

130

T1(7,6,1,0) = − 7
8
√

65
T0(6,1,4,6) = − 3

4
√

130
T−1(7,7,1,1) = − 1

2
√

130

T1(7,7,0,0) = − 3
2
√

130
T0(6,4,0,7) = − 1√

65
T−1(7,7,4,0) = − 1

4
√

130

T0(6,4,1,6) = − 3
4
√

130

T0(6,6,1,4) = − 3
4
√

130

T0(6,6,4,1) = − 3
4
√

130

T0(6,7,0,4) = − 1√
65

T0(6,7,1,1) = 1
2
√

65

T0(6,7,4,0) = 3
2
√

65

T0(7,0,1,7) = − 3
4
√

130

T0(7,0,4,6) = − 1√
65

T0(7,1,0,7) = − 3
4
√

130

T0(7,1,1,6) = 1
2
√

65

T0(7,4,0,6) = 3
2
√

65

T0(7,6,0,4) = 3
2
√

65

T0(7,6,1,1) = 1
2
√

65

T0(7,6,4,0) = − 1√
65

T0(7,7,0,1) = − 3
4
√

130

T0(7,7,1,0) = − 3
4
√

130
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MAMBRINI, ORÚS, AND POILBLANC PHYSICAL REVIEW B 94, 205124 (2016)

TABLE XXXVI. G7.

Sz = +1 Sz = 0 Sz = −1

T1(0,1,2,5) = 1
4
√

5
T0(0,1,5,5) = 1

2
√

10
T−1(0,4,5,5) = 1

2
√

10

T1(0,1,5,2) = 1
4
√

5
T0(0,1,7,7) = − 1

2
√

10
T−1(0,4,7,7) = − 1

2
√

10

T1(0,1,6,7) = − 1
4
√

5
T0(0,2,4,5) = − 1

4
√

5
T−1(0,5,5,4) = − 1

2
√

10

T1(0,1,7,6) = − 1
4
√

5
T0(0,5,4,2) = 1

4
√

5
T−1(0,7,7,4) = 1

2
√

10

T1(0,2,1,5) = − 1
4
√

5
T0(0,5,5,1) = − 1

2
√

10
T−1(1,2,4,5) = − 1

4
√

5

T1(0,2,2,4) = 1
2
√

10
T0(0,6,4,7) = 1

4
√

5
T−1(1,2,5,4) = 1

4
√

5

T1(0,2,5,1) = − 1
4
√

5
T0(0,7,4,6) = − 1

4
√

5
T−1(1,4,2,5) = − 1

4
√

5

T1(0,4,2,2) = − 1
2
√

10
T0(0,7,7,1) = 1

2
√

10
T−1(1,4,5,2) = − 1

4
√

5

T1(0,4,6,6) = 1
2
√

10
T0(1,0,5,5) = − 1

2
√

10
T−1(1,4,6,7) = 1

4
√

5

T1(0,5,1,2) = 1
4
√

5
T0(1,0,7,7) = 1

2
√

10
T−1(1,4,7,6) = 1

4
√

5

T1(0,5,2,1) = − 1
4
√

5
T0(1,2,2,4) = 1

2
√

10
T−1(1,5,2,4) = 1

4
√

5

T1(0,6,1,7) = 1
4
√

5
T0(1,4,2,2) = − 1

2
√

10
T−1(1,5,4,2) = 1

4
√

5

T1(0,6,6,4) = − 1
2
√

10
T0(1,4,6,6) = 1

2
√

10
T−1(1,6,4,7) = 1

4
√

5

T1(0,6,7,1) = 1
4
√

5
T0(1,5,5,0) = 1

2
√

10
T−1(1,6,7,4) = − 1

4
√

5

T1(0,7,1,6) = − 1
4
√

5
T0(1,6,6,4) = − 1

2
√

10
T−1(1,7,4,6) = − 1

4
√

5

T1(0,7,6,1) = 1
4
√

5
T0(1,7,7,0) = − 1

2
√

10
T−1(1,7,6,4) = − 1

4
√

5

T1(1,0,2,5) = − 1
4
√

5
T0(2,0,5,4) = 1

4
√

5
T−1(2,1,4,5) = − 1

4
√

5

T1(1,0,5,2) = − 1
4
√

5
T0(2,1,4,2) = − 1

2
√

10
T−1(2,1,5,4) = 1

4
√

5

T1(1,0,6,7) = 1
4
√

5
T0(2,2,1,4) = − 1

2
√

10
T−1(2,4,1,5) = 1

4
√

5

T1(1,0,7,6) = 1
4
√

5
T0(2,2,4,1) = 1

2
√

10
T−1(2,4,5,1) = − 1

4
√

5

T1(1,2,0,5) = 1
4
√

5
T0(2,4,1,2) = 1

2
√

10
T−1(2,5,1,4) = − 1

4
√

5

T1(1,2,5,0) = 1
4
√

5
T0(2,4,5,0) = − 1

4
√

5
T−1(2,5,4,1) = 1

4
√

5

T1(1,5,0,2) = − 1
4
√

5
T0(4,1,2,2) = 1

2
√

10
T−1(4,0,5,5) = − 1

2
√

10

T1(1,5,2,0) = 1
4
√

5
T0(4,1,6,6) = − 1

2
√

10
T−1(4,0,7,7) = 1

2
√

10

T1(1,6,0,7) = − 1
4
√

5
T0(4,2,0,5) = 1

4
√

5
T−1(4,1,2,5) = 1

4
√

5

T1(1,6,7,0) = − 1
4
√

5
T0(4,2,2,1) = − 1

2
√

10
T−1(4,1,5,2) = 1

4
√

5

T1(1,7,0,6) = 1
4
√

5
T0(4,5,0,2) = − 1

4
√

5
T−1(4,1,6,7) = − 1

4
√

5

T1(1,7,6,0) = − 1
4
√

5
T0(4,6,0,7) = − 1

4
√

5
T−1(4,1,7,6) = − 1

4
√

5

T1(2,0,1,5) = 1
4
√

5
T0(4,6,6,1) = 1

2
√

10
T−1(4,2,1,5) = 1

4
√

5

T1(2,0,4,2) = − 1
2
√

10
T0(4,7,0,6) = 1

4
√

5
T−1(4,2,5,1) = − 1

4
√

5

T1(2,0,5,1) = 1
4
√

5
T0(5,0,1,5) = 1

2
√

10
T−1(4,5,1,2) = − 1

4
√

5

T1(2,1,0,5) = − 1
4
√

5
T0(5,0,2,4) = − 1

4
√

5
T−1(4,5,2,1) = − 1

4
√

5

T1(2,1,5,0) = − 1
4
√

5
T0(5,1,0,5) = − 1

2
√

10
T−1(4,5,5,0) = 1

2
√

10

T1(2,2,0,4) = − 1
2
√

10
T0(5,4,2,0) = 1

4
√

5
T−1(4,6,1,7) = − 1

4
√

5

T1(2,2,4,0) = 1
2
√

10
T0(5,5,0,1) = 1

2
√

10
T−1(4,6,7,1) = 1

4
√

5

T1(2,4,0,2) = 1
2
√

10
T0(5,5,1,0) = − 1

2
√

10
T−1(4,7,1,6) = 1

4
√

5

T1(2,5,0,1) = 1
4
√

5
T0(6,0,7,4) = − 1

4
√

5
T−1(4,7,6,1) = 1

4
√

5

T1(2,5,1,0) = − 1
4
√

5
T0(6,1,4,6) = 1

2
√

10
T−1(4,7,7,0) = − 1

2
√

10

T1(4,0,2,2) = 1
2
√

10
T0(6,4,1,6) = − 1

2
√

10
T−1(5,0,4,5) = 1

2
√

10

T1(4,0,6,6) = − 1
2
√

10
T0(6,4,7,0) = 1

4
√

5
T−1(5,1,2,4) = − 1

4
√

5

T1(4,2,2,0) = − 1
2
√

10
T0(6,6,1,4) = 1

2
√

10
T−1(5,1,4,2) = − 1

4
√

5

T1(4,6,6,0) = 1
2
√

10
T0(6,6,4,1) = − 1

2
√

10
T−1(5,2,1,4) = − 1

4
√

5

T1(5,0,1,2) = 1
4
√

5
T0(7,0,1,7) = − 1

2
√

10
T−1(5,2,4,1) = 1

4
√

5

T1(5,0,2,1) = − 1
4
√

5
T0(7,0,6,4) = 1

4
√

5
T−1(5,4,0,5) = − 1

2
√

10

T1(5,1,0,2) = − 1
4
√

5
T0(7,1,0,7) = 1

2
√

10
T−1(5,4,1,2) = 1

4
√

5

T1(5,1,2,0) = 1
4
√

5
T0(7,4,6,0) = − 1

4
√

5
T−1(5,4,2,1) = 1

4
√

5

T1(5,2,0,1) = 1
4
√

5
T0(7,7,0,1) = − 1

2
√

10
T−1(5,5,0,4) = 1

2
√

10

TABLE XXXVI. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(5,2,1,0) = − 1
4
√

5
T0(7,7,1,0) = 1

2
√

10
T−1(5,5,4,0) = − 1

2
√

10

T1(6,0,1,7) = − 1
4
√

5
T−1(6,1,4,7) = 1

4
√

5

T1(6,0,4,6) = 1
2
√

10
T−1(6,1,7,4) = − 1

4
√

5

T1(6,0,7,1) = − 1
4
√

5
T−1(6,4,1,7) = − 1

4
√

5

T1(6,1,0,7) = 1
4
√

5
T−1(6,4,7,1) = 1

4
√

5

T1(6,1,7,0) = 1
4
√

5
T−1(6,7,1,4) = 1

4
√

5

T1(6,4,0,6) = − 1
2
√

10
T−1(6,7,4,1) = − 1

4
√

5

T1(6,6,0,4) = 1
2
√

10
T−1(7,0,4,7) = − 1

2
√

10

T1(6,6,4,0) = − 1
2
√

10
T−1(7,1,4,6) = 1

4
√

5

T1(6,7,0,1) = − 1
4
√

5
T−1(7,1,6,4) = 1

4
√

5

T1(6,7,1,0) = 1
4
√

5
T−1(7,4,0,7) = 1

2
√

10

T1(7,0,1,6) = − 1
4
√

5
T−1(7,4,1,6) = − 1

4
√

5

T1(7,0,6,1) = 1
4
√

5
T−1(7,4,6,1) = − 1

4
√

5

T1(7,1,0,6) = 1
4
√

5
T−1(7,6,1,4) = 1

4
√

5

T1(7,1,6,0) = − 1
4
√

5
T−1(7,6,4,1) = − 1

4
√

5

T1(7,6,0,1) = − 1
4
√

5
T−1(7,7,0,4) = − 1

2
√

10

T1(7,6,1,0) = 1
4
√

5
T−1(7,7,4,0) = 1

2
√

10

TABLE XXXVII. S
(a)
8 .

Sz = +1 Sz = 0 Sz = −1

T1(0,2,3,7) = − 1
3
√

6
T0(0,3,5,7) = − 1

4
√

3
T−1(1,3,5,7) = − 1

4
√

3

T1(0,2,7,3) = 1
6
√

6
T0(0,3,7,5) = 1

4
√

3
T−1(1,3,7,5) = 1

4
√

3

T1(0,3,2,7) = − 1
3
√

6
T0(0,5,7,3) = 1

4
√

3
T−1(1,5,7,3) = 1

4
√

3

T1(0,3,5,6) = − 1
6
√

6
T0(0,7,5,3) = − 1

4
√

3
T−1(1,7,5,3) = − 1

4
√

3

T1(0,3,6,5) = 1
3
√

6
T0(1,2,3,7) = − 1

3
√

6
T−1(2,3,4,7) = 1

6
√

6

T1(0,3,7,2) = 1
6
√

6
T0(1,2,7,3) = − 1

12
√

6
T−1(2,3,7,4) = − 1

3
√

6

T1(0,5,3,6) = 1
3
√

6
T0(1,3,2,7) = − 1

12
√

6
T−1(2,4,3,7) = − 1

3
√

6

T1(0,5,6,3) = 1
3
√

6
T0(1,3,5,6) = 1

12
√

6
T−1(2,4,7,3) = − 1

3
√

6

T1(0,6,3,5) = 1
3
√

6
T0(1,3,6,5) = 1

12
√

6
T−1(2,7,3,4) = − 1

3
√

6

T1(0,6,5,3) = − 1
6
√

6
T0(1,3,7,2) = − 1

12
√

6
T−1(2,7,4,3) = 1

6
√

6

T1(0,7,2,3) = − 1
3
√

6
T0(1,5,3,6) = 1

3
√

6
T−1(3,1,5,7) = 1

4
√

3

T1(0,7,3,2) = − 1
3
√

6
T0(1,5,6,3) = 1

12
√

6
T−1(3,1,7,5) = − 1

4
√

3

T1(1,2,6,3) = − 1
4
√

3
T0(1,6,3,5) = 1

3
√

6
T−1(3,2,4,7) = − 1

3
√

6

T1(1,3,2,6) = 1
4
√

3
T0(1,6,5,3) = 1

12
√

6
T−1(3,2,7,4) = 1

6
√

6

T1(1,3,6,2) = − 1
4
√

3
T0(1,7,2,3) = − 1

12
√

6
T−1(3,4,2,7) = − 1

3
√

6

T1(1,6,2,3) = 1
4
√

3
T0(1,7,3,2) = − 1

3
√

6
T−1(3,4,5,6) = − 1

6
√

6

T1(2,0,3,7) = 1
6
√

6
T0(2,1,3,7) = − 1

12
√

6
T−1(3,4,6,5) = 1

3
√

6

T1(2,0,7,3) = − 1
3
√

6
T0(2,1,7,3) = − 1

3
√

6
T−1(3,4,7,2) = 1

6
√

6

T1(2,1,3,6) = − 1
4
√

3
T0(2,3,1,7) = − 1

12
√

6
T−1(3,5,4,6) = 1

3
√

6

T1(2,3,0,7) = − 1
3
√

6
T0(2,3,4,6) = 1

4
√

3
T−1(3,5,6,4) = 1

3
√

6

T1(2,3,1,6) = 1
4
√

3
T0(2,3,7,1) = − 1

3
√

6
T−1(3,5,7,1) = − 1

4
√

3

T1(2,3,7,0) = − 1
3
√

6
T0(2,4,3,6) = − 1

4
√

3
T−1(3,6,4,5) = 1

3
√

6

T1(2,6,1,3) = 1
4
√

3
T0(2,6,3,4) = − 1

4
√

3
T−1(3,6,5,4) = − 1

6
√

6

T1(2,6,3,1) = − 1
4
√

3
T0(2,6,4,3) = 1

4
√

3
T−1(3,7,2,4) = − 1

3
√

6
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TABLE XXXVII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(2,7,0,3) = − 1
3
√

6
T0(2,7,1,3) = − 1

12
√

6
T−1(3,7,4,2) = − 1

3
√

6

T1(2,7,3,0) = 1
6
√

6
T0(2,7,3,1) = − 1

12
√

6
T−1(3,7,5,1) = 1

4
√

3

T1(3,0,2,7) = 1
6
√

6
T0(3,0,5,7) = 1

4
√

3
T−1(4,2,3,7) = − 1

3
√

6

T1(3,0,5,6) = 1
3
√

6
T0(3,0,7,5) = − 1

4
√

3
T−1(4,2,7,3) = − 1

3
√

6

T1(3,0,6,5) = − 1
6
√

6
T0(3,1,2,7) = − 1

12
√

6
T−1(4,3,2,7) = 1

6
√

6

T1(3,0,7,2) = − 1
3
√

6
T0(3,1,5,6) = 1

12
√

6
T−1(4,3,5,6) = 1

3
√

6

T1(3,1,2,6) = − 1
4
√

3
T0(3,1,6,5) = 1

12
√

6
T−1(4,3,6,5) = − 1

6
√

6

T1(3,1,6,2) = 1
4
√

3
T0(3,1,7,2) = − 1

12
√

6
T−1(4,3,7,2) = − 1

3
√

6

T1(3,2,0,7) = − 1
3
√

6
T0(3,2,1,7) = − 1

3
√

6
T−1(4,5,3,6) = 1

3
√

6

T1(3,2,6,1) = 1
4
√

3
T0(3,2,6,4) = 1

4
√

3
T−1(4,5,6,3) = − 1

6
√

6

T1(3,2,7,0) = − 1
3
√

6
T0(3,2,7,1) = − 1

12
√

6
T−1(4,6,3,5) = 1

3
√

6

T1(3,5,0,6) = 1
3
√

6
T0(3,4,2,6) = − 1

4
√

3
T−1(4,6,5,3) = 1

3
√

6

T1(3,5,6,0) = − 1
6
√

6
T0(3,4,6,2) = 1

4
√

3
T−1(4,7,2,3) = 1

6
√

6

T1(3,6,0,5) = 1
3
√

6
T0(3,5,1,6) = 1

3
√

6
T−1(4,7,3,2) = − 1

3
√

6

T1(3,6,2,1) = − 1
4
√

3
T0(3,5,6,1) = 1

12
√

6
T−1(5,1,3,7) = 1

4
√

3

T1(3,6,5,0) = 1
3
√

6
T0(3,5,7,0) = − 1

4
√

3
T−1(5,3,1,7) = − 1

4
√

3

T1(3,7,0,2) = − 1
3
√

6
T0(3,6,1,5) = 1

3
√

6
T−1(5,3,4,6) = 1

3
√

6

T1(3,7,2,0) = 1
6
√

6
T0(3,6,2,4) = − 1

4
√

3
T−1(5,3,6,4) = 1

3
√

6

T1(5,0,3,6) = 1
3
√

6
T0(3,6,5,1) = 1

12
√

6
T−1(5,4,3,6) = − 1

6
√

6

T1(5,0,6,3) = 1
3
√

6
T0(3,7,1,2) = − 1

3
√

6
T−1(5,4,6,3) = 1

3
√

6

T1(5,3,0,6) = − 1
6
√

6
T0(3,7,2,1) = − 1

12
√

6
T−1(5,6,3,4) = − 1

6
√

6

T1(5,3,6,0) = 1
3
√

6
T0(3,7,5,0) = 1

4
√

3
T−1(5,6,4,3) = 1

3
√

6

T1(5,6,0,3) = − 1
6
√

6
T0(4,2,6,3) = − 1

4
√

3
T−1(5,7,1,3) = − 1

4
√

3

T1(5,6,3,0) = 1
3
√

6
T0(4,3,2,6) = 1

4
√

3
T−1(5,7,3,1) = 1

4
√

3

T1(6,0,3,5) = − 1
6
√

6
T0(4,3,6,2) = − 1

4
√

3
T−1(6,3,4,5) = − 1

6
√

6

T1(6,0,5,3) = 1
3
√

6
T0(4,6,2,3) = 1

4
√

3
T−1(6,3,5,4) = 1

3
√

6

T1(6,1,3,2) = 1
4
√

3
T0(5,0,3,7) = 1

4
√

3
T−1(6,4,3,5) = 1

3
√

6

T1(6,2,1,3) = − 1
4
√

3
T0(5,1,3,6) = 1

12
√

6
T−1(6,4,5,3) = 1

3
√

6

T1(6,2,3,1) = 1
4
√

3
T0(5,1,6,3) = 1

3
√

6
T−1(6,5,3,4) = 1

3
√

6

T1(6,3,0,5) = 1
3
√

6
T0(5,3,0,7) = − 1

4
√

3
T−1(6,5,4,3) = − 1

6
√

6

T1(6,3,1,2) = − 1
4
√

3
T0(5,3,1,6) = 1

12
√

6
T−1(7,1,3,5) = − 1

4
√

3

T1(6,3,5,0) = 1
3
√

6
T0(5,3,6,1) = 1

3
√

6
T−1(7,2,3,4) = 1

6
√

6

T1(6,5,0,3) = 1
3
√

6
T0(5,6,1,3) = 1

12
√

6
T−1(7,2,4,3) = − 1

3
√

6

T1(6,5,3,0) = − 1
6
√

6
T0(5,6,3,1) = 1

12
√

6
T−1(7,3,1,5) = 1

4
√

3

T1(7,0,2,3) = − 1
3
√

6
T0(5,7,0,3) = − 1

4
√

3
T−1(7,3,2,4) = − 1

3
√

6

T1(7,0,3,2) = − 1
3
√

6
T0(5,7,3,0) = 1

4
√

3
T−1(7,3,4,2) = − 1

3
√

6

T1(7,2,0,3) = 1
6
√

6
T0(6,1,3,5) = 1

12
√

6
T−1(7,4,2,3) = − 1

3
√

6

T1(7,2,3,0) = − 1
3
√

6
T0(6,1,5,3) = 1

3
√

6
T−1(7,4,3,2) = 1

6
√

6

T1(7,3,0,2) = 1
6
√

6
T0(6,2,3,4) = 1

4
√

3
T−1(7,5,1,3) = 1

4
√

3

T1(7,3,2,0) = − 1
3
√

6
T0(6,2,4,3) = − 1

4
√

3
T−1(7,5,3,1) = − 1

4
√

3

T0(6,3,1,5) = 1
12

√
6

T0(6,3,4,2) = − 1
4
√

3

T0(6,3,5,1) = 1
3
√

6

T0(6,4,3,2) = 1
4
√

3

T0(6,5,1,3) = 1
12

√
6

T0(6,5,3,1) = 1
12

√
6

TABLE XXXVII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T0(7,0,3,5) = − 1
4
√

3

T0(7,1,2,3) = − 1
3
√

6

T0(7,1,3,2) = − 1
12

√
6

T0(7,2,1,3) = − 1
12

√
6

T0(7,2,3,1) = − 1
12

√
6

T0(7,3,0,5) = 1
4
√

3

T0(7,3,1,2) = − 1
12

√
6

T0(7,3,2,1) = − 1
3
√

6

T0(7,5,0,3) = 1
4
√

3

T0(7,5,3,0) = − 1
4
√

3

TABLE XXXVIII. S
(b)
8 .

Sz = +1 Sz = 0 Sz = −1

T1(0,2,3,7) = − 5
12

√
21

T0(0,3,5,7) = − 1
4
√

3
T−1(1,3,5,7) = 1

2
√

42

T1(0,2,7,3) = − 11
12

√
21

T0(0,3,7,5) = 1
4
√

3
T−1(1,3,7,5) = − 1

2
√

42

T1(0,3,2,7) = − 5
12

√
21

T0(0,5,7,3) = 1
4
√

3
T−1(1,5,7,3) = − 1

2
√

42

T1(0,3,5,6) = 11
12

√
21

T0(0,7,5,3) = − 1
4
√

3
T−1(1,7,5,3) = 1

2
√

42

T1(0,3,6,5) = 5
12

√
21

T0(1,2,3,7) = − 1
3
√

6
T−1(2,3,4,7) = − 11

12
√

21

T1(0,3,7,2) = − 11
12

√
21

T0(1,2,7,3) = − 1
12

√
6

T−1(2,3,7,4) = − 5
12

√
21

T1(0,5,3,6) = 5
12

√
21

T0(1,3,2,7) = − 1
12

√
6

T−1(2,4,3,7) = − 5
12

√
21

T1(0,5,6,3) = 5
12

√
21

T0(1,3,5,6) = 1
12

√
6

T−1(2,4,7,3) = − 5
12

√
21

T1(0,6,3,5) = 5
12

√
21

T0(1,3,6,5) = 1
12

√
6

T−1(2,7,3,4) = − 5
12

√
21

T1(0,6,5,3) = 11
12

√
21

T0(1,3,7,2) = − 1
12

√
6

T−1(2,7,4,3) = − 11
12

√
21

T1(0,7,2,3) = − 5
12

√
21

T0(1,5,3,6) = 1
3
√

6
T−1(3,1,5,7) = − 1

2
√

42

T1(0,7,3,2) = − 5
12

√
21

T0(1,5,6,3) = 1
12

√
6

T−1(3,1,7,5) = 1
2
√

42

T1(1,2,6,3) = 1
2
√

42
T0(1,6,3,5) = 1

3
√

6
T−1(3,2,4,7) = − 5

12
√

21

T1(1,3,2,6) = − 1
2
√

42
T0(1,6,5,3) = 1

12
√

6
T−1(3,2,7,4) = − 11

12
√

21

T1(1,3,6,2) = 1
2
√

42
T0(1,7,2,3) = − 1

12
√

6
T−1(3,4,2,7) = − 5

12
√

21

T1(1,6,2,3) = − 1
2
√

42
T0(1,7,3,2) = − 1

3
√

6
T−1(3,4,5,6) = 11

12
√

21

T1(2,0,3,7) = − 11
12

√
21

T0(2,1,3,7) = − 1
12

√
6

T−1(3,4,6,5) = 5
12

√
21

T1(2,0,7,3) = − 5
12

√
21

T0(2,1,7,3) = − 1
3
√

6
T−1(3,4,7,2) = − 11

12
√

21

T1(2,1,3,6) = 1
2
√

42
T0(2,3,1,7) = − 1

12
√

6
T−1(3,5,4,6) = 5

12
√

21

T1(2,3,0,7) = − 5
12

√
21

T0(2,3,4,6) = 1
4
√

3
T−1(3,5,6,4) = 5

12
√

21

T1(2,3,1,6) = − 1
2
√

42
T0(2,3,7,1) = − 1

3
√

6
T−1(3,5,7,1) = 1

2
√

42

T1(2,3,7,0) = − 5
12

√
21

T0(2,4,3,6) = − 1
4
√

3
T−1(3,6,4,5) = 5

12
√

21

T1(2,6,1,3) = − 1
2
√

42
T0(2,6,3,4) = − 1

4
√

3
T−1(3,6,5,4) = 11

12
√

21

T1(2,6,3,1) = 1
2
√

42
T0(2,6,4,3) = 1

4
√

3
T−1(3,7,2,4) = − 5

12
√

21

T1(2,7,0,3) = − 5
12

√
21

T0(2,7,1,3) = − 1
12

√
6

T−1(3,7,4,2) = − 5
12

√
21

T1(2,7,3,0) = − 11
12

√
21

T0(2,7,3,1) = − 1
12

√
6

T−1(3,7,5,1) = − 1
2
√

42

T1(3,0,2,7) = − 11
12

√
21

T0(3,0,5,7) = 1
4
√

3
T−1(4,2,3,7) = − 5

12
√

21

T1(3,0,5,6) = 5
12

√
21

T0(3,0,7,5) = − 1
4
√

3
T−1(4,2,7,3) = − 5

12
√

21

T1(3,0,6,5) = 11
12

√
21

T0(3,1,2,7) = − 1
12

√
6

T−1(4,3,2,7) = − 11
12

√
21

T1(3,0,7,2) = − 5
12

√
21

T0(3,1,5,6) = 1
12

√
6

T−1(4,3,5,6) = 5
12

√
21

T1(3,1,2,6) = 1
2
√

42
T0(3,1,6,5) = 1

12
√

6
T−1(4,3,6,5) = 11

12
√

21
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TABLE XXXVIII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(3,1,6,2) = − 1
2
√

42
T0(3,1,7,2) = − 1

12
√

6
T−1(4,3,7,2) = − 5

12
√

21

T1(3,2,0,7) = − 5
12

√
21

T0(3,2,1,7) = − 1
3
√

6
T−1(4,5,3,6) = 5

12
√

21

T1(3,2,6,1) = − 1
2
√

42
T0(3,2,6,4) = 1

4
√

3
T−1(4,5,6,3) = 11

12
√

21

T1(3,2,7,0) = − 5
12

√
21

T0(3,2,7,1) = − 1
12

√
6

T−1(4,6,3,5) = 5
12

√
21

T1(3,5,0,6) = 5
12

√
21

T0(3,4,2,6) = − 1
4
√

3
T−1(4,6,5,3) = 5

12
√

21

T1(3,5,6,0) = 11
12

√
21

T0(3,4,6,2) = 1
4
√

3
T−1(4,7,2,3) = − 11

12
√

21

T1(3,6,0,5) = 5
12

√
21

T0(3,5,1,6) = 1
3
√

6
T−1(4,7,3,2) = − 5

12
√

21

T1(3,6,2,1) = 1
2
√

42
T0(3,5,6,1) = 1

12
√

6
T−1(5,1,3,7) = − 1

2
√

42

T1(3,6,5,0) = 5
12

√
21

T0(3,5,7,0) = − 1
4
√

3
T−1(5,3,1,7) = 1

2
√

42

T1(3,7,0,2) = − 5
12

√
21

T0(3,6,1,5) = 1
3
√

6
T−1(5,3,4,6) = 5

12
√

21

T1(3,7,2,0) = − 11
12

√
21

T0(3,6,2,4) = − 1
4
√

3
T−1(5,3,6,4) = 5

12
√

21

T1(5,0,3,6) = 5
12

√
21

T0(3,6,5,1) = 1
12

√
6

T−1(5,4,3,6) = 11
12

√
21

T1(5,0,6,3) = 5
12

√
21

T0(3,7,1,2) = − 1
3
√

6
T−1(5,4,6,3) = 5

12
√

21

T1(5,3,0,6) = 11
12

√
21

T0(3,7,2,1) = − 1
12

√
6

T−1(5,6,3,4) = 11
12

√
21

T1(5,3,6,0) = 5
12

√
21

T0(3,7,5,0) = 1
4
√

3
T−1(5,6,4,3) = 5

12
√

21

T1(5,6,0,3) = 11
12

√
21

T0(4,2,6,3) = − 1
4
√

3
T−1(5,7,1,3) = 1

2
√

42

T1(5,6,3,0) = 5
12

√
21

T0(4,3,2,6) = 1
4
√

3
T−1(5,7,3,1) = − 1

2
√

42

T1(6,0,3,5) = 11
12

√
21

T0(4,3,6,2) = − 1
4
√

3
T−1(6,3,4,5) = 11

12
√

21

T1(6,0,5,3) = 5
12

√
21

T0(4,6,2,3) = 1
4
√

3
T−1(6,3,5,4) = 5

12
√

21

T1(6,1,3,2) = − 1
2
√

42
T0(5,0,3,7) = 1

4
√

3
T−1(6,4,3,5) = 5

12
√

21

T1(6,2,1,3) = 1
2
√

42
T0(5,1,3,6) = 1

12
√

6
T−1(6,4,5,3) = 5

12
√

21

T1(6,2,3,1) = − 1
2
√

42
T0(5,1,6,3) = 1

3
√

6
T−1(6,5,3,4) = 5

12
√

21

T1(6,3,0,5) = 5
12

√
21

T0(5,3,0,7) = − 1
4
√

3
T−1(6,5,4,3) = 11

12
√

21

T1(6,3,1,2) = 1
2
√

42
T0(5,3,1,6) = 1

12
√

6
T−1(7,1,3,5) = 1

2
√

42

T1(6,3,5,0) = 5
12

√
21

T0(5,3,6,1) = 1
3
√

6
T−1(7,2,3,4) = − 11

12
√

21

T1(6,5,0,3) = 5
12

√
21

T0(5,6,1,3) = 1
12

√
6

T−1(7,2,4,3) = − 5
12

√
21

T1(6,5,3,0) = 11
12

√
21

T0(5,6,3,1) = 1
12

√
6

T−1(7,3,1,5) = − 1
2
√

42

T1(7,0,2,3) = − 5
12

√
21

T0(5,7,0,3) = − 1
4
√

3
T−1(7,3,2,4) = − 5

12
√

21

T1(7,0,3,2) = − 5
12

√
21

T0(5,7,3,0) = 1
4
√

3
T−1(7,3,4,2) = − 5

12
√

21

T1(7,2,0,3) = − 11
12

√
21

T0(6,1,3,5) = 1
12

√
6

T−1(7,4,2,3) = − 5
12

√
21

T1(7,2,3,0) = − 5
12

√
21

T0(6,1,5,3) = 1
3
√

6
T−1(7,4,3,2) = − 11

12
√

21

T1(7,3,0,2) = − 11
12

√
21

T0(6,2,3,4) = 1
4
√

3
T−1(7,5,1,3) = − 1

2
√

42

T1(7,3,2,0) = − 5
12

√
21

T0(6,2,4,3) = − 1
4
√

3
T−1(7,5,3,1) = 1

2
√

42

T0(6,3,1,5) = 1
12

√
6

T0(6,3,4,2) = − 1
4
√

3

T0(6,3,5,1) = 1
3
√

6

T0(6,4,3,2) = 1
4
√

3

T0(6,5,1,3) = 1
12

√
6

T0(6,5,3,1) = 1
12

√
6

T0(7,0,3,5) = − 1
4
√

3

T0(7,1,2,3) = − 1
3
√

6

T0(7,1,3,2) = − 1
12

√
6

T0(7,2,1,3) = − 1
12

√
6

T0(7,2,3,1) = − 1
12

√
6

T0(7,3,0,5) = 1
4
√

3

T0(7,3,1,2) = − 1
12

√
6

TABLE XXXVIII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T0(7,3,2,1) = − 1
3
√

6

T0(7,5,0,3) = 1
4
√

3

T0(7,5,3,0) = − 1
4
√

3

TABLE XXXIX. G8.

Sz = +1 Sz = 0 Sz = −1

T1(0,2,3,7) = 1
8 T0(0,5,3,7) = 1

4
√

2
T−1(1,5,3,7) = 1

4
√

2

T1(0,2,7,3) = 1
8 T0(0,7,3,5) = − 1

4
√

2
T−1(1,7,3,5) = − 1

4
√

2

T1(0,3,2,7) = − 1
8 T0(1,2,7,3) = 1

8 T−1(2,3,4,7) = 1
8

T1(0,3,5,6) = 1
8 T0(1,3,2,7) = − 1

8 T−1(2,3,7,4) = − 1
8

T1(0,3,6,5) = 1
8 T0(1,3,5,6) = 1

8 T−1(2,4,3,7) = − 1
8

T1(0,3,7,2) = − 1
8 T0(1,3,6,5) = 1

8 T−1(2,4,7,3) = 1
8

T1(0,5,3,6) = 1
8 T0(1,3,7,2) = − 1

8 T−1(2,7,3,4) = 1
8

T1(0,5,6,3) = − 1
8 T0(1,5,6,3) = − 1

8 T−1(2,7,4,3) = − 1
8

T1(0,6,3,5) = − 1
8 T0(1,6,5,3) = − 1

8 T−1(3,2,4,7) = 1
8

T1(0,6,5,3) = − 1
8 T0(1,7,2,3) = 1

8 T−1(3,2,7,4) = − 1
8

T1(0,7,2,3) = 1
8 T0(2,1,3,7) = − 1

8 T−1(3,4,2,7) = 1
8

T1(0,7,3,2) = − 1
8 T0(2,3,1,7) = 1

8 T−1(3,4,5,6) = − 1
8

T1(1,2,3,6) = − 1
4
√

2
T0(2,3,6,4) = − 1

4
√

2
T−1(3,4,6,5) = − 1

8

T1(1,6,3,2) = 1
4
√

2
T0(2,4,6,3) = 1

4
√

2
T−1(3,4,7,2) = 1

8

T1(2,0,3,7) = − 1
8 T0(2,7,1,3) = − 1

8 T−1(3,5,1,7) = − 1
4
√

2

T1(2,0,7,3) = − 1
8 T0(2,7,3,1) = 1

8 T−1(3,5,4,6) = 1
8

T1(2,1,6,3) = 1
4
√

2
T0(3,1,2,7) = 1

8 T−1(3,5,6,4) = 1
8

T1(2,3,0,7) = 1
8 T0(3,1,5,6) = − 1

8 T−1(3,6,4,5) = − 1
8

T1(2,3,6,1) = − 1
4
√

2
T0(3,1,6,5) = − 1

8 T−1(3,6,5,4) = 1
8

T1(2,3,7,0) = 1
8 T0(3,1,7,2) = 1

8 T−1(3,7,1,5) = 1
4
√

2

T1(2,7,0,3) = − 1
8 T0(3,2,4,6) = 1

4
√

2
T−1(3,7,2,4) = − 1

8

T1(2,7,3,0) = 1
8 T0(3,2,7,1) = − 1

8 T−1(3,7,4,2) = − 1
8

T1(3,0,2,7) = 1
8 T0(3,5,0,7) = − 1

4
√

2
T−1(4,2,3,7) = − 1

8

T1(3,0,5,6) = − 1
8 T0(3,5,6,1) = 1

8 T−1(4,2,7,3) = 1
8

T1(3,0,6,5) = − 1
8 T0(3,6,4,2) = − 1

4
√

2
T−1(4,3,2,7) = − 1

8

T1(3,0,7,2) = 1
8 T0(3,6,5,1) = 1

8 T−1(4,3,5,6) = 1
8

T1(3,2,0,7) = − 1
8 T0(3,7,0,5) = 1

4
√

2
T−1(4,3,6,5) = 1

8

T1(3,2,1,6) = 1
4
√

2
T0(3,7,2,1) = − 1

8 T−1(4,3,7,2) = − 1
8

T1(3,2,7,0) = − 1
8 T0(4,2,3,6) = − 1

4
√

2
T−1(4,5,3,6) = − 1

8

T1(3,5,0,6) = − 1
8 T0(4,6,3,2) = 1

4
√

2
T−1(4,5,6,3) = − 1

8

T1(3,5,6,0) = 1
8 T0(5,0,7,3) = − 1

4
√

2
T−1(4,6,3,5) = 1

8

T1(3,6,0,5) = 1
8 T0(5,1,3,6) = 1

8 T−1(4,6,5,3) = − 1
8

T1(3,6,1,2) = − 1
4
√

2
T0(5,3,1,6) = − 1

8 T−1(4,7,2,3) = 1
8

T1(3,6,5,0) = 1
8 T0(5,3,7,0) = 1

4
√

2
T−1(4,7,3,2) = 1

8

T1(3,7,0,2) = 1
8 T0(5,6,1,3) = 1

8 T−1(5,1,7,3) = − 1
4
√

2

T1(3,7,2,0) = − 1
8 T0(5,6,3,1) = − 1

8 T−1(5,3,4,6) = − 1
8

T1(5,0,3,6) = 1
8 T0(6,1,3,5) = 1

8 T−1(5,3,6,4) = − 1
8

T1(5,0,6,3) = − 1
8 T0(6,3,1,5) = − 1

8 T−1(5,3,7,1) = 1
4
√

2

T1(5,3,0,6) = − 1
8 T0(6,3,2,4) = 1

4
√

2
T−1(5,4,3,6) = 1

8

T1(5,3,6,0) = 1
8 T0(6,4,2,3) = − 1

4
√

2
T−1(5,4,6,3) = 1

8

T1(5,6,0,3) = 1
8 T0(6,5,1,3) = 1

8 T−1(5,6,3,4) = − 1
8
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TABLE XXXIX. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(5,6,3,0) = − 1
8 T0(6,5,3,1) = − 1

8 T−1(5,6,4,3) = 1
8

T1(6,0,3,5) = 1
8 T0(7,0,5,3) = 1

4
√

2
T−1(6,3,4,5) = − 1

8

T1(6,0,5,3) = 1
8 T0(7,1,3,2) = − 1

8 T−1(6,3,5,4) = 1
8

T1(6,1,2,3) = − 1
4
√

2
T0(7,2,1,3) = − 1

8 T−1(6,4,3,5) = 1
8

T1(6,3,0,5) = − 1
8 T0(7,2,3,1) = 1

8 T−1(6,4,5,3) = − 1
8

T1(6,3,2,1) = 1
4
√

2
T0(7,3,1,2) = 1

8 T−1(6,5,3,4) = − 1
8

T1(6,3,5,0) = − 1
8 T0(7,3,5,0) = − 1

4
√

2
T−1(6,5,4,3) = 1

8

T1(6,5,0,3) = 1
8 T−1(7,1,5,3) = 1

4
√

2

T1(6,5,3,0) = − 1
8 T−1(7,2,3,4) = 1

8

T1(7,0,2,3) = 1
8 T−1(7,2,4,3) = − 1

8

T1(7,0,3,2) = − 1
8 T−1(7,3,2,4) = 1

8

T1(7,2,0,3) = − 1
8 T−1(7,3,4,2) = 1

8

T1(7,2,3,0) = 1
8 T−1(7,3,5,1) = − 1

4
√

2

T1(7,3,0,2) = 1
8 T−1(7,4,2,3) = − 1

8

T1(7,3,2,0) = − 1
8 T−1(7,4,3,2) = − 1

8

TABLE XL. S9.

Sz = +1 Sz = 0 Sz = −1

T1(2,3,6,8) = − 1
2
√

3
T0(2,3,7,8) = − 1

2
√

6
T−1(3,5,7,8) = 1

4
√

3

T1(2,3,8,6) = 1
4
√

3
T0(2,3,8,7) = 1

4
√

6
T−1(3,5,8,7) = − 1

2
√

3

T1(2,6,3,8) = 1
4
√

3
T0(2,7,3,8) = 1

4
√

6
T−1(3,7,5,8) = 1

4
√

3

T1(2,6,8,3) = 1
4
√

3
T0(2,7,8,3) = 1

4
√

6
T−1(3,7,8,5) = − 1

2
√

3

T1(2,8,3,6) = 1
4
√

3
T0(2,8,3,7) = 1

4
√

6
T−1(3,8,5,7) = 1

4
√

3

T1(2,8,6,3) = − 1
2
√

3
T0(2,8,7,3) = − 1

2
√

6
T−1(3,8,7,5) = 1

4
√

3

T1(3,2,6,8) = 1
4
√

3
T0(3,2,7,8) = 1

4
√

6
T−1(5,3,7,8) = − 1

2
√

3

T1(3,2,8,6) = − 1
2
√

3
T0(3,2,8,7) = − 1

2
√

6
T−1(5,3,8,7) = 1

4
√

3

T1(3,6,2,8) = 1
4
√

3
T0(3,5,6,8) = 1

4
√

6
T−1(5,7,3,8) = 1

4
√

3

T1(3,6,8,2) = − 1
2
√

3
T0(3,5,8,6) = − 1

2
√

6
T−1(5,7,8,3) = 1

4
√

3

T1(3,8,2,6) = 1
4
√

3
T0(3,6,5,8) = 1

4
√

6
T−1(5,8,3,7) = 1

4
√

3

T1(3,8,6,2) = 1
4
√

3
T0(3,6,8,5) = − 1

2
√

6
T−1(5,8,7,3) = − 1

2
√

3

T1(6,2,3,8) = 1
4
√

3
T0(3,7,2,8) = 1

4
√

6
T−1(7,3,5,8) = − 1

2
√

3

T1(6,2,8,3) = 1
4
√

3
T0(3,7,8,2) = − 1

2
√

6
T−1(7,3,8,5) = 1

4
√

3

T1(6,3,2,8) = − 1
2
√

3
T0(3,8,2,7) = 1

4
√

6
T−1(7,5,3,8) = 1

4
√

3

T1(6,3,8,2) = 1
4
√

3
T0(3,8,5,6) = 1

4
√

6
T−1(7,5,8,3) = 1

4
√

3

T1(6,8,2,3) = − 1
2
√

3
T0(3,8,6,5) = 1

4
√

6
T−1(7,8,3,5) = 1

4
√

3

T1(6,8,3,2) = 1
4
√

3
T0(3,8,7,2) = 1

4
√

6
T−1(7,8,5,3) = − 1

2
√

3

T1(8,2,3,6) = − 1
2
√

3
T0(5,3,6,8) = − 1

2
√

6
T−1(8,3,5,7) = 1

4
√

3

T1(8,2,6,3) = 1
4
√

3
T0(5,3,8,6) = 1

4
√

6
T−1(8,3,7,5) = 1

4
√

3

T1(8,3,2,6) = 1
4
√

3
T0(5,6,3,8) = 1

4
√

6
T−1(8,5,3,7) = − 1

2
√

3

T1(8,3,6,2) = 1
4
√

3
T0(5,6,8,3) = 1

4
√

6
T−1(8,5,7,3) = 1

4
√

3

T1(8,6,2,3) = 1
4
√

3
T0(5,8,3,6) = 1

4
√

6
T−1(8,7,3,5) = − 1

2
√

3

T1(8,6,3,2) = − 1
2
√

3
T0(5,8,6,3) = − 1

2
√

6
T−1(8,7,5,3) = 1

4
√

3

T0(6,3,5,8) = − 1
2
√

6

T0(6,3,8,5) = 1
4
√

6

T0(6,5,3,8) = 1
4
√

6

T0(6,5,8,3) = 1
4
√

6

TABLE XL. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T0(6,8,3,5) = 1
4
√

6

T0(6,8,5,3) = − 1
2
√

6
T0(7,2,3,8) = 1

4
√

6

T0(7,2,8,3) = 1
4
√

6

T0(7,3,2,8) = − 1
2
√

6

T0(7,3,8,2) = 1
4
√

6

T0(7,8,2,3) = − 1
2
√

6

T0(7,8,3,2) = 1
4
√

6

T0(8,2,3,7) = − 1
2
√

6

T0(8,2,7,3) = 1
4
√

6

T0(8,3,2,7) = 1
4
√

6

T0(8,3,5,6) = 1
4
√

6

T0(8,3,6,5) = 1
4
√

6

T0(8,3,7,2) = 1
4
√

6

T0(8,5,3,6) = − 1
2
√

6

T0(8,5,6,3) = 1
4
√

6

T0(8,6,3,5) = − 1
2
√

6

T0(8,6,5,3) = 1
4
√

6

T0(8,7,2,3) = 1
4
√

6

T0(8,7,3,2) = − 1
2
√

6

TABLE XLI. G9.

Sz = +1 Sz = 0 Sz = −1

T1(2,3,8,6) = 1
4 T0(2,3,8,7) = 1

4
√

2
T−1(3,5,7,8) = − 1

4

T1(2,6,3,8) = 1
4 T0(2,7,3,8) = 1

4
√

2
T−1(3,7,5,8) = − 1

4

T1(2,6,8,3) = − 1
4 T0(2,7,8,3) = − 1

4
√

2
T−1(3,8,5,7) = 1

4

T1(2,8,3,6) = − 1
4 T0(2,8,3,7) = − 1

4
√

2
T−1(3,8,7,5) = 1

4

T1(3,2,6,8) = − 1
4 T0(3,2,7,8) = − 1

4
√

2
T−1(5,3,8,7) = 1

4

T1(3,6,2,8) = − 1
4 T0(3,5,6,8) = − 1

4
√

2
T−1(5,7,3,8) = 1

4

T1(3,8,2,6) = 1
4 T0(3,6,5,8) = − 1

4
√

2
T−1(5,7,8,3) = − 1

4

T1(3,8,6,2) = 1
4 T0(3,7,2,8) = − 1

4
√

2
T−1(5,8,3,7) = − 1

4

T1(6,2,3,8) = 1
4 T0(3,8,2,7) = 1

4
√

2
T−1(7,3,8,5) = 1

4

T1(6,2,8,3) = − 1
4 T0(3,8,5,6) = 1

4
√

2
T−1(7,5,3,8) = 1

4

T1(6,3,8,2) = 1
4 T0(3,8,6,5) = 1

4
√

2
T−1(7,5,8,3) = − 1

4

T1(6,8,3,2) = − 1
4 T0(3,8,7,2) = 1

4
√

2
T−1(7,8,3,5) = − 1

4

T1(8,2,6,3) = 1
4 T0(5,3,8,6) = 1

4
√

2
T−1(8,3,5,7) = − 1

4

T1(8,3,2,6) = − 1
4 T0(5,6,3,8) = 1

4
√

2
T−1(8,3,7,5) = − 1

4

T1(8,3,6,2) = − 1
4 T0(5,6,8,3) = − 1

4
√

2
T−1(8,5,7,3) = 1

4

T1(8,6,2,3) = 1
4 T0(5,8,3,6) = − 1

4
√

2
T−1(8,7,5,3) = 1

4

T0(6,3,8,5) = 1
4
√

2

T0(6,5,3,8) = 1
4
√

2

T0(6,5,8,3) = − 1
4
√

2

T0(6,8,3,5) = − 1
4
√

2

T0(7,2,3,8) = 1
4
√

2

T0(7,2,8,3) = − 1
4
√

2
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TABLE XLI. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T0(7,3,8,2) = 1
4
√

2

T0(7,8,3,2) = − 1
4
√

2

T0(8,2,7,3) = 1
4
√

2

T0(8,3,2,7) = − 1
4
√

2

T0(8,3,5,6) = − 1
4
√

2

T0(8,3,6,5) = − 1
4
√

2

T0(8,3,7,2) = − 1
4
√

2

T0(8,5,6,3) = 1
4
√

2

T0(8,6,5,3) = 1
4
√

2

T0(8,7,2,3) = 1
4
√

2

TABLE XLII. S10.

Sz = +1 Sz = 0 Sz = −1

T1(0,2,5,8) = − 1
2
√

30
T0(0,5,5,8) = 1

4
√

15
T−1(1,5,5,8) = 1

4
√

15

T1(0,2,8,5) = − 1
2
√

30
T0(0,5,8,5) = − 1

2
√

15
T−1(1,5,8,5) = − 1

2
√

15

T1(0,5,2,8) = 1√
30

T0(0,7,7,8) = 1
4
√

15
T−1(1,7,7,8) = 1

4
√

15

T1(0,5,8,2) = − 1
2
√

30
T0(0,7,8,7) = − 1

2
√

15
T−1(1,7,8,7) = − 1

2
√

15

T1(0,6,7,8) = − 1
2
√

30
T0(0,8,5,5) = 1

4
√

15
T−1(1,8,5,5) = 1

4
√

15

T1(0,6,8,7) = − 1
2
√

30
T0(0,8,7,7) = 1

4
√

15
T−1(1,8,7,7) = 1

4
√

15

T1(0,7,6,8) = 1√
30

T0(1,2,5,8) = −
√

3
10

4 T−1(2,4,5,8) = 1
2
√

30

T1(0,7,8,6) = − 1
2
√

30
T0(1,5,2,8) =

√
3

10

4 T−1(2,4,8,5) = − 1√
30

T1(0,8,2,5) = 1√
30

T0(1,6,7,8) = −
√

3
10

4 T−1(2,5,4,8) = 1
2
√

30

T1(0,8,5,2) = − 1
2
√

30
T0(1,7,6,8) =

√
3

10

4 T−1(2,5,8,4) = − 1√
30

T1(0,8,6,7) = 1√
30

T0(1,8,2,5) =
√

3
10

4 T−1(2,8,4,5) = 1
2
√

30

T1(0,8,7,6) = − 1
2
√

30
T0(1,8,5,2) = −

√
3

10

4 T−1(2,8,5,4) = 1
2
√

30

T1(1,2,2,8) = − 1
4
√

15
T0(1,8,6,7) =

√
3

10

4 T−1(4,2,5,8) = − 1√
30

T1(1,2,8,2) = 1
2
√

15
T0(1,8,7,6) = −

√
3

10

4 T−1(4,2,8,5) = 1
2
√

30

T1(1,6,6,8) = − 1
4
√

15
T0(2,1,8,5) = −

√
3

10

4 T−1(4,5,2,8) = 1
2
√

30

T1(1,6,8,6) = 1
2
√

15
T0(2,2,4,8) = − 1

4
√

15
T−1(4,5,8,2) = 1

2
√

30

T1(1,8,2,2) = − 1
4
√

15
T0(2,2,8,4) = − 1

4
√

15
T−1(4,6,7,8) = − 1√

30

T1(1,8,6,6) = − 1
4
√

15
T0(2,4,2,8) = 1

2
√

15
T−1(4,6,8,7) = 1

2
√

30

T1(2,0,5,8) = − 1
2
√

30
T0(2,4,8,2) = − 1

4
√

15
T−1(4,7,6,8) = 1

2
√

30

T1(2,0,8,5) = − 1
2
√

30
T0(2,5,1,8) =

√
3

10

4 T−1(4,7,8,6) = 1
2
√

30

T1(2,1,2,8) = 1
2
√

15
T0(2,5,8,1) = −

√
3

10

4 T−1(4,8,2,5) = 1
2
√

30

T1(2,1,8,2) = − 1
4
√

15
T0(2,8,1,5) =

√
3

10

4 T−1(4,8,5,2) = − 1√
30

T1(2,2,1,8) = − 1
4
√

15
T0(2,8,2,4) = 1

2
√

15
T−1(4,8,6,7) = 1

2
√

30

T1(2,2,8,1) = − 1
4
√

15
T0(2,8,4,2) = − 1

4
√

15
T−1(4,8,7,6) = − 1√

30

T1(2,5,0,8) = 1√
30

T0(4,2,2,8) = − 1
4
√

15
T−1(5,1,5,8) = − 1

2
√

15

T1(2,5,8,0) = − 1
2
√

30
T0(4,2,8,2) = 1

2
√

15
T−1(5,1,8,5) = 1

4
√

15

T1(2,8,0,5) = 1√
30

T0(4,6,6,8) = − 1
4
√

15
T−1(5,2,4,8) = − 1√

30

TABLE XLII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(2,8,1,2) = − 1
4
√

15
T0(4,6,8,6) = 1

2
√

15
T−1(5,2,8,4) = 1

2
√

30

T1(2,8,2,1) = 1
2
√

15
T0(4,8,2,2) = − 1

4
√

15
T−1(5,4,2,8) = 1

2
√

30

T1(2,8,5,0) = − 1
2
√

30
T0(4,8,6,6) = − 1

4
√

15
T−1(5,4,8,2) = 1

2
√

30

T1(5,0,2,8) = − 1
2
√

30
T0(5,0,5,8) = − 1

2
√

15
T−1(5,5,1,8) = 1

4
√

15

T1(5,0,8,2) = 1√
30

T0(5,0,8,5) = 1
4
√

15
T−1(5,5,8,1) = 1

4
√

15

T1(5,2,0,8) = − 1
2
√

30
T0(5,1,8,2) =

√
3

10

4 T−1(5,8,1,5) = 1
4
√

15

T1(5,2,8,0) = 1√
30

T0(5,2,1,8) = −
√

3
10

4 T−1(5,8,2,4) = 1
2
√

30

T1(5,8,0,2) = − 1
2
√

30
T0(5,2,8,1) =

√
3

10

4 T−1(5,8,4,2) = − 1√
30

T1(5,8,2,0) = − 1
2
√

30
T0(5,5,0,8) = 1

4
√

15
T−1(5,8,5,1) = − 1

2
√

15

T1(6,0,7,8) = − 1
2
√

30
T0(5,5,8,0) = 1

4
√

15
T−1(6,4,7,8) = 1

2
√

30

T1(6,0,8,7) = − 1
2
√

30
T0(5,8,0,5) = 1

4
√

15
T−1(6,4,8,7) = − 1√

30

T1(6,1,6,8) = 1
2
√

15
T0(5,8,1,2) = −

√
3

10

4 T−1(6,7,4,8) = 1
2
√

30

T1(6,1,8,6) = − 1
4
√

15
T0(5,8,5,0) = − 1

2
√

15
T−1(6,7,8,4) = − 1√

30

T1(6,6,1,8) = − 1
4
√

15
T0(6,1,8,7) = −

√
3

10

4 T−1(6,8,4,7) = 1
2
√

30

T1(6,6,8,1) = − 1
4
√

15
T0(6,4,6,8) = 1

2
√

15
T−1(6,8,7,4) = 1

2
√

30

T1(6,7,0,8) = 1√
30

T0(6,4,8,6) = − 1
4
√

15
T−1(7,1,7,8) = − 1

2
√

15

T1(6,7,8,0) = − 1
2
√

30
T0(6,6,4,8) = − 1

4
√

15
T−1(7,1,8,7) = 1

4
√

15

T1(6,8,0,7) = 1√
30

T0(6,6,8,4) = − 1
4
√

15
T−1(7,4,6,8) = 1

2
√

30

T1(6,8,1,6) = − 1
4
√

15
T0(6,7,1,8) =

√
3

10

4 T−1(7,4,8,6) = 1
2
√

30

T1(6,8,6,1) = 1
2
√

15
T0(6,7,8,1) = −

√
3

10

4 T−1(7,6,4,8) = − 1√
30

T1(6,8,7,0) = − 1
2
√

30
T0(6,8,1,7) =

√
3

10

4 T−1(7,6,8,4) = 1
2
√

30

T1(7,0,6,8) = − 1
2
√

30
T0(6,8,4,6) = − 1

4
√

15
T−1(7,7,1,8) = 1

4
√

15

T1(7,0,8,6) = 1√
30

T0(6,8,6,4) = 1
2
√

15
T−1(7,7,8,1) = 1

4
√

15

T1(7,6,0,8) = − 1
2
√

30
T0(7,0,7,8) = − 1

2
√

15
T−1(7,8,1,7) = 1

4
√

15

T1(7,6,8,0) = 1√
30

T0(7,0,8,7) = 1
4
√

15
T−1(7,8,4,6) = − 1√

30

T1(7,8,0,6) = − 1
2
√

30
T0(7,1,8,6) =

√
3

10

4 T−1(7,8,6,4) = 1
2
√

30

T1(7,8,6,0) = − 1
2
√

30
T0(7,6,1,8) = −

√
3

10

4 T−1(7,8,7,1) = − 1
2
√

15

T1(8,0,2,5) = − 1
2
√

30
T0(7,6,8,1) =

√
3

10

4 T−1(8,1,5,5) = 1
4
√

15

T1(8,0,5,2) = 1√
30

T0(7,7,0,8) = 1
4
√

15
T−1(8,1,7,7) = 1

4
√

15

T1(8,0,6,7) = − 1
2
√

30
T0(7,7,8,0) = 1

4
√

15
T−1(8,2,4,5) = 1

2
√

30

T1(8,0,7,6) = 1√
30

T0(7,8,0,7) = 1
4
√

15
T−1(8,2,5,4) = 1

2
√

30

T1(8,1,2,2) = − 1
4
√

15
T0(7,8,1,6) = −

√
3

10

4 T−1(8,4,2,5) = − 1√
30

T1(8,1,6,6) = − 1
4
√

15
T0(7,8,7,0) = − 1

2
√

15
T−1(8,4,5,2) = 1

2
√

30

T1(8,2,0,5) = − 1
2
√

30
T0(8,0,5,5) = 1

4
√

15
T−1(8,4,6,7) = − 1√

30

T1(8,2,1,2) = 1
2
√

15
T0(8,0,7,7) = 1

4
√

15
T−1(8,4,7,6) = 1

2
√

30

T1(8,2,2,1) = − 1
4
√

15
T0(8,1,2,5) = −

√
3

10

4 T−1(8,5,1,5) = − 1
2
√

15

T1(8,2,5,0) = 1√
30

T0(8,1,5,2) =
√

3
10

4 T−1(8,5,2,4) = − 1√
30

T1(8,5,0,2) = − 1
2
√

30
T0(8,1,6,7) = −

√
3

10

4 T−1(8,5,4,2) = 1
2
√

30

T1(8,5,2,0) = − 1
2
√

30
T0(8,1,7,6) =

√
3

10

4 T−1(8,5,5,1) = 1
4
√

15

T1(8,6,0,7) = − 1
2
√

30
T0(8,2,2,4) = − 1

4
√

15
T−1(8,6,4,7) = 1

2
√

30

T1(8,6,1,6) = 1
2
√

15
T0(8,2,4,2) = 1

2
√

15
T−1(8,6,7,4) = 1

2
√

30

T1(8,6,6,1) = − 1
4
√

15
T0(8,2,5,1) =

√
3

10

4 T−1(8,7,1,7) = − 1
2
√

15

T1(8,6,7,0) = 1√
30

T0(8,4,2,2) = − 1
4
√

15
T−1(8,7,4,6) = 1

2
√

30

T1(8,7,0,6) = − 1
2
√

30
T0(8,4,6,6) = − 1

4
√

15
T−1(8,7,6,4) = − 1√

30
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TABLE XLII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(8,7,6,0) = − 1
2
√

30
T0(8,5,0,5) = − 1

2
√

15
T−1(8,7,7,1) = 1

4
√

15

T0(8,5,2,1) = −
√

3
10

4

T0(8,5,5,0) = 1
4
√

15

T0(8,6,4,6) = 1
2
√

15

T0(8,6,6,4) = − 1
4
√

15

T0(8,6,7,1) =
√

3
10

4

T0(8,7,0,7) = − 1
2
√

15

T0(8,7,6,1) = −
√

3
10

4

T0(8,7,7,0) = 1
4
√

15

TABLE XLIII. G10.

Sz = +1 Sz = 0 Sz = −1

T1(0,2,5,8) = 1
2
√

10
T0(0,5,5,8) = 1

4
√

5
T−1(1,5,5,8) = 1

4
√

5

T1(0,2,8,5) = − 1
2
√

10
T0(0,7,7,8) = 1

4
√

5
T−1(1,7,7,8) = 1

4
√

5

T1(0,5,8,2) = 1
2
√

10
T0(0,8,5,5) = − 1

4
√

5
T−1(1,8,5,5) = − 1

4
√

5

T1(0,6,7,8) = 1
2
√

10
T0(0,8,7,7) = − 1

4
√

5
T−1(1,8,7,7) = − 1

4
√

5

T1(0,6,8,7) = − 1
2
√

10
T0(1,2,5,8) = 1

4
√

10
T−1(2,4,5,8) = 1

2
√

10

T1(0,7,8,6) = 1
2
√

10
T0(1,2,8,5) = − 1

2
√

10
T−1(2,5,4,8) = 1

2
√

10

T1(0,8,5,2) = − 1
2
√

10
T0(1,5,2,8) = − 1

4
√

10
T−1(2,8,4,5) = − 1

2
√

10

T1(0,8,7,6) = − 1
2
√

10
T0(1,5,8,2) = 1

2
√

10
T−1(2,8,5,4) = − 1

2
√

10

T1(1,2,2,8) = − 1
4
√

5
T0(1,6,7,8) = 1

4
√

10
T−1(4,2,8,5) = − 1

2
√

10

T1(1,6,6,8) = − 1
4
√

5
T0(1,6,8,7) = − 1

2
√

10
T−1(4,5,2,8) = − 1

2
√

10

T1(1,8,2,2) = 1
4
√

5
T0(1,7,6,8) = − 1

4
√

10
T−1(4,5,8,2) = 1

2
√

10

T1(1,8,6,6) = 1
4
√

5
T0(1,7,8,6) = 1

2
√

10
T−1(4,6,8,7) = − 1

2
√

10

T1(2,0,5,8) = 1
2
√

10
T0(1,8,2,5) = 1

4
√

10
T−1(4,7,6,8) = − 1

2
√

10

T1(2,0,8,5) = − 1
2
√

10
T0(1,8,5,2) = − 1

4
√

10
T−1(4,7,8,6) = 1

2
√

10

T1(2,1,8,2) = 1
4
√

5
T0(1,8,6,7) = 1

4
√

10
T−1(4,8,2,5) = 1

2
√

10

T1(2,2,1,8) = 1
4
√

5
T0(1,8,7,6) = − 1

4
√

10
T−1(4,8,6,7) = 1

2
√

10

T1(2,2,8,1) = − 1
4
√

5
T0(2,1,5,8) = 1

2
√

10
T−1(5,1,8,5) = − 1

4
√

5

T1(2,5,8,0) = 1
2
√

10
T0(2,1,8,5) = − 1

4
√

10
T−1(5,2,8,4) = − 1

2
√

10

T1(2,8,1,2) = − 1
4
√

5
T0(2,2,4,8) = 1

4
√

5
T−1(5,4,2,8) = − 1

2
√

10

T1(2,8,5,0) = − 1
2
√

10
T0(2,2,8,4) = − 1

4
√

5
T−1(5,4,8,2) = 1

2
√

10

T1(5,0,2,8) = − 1
2
√

10
T0(2,4,8,2) = 1

4
√

5
T−1(5,5,1,8) = − 1

4
√

5

T1(5,2,0,8) = − 1
2
√

10
T0(2,5,1,8) = 1

4
√

10
T−1(5,5,8,1) = 1

4
√

5

T1(5,8,0,2) = 1
2
√

10
T0(2,5,8,1) = 1

4
√

10
T−1(5,8,1,5) = 1

4
√

5

T1(5,8,2,0) = 1
2
√

10
T0(2,8,1,5) = − 1

4
√

10
T−1(5,8,2,4) = 1

2
√

10

T1(6,0,7,8) = 1
2
√

10
T0(2,8,4,2) = − 1

4
√

5
T−1(6,4,7,8) = 1

2
√

10

T1(6,0,8,7) = − 1
2
√

10
T0(2,8,5,1) = − 1

2
√

10
T−1(6,7,4,8) = 1

2
√

10

T1(6,1,8,6) = 1
4
√

5
T0(4,2,2,8) = − 1

4
√

5
T−1(6,8,4,7) = − 1

2
√

10

T1(6,6,1,8) = 1
4
√

5
T0(4,6,6,8) = − 1

4
√

5
T−1(6,8,7,4) = − 1

2
√

10

T1(6,6,8,1) = − 1
4
√

5
T0(4,8,2,2) = 1

4
√

5
T−1(7,1,8,7) = − 1

4
√

5

T1(6,7,8,0) = 1
2
√

10
T0(4,8,6,6) = 1

4
√

5
T−1(7,4,6,8) = − 1

2
√

10

T1(6,8,1,6) = − 1
4
√

5
T0(5,0,8,5) = − 1

4
√

5
T−1(7,4,8,6) = 1

2
√

10

T1(6,8,7,0) = − 1
2
√

10
T0(5,1,2,8) = − 1

2
√

10
T−1(7,6,8,4) = − 1

2
√

10

TABLE XLIII. (Continued.)

Sz = +1 Sz = 0 Sz = −1

T1(7,0,6,8) = − 1
2
√

10
T0(5,1,8,2) = 1

4
√

10
T−1(7,7,1,8) = − 1

4
√

5

T1(7,6,0,8) = − 1
2
√

10
T0(5,2,1,8) = − 1

4
√

10
T−1(7,7,8,1) = 1

4
√

5

T1(7,8,0,6) = 1
2
√

10
T0(5,2,8,1) = − 1

4
√

10
T−1(7,8,1,7) = 1

4
√

5

T1(7,8,6,0) = 1
2
√

10
T0(5,5,0,8) = − 1

4
√

5
T−1(7,8,6,4) = 1

2
√

10

T1(8,0,2,5) = 1
2
√

10
T0(5,5,8,0) = 1

4
√

5
T−1(8,1,5,5) = 1

4
√

5

T1(8,0,6,7) = 1
2
√

10
T0(5,8,0,5) = 1

4
√

5
T−1(8,1,7,7) = 1

4
√

5

T1(8,1,2,2) = − 1
4
√

5
T0(5,8,1,2) = 1

4
√

10
T−1(8,2,4,5) = 1

2
√

10

T1(8,1,6,6) = − 1
4
√

5
T0(5,8,2,1) = 1

2
√

10
T−1(8,2,5,4) = 1

2
√

10

T1(8,2,0,5) = 1
2
√

10
T0(6,1,7,8) = 1

2
√

10
T−1(8,4,5,2) = − 1

2
√

10

T1(8,2,2,1) = 1
4
√

5
T0(6,1,8,7) = − 1

4
√

10
T−1(8,4,7,6) = − 1

2
√

10

T1(8,5,0,2) = − 1
2
√

10
T0(6,4,8,6) = 1

4
√

5
T−1(8,5,4,2) = − 1

2
√

10

T1(8,5,2,0) = − 1
2
√

10
T0(6,6,4,8) = 1

4
√

5
T−1(8,5,5,1) = − 1

4
√

5

T1(8,6,0,7) = 1
2
√

10
T0(6,6,8,4) = − 1

4
√

5
T−1(8,6,4,7) = 1

2
√

10

T1(8,6,6,1) = 1
4
√

5
T0(6,7,1,8) = 1

4
√

10
T−1(8,6,7,4) = 1

2
√

10

T1(8,7,0,6) = − 1
2
√

10
T0(6,7,8,1) = 1

4
√

10
T−1(8,7,4,6) = − 1

2
√

10

T1(8,7,6,0) = − 1
2
√

10
T0(6,8,1,7) = − 1

4
√

10
T−1(8,7,7,1) = − 1

4
√

5

T0(6,8,4,6) = − 1
4
√

5

T0(6,8,7,1) = − 1
2
√

10

T0(7,0,8,7) = − 1
4
√

5

T0(7,1,6,8) = − 1
2
√

10

T0(7,1,8,6) = 1
4
√

10

T0(7,6,1,8) = − 1
4
√

10

T0(7,6,8,1) = − 1
4
√

10

T0(7,7,0,8) = − 1
4
√

5

T0(7,7,8,0) = 1
4
√

5

T0(7,8,0,7) = 1
4
√

5

T0(7,8,1,6) = 1
4
√

10

T0(7,8,6,1) = 1
2
√

10

T0(8,0,5,5) = 1
4
√

5

T0(8,0,7,7) = 1
4
√

5

T0(8,1,2,5) = 1
4
√

10

T0(8,1,5,2) = − 1
4
√

10

T0(8,1,6,7) = 1
4
√

10

T0(8,1,7,6) = − 1
4
√

10

T0(8,2,1,5) = 1
2
√

10

T0(8,2,2,4) = 1
4
√

5

T0(8,2,5,1) = 1
4
√

10

T0(8,4,2,2) = − 1
4
√

5

T0(8,4,6,6) = − 1
4
√

5

T0(8,5,1,2) = − 1
2
√

10

T0(8,5,2,1) = − 1
4
√

10

T0(8,5,5,0) = − 1
4
√

5

T0(8,6,1,7) = 1
2
√

10

T0(8,6,6,4) = 1
4
√

5

T0(8,6,7,1) = 1
4
√

10

T0(8,7,1,6) = − 1
2
√

10

T0(8,7,6,1) = − 1
4
√

10

T0(8,7,7,0) = − 1
4
√

5
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