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Validity boundary of orbital-free molecular dynamics method corresponding to
thermal ionization of shell structure
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With 6Li D as an example, we show that the applicable region of the orbital-free molecular dynamics (OFMD)
method in a large temperature range is determined by the thermal ionization process of bound electrons in
shell structures. The validity boundary of the OFMD method is defined roughly by the balance point of the
average thermal energy of an electron and the ionization energy of the lowest localized electronic state. This
theoretical proposition is based on the observation that the deviation of the OFMD method originates from its less
accurate description to the charge density in partially ionized shells, as compared with the results of the extended
first-principles molecular dynamics method, which well reproduces the charge density of shell structures.
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I. INTRODUCTION

The development of first-principles methods, including the
first-principles molecular dynamics (FPMD) method [1–5],
the orbital-free molecular dynamics (OFMD) method [6,7],
and the path-integral Monte Carlo (PIMC) method [8,9],
affords a possible theoretical approach without experimental
inputs to determine important material properties of dense
plasmas to a considerable accuracy. These material properties,
e.g., the equation of state (EOS) [10,11], transport coeffi-
cients [7,12,13], and opacities [14], play a fundamental role in
the development of high energy density physics [15], stellar
physics [16], planet physics [17], and inertial confinement
fusion (ICF) [18].

There are very few cases that one can rely on only one of
these methods to calculate the property of a certain material
in a large range of density and temperature, e.g., from nearly
0 K to hundreds of electron volts [15] or from usual solid
density to over 1000 times the solid density [18,19], which
are typical conditions frequently met in warm dense matter
(WDM) experiments [20,21] and ICF implosions [18,22]. This
kind of calculation can be done, however, by the combination
of two or several of the first-principles methods, each of
which covers a relatively small region in the phase space. This
combined method has become a common practice recently and
has been successfully applied to the calculation of EOS and
transport properties for a variety of materials [7,23–26].

An important issue of the combined approach is the validity
boundary of each method in the combination. It determines
how the results of different methods connect to each other. In
this work we focus on the validity boundary of the OFMD
method in the OFMD+FPMD combination, which has been
extensively used to calculate material properties of low Z plas-
mas [26,27] and recently has been extended to the calculation
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of multicomponent plasmas [28,29] and high Z materials [30].
There are several proposals [27–29,31–33] available on how to
bridge the OFMD method and the FPMD method. To make a
further development of the combined method, a clear physical
picture to the validity boundary is necessary.

With the extended first-principles molecular dynamics
(ext-FPMD) method developed recently [34], which greatly
expands the application region of the traditional FPMD
method, we show how the OFMD results deviate from the
FPMD results, using 6Li D as an illustrating example. Our
results display that around the maximum compression ratio
of 6Li D along its principal Hugoniot, thermal properties of
6Li D are mainly determined by the thermal ionization process
of the 1s electronic state of the lithium (Li) element, where
the pressure ionization effects associated with the change of
density [15] are less important. It thus provides a suitable
situation to illustrate the validity boundary corresponding to
the thermal ionization of localized electronic states. It shows
that the OFMD method is applicable when the average thermal
energy kBT is greater than the ionization energy ILowest of
the lowest bound electronic state, where kB is the Boltzmann
constant, and T is the temperature of electrons. This condition
can be explicitly expressed as kBT /ILowest > 1.

The rest of this paper is composed of three sections. In
Sec. II, we briefly summarize the OFMD method and the ext-
FPMD method. Also described are computational details of the
calculation. In Sec. III, a comparison of the codes is done on
the resulting principal Hugoniots, EOS, and charge densities,
from which the validity criterion of the OFMD method is
extracted. In Sec. IV, we give a short discussion to conclude
this paper. All formulas hereafter are presented in the atomic
units with the Boltzmann constant kB set to be 1. In numerical
results, electron volt (eV) or Rydberg (Ry) is used as the unit
of temperature and energy following the convention.

II. METHODOLOGY AND COMPUTATIONAL DETAILS

Both methods, i.e., the OFMD and ext-FPMD methods,
divide the motion of ions and electrons adiabatically via

2469-9950/2016/94(20)/205115(7) 205115-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.205115


GAO, ZHANG, KANG, WANG, ZHANG, AND HE PHYSICAL REVIEW B 94, 205115 (2016)

the Born-Oppenheimer approximation [35]. Trajectories of
ions are determined by solving Newton’s equation of motion
with the force between ions calculated through the Hellman-
Feynman’s force theorem or its finite-temperature generaliza-
tion [36,37]. The motion of electrons in both methods is treated
quantum mechanically, however, in slightly different styles.

In the OFMD method, the density of electrons n is deter-
mined where the total free energy Fe reaches its minimum.
Fe can be written as a functional form of n as Fe[n] =
TK [n,β] + Uee[n] + Uei[n] + Fxc[n], where β is the inverse
of temperature, TK [n,β] is the finite-temperature kinetic
contribution of electrons to the free energy, Uee is the Hartree
energy between electrons, Uei is the electron-ion interaction,
and Fxc is the exchange-correlation interaction. The kinetic
contribution TK [n,β], which is composed of an entropic
contribution and the kinetic energy, is calculated through the
Thomas-Fermi approximation as

TK [n,β] = 1

β

∫
dr

{
n(r)φ(r) − 2

√
2

3π2β3/2
I3/2[φ(r)]

}
, (1)

where Iν is the Fermi integral of order ν, and φ(r) is related to
the intrinsic chemical potential μ0 through φ(r) = βμ0. The
von Weizsäcker gradient correction [38] is neglected because
of its minor contribution to the EOS [26,27,39], as long as
thermal ionization of localized electronic states is concerned.

The FPMD method is based on Mermin’s finite-temperature
density functional theory (FT-DFT) [40]. The electronic wave
functions ψi(r) are described by Kohn-Sham equations [41,42]
ĤKSψi = εiψi with

ĤKS = − 1
2∇2 + VH [n] + Vxc[n] + Vei[n],

where the subscript i denotes the ith electron, εi is the
corresponding eigenenergy, VH is the Hartree potential from
other electrons, Vxc is the exchange-correlation potential, and
Vei is the electron-ion interaction.

The ext-FPMD method [34] extends the FPMD method
to a much higher temperature limit by replacing the wave
functions of high energy electrons with plane waves. It further
leads to an analytical form of density of state (DOS) D(ε) =√

2�
π2

√
ε − U0 for high energy electrons, with which the high-

energy-electron correction to charge density, total energy, and
entropy can be explicitly written as integrals

ncorr(r) = 1

�

∫ ∞

Ec

dεf (ε)D(ε),

Ecorr =
∫ ∞

Ec

dεf (ε)D(ε)(ε − U0),

and

Scorr = −
∫ ∞

Ec

dεD(ε){f (ε) ln f (ε)

+ [1 − f (ε)] ln[1 − f (ε)]}.
Here, ε is the energy, � is the volume, U0 is the constant
background potential, Ec is the starting energy of the plane-
wave approximation, and f (ε) is the Fermi-Dirac distribution.

All simulations are carried out in a periodic cubic box con-
taining 128 atoms, i.e., 64 formula units of 6Li D. The OFMD
calculations are performed using the ABINIT package [43,44],

while the ext-FPMD calculations are carried out with an
implementation of the method [34] based on the QUANTUM

ESPRESSO package [45].
For a given temperature and density, the time step to

move the ions is determined by a scaling form [13] of
δt ∼ 1/(ρ1/3T 1/2), and δt ranges from 0.01 fs to 0.1 fs in
the simulations. Trajectories of the last 4000 steps are used to
calculate the required physical properties statistically after the
system has evolved for 6000 steps, which makes the numerical
error of total energy and pressure less than 1%. In both
methods, the Perdew-Zunger parametrization [46] of the local
density approximation (LDA) to the exchange-correlation
interaction is employed. Preceding studies have shown [34]
that the influence of different exchange-correlation functionals
is small and thus not considered in the paper.

The electron-ion interaction in the OFMD simulations is
represented by the norm-conserving regularization form of the
original Troullier-Martins (TM) prescription [47] with a core
cutoff radius 0.5 Bohr for both lithium and deuterium elements.
It differs slightly from the norm-conserving regularization
proposed in Ref. [24]. In the TM process, the electronic charge
density used in the unscreening is generated in a full quantum
mechanical calculation, while the one used in Ref. [24] is
calculated from the Thomas-Fermi model. Nevertheless, the
difference in EOS resulting from these two regularizations is
minor, as will be further illustrated in the following section.
The plane wave cutoff energy to represent charge density is
set to be 300 Ry.

In the ext-FPMD simulations, the electron-ion interactions
in the projected-augmented-wave (PAW) [48] format are
generated using the ATOMPAW program [49], which also have
a core cutoff radius of 0.5 Bohr. The plane wave cutoff energy
is set to be 200 Ry. A shifted 2 × 2 × 2 Monkhorst-Pack [50]
mesh is used to sample the Brillouin zone. 800 bands are
explicitly included in calculations, where the 160 bands at
the top are used to determine the value of U0, as required
by the ext-FPMD method [34]. In addition, atomic calculations
are also performed with the ATOMPAW program, from which
the average radius of a given electronic orbital is determined.

III. RESULTS AND DISCUSSION

The validity boundary problem is well illustrated in the prin-
cipal Hugoniot of 6Li D [28,34], where the “bump” structure
is attributed to the shell structure of electrons [34,51] and its
shape sensitively depends on the accuracy of pressure and total
energy in the calculation. There were other OFMD investiga-
tions which also paid attention to the shell structure of electrons
and its influence on the validity boundary of the OFMD
method [27,52], however, not examined in the same manner.

Figure 1(a) displays principal Hugoniots of 6Li D calculated
with the OFMD method and the ext-FPMD method, focused
on the region around the maximum compression ratio η ∼ 4.3.
The states along the principal Hugoniot satisfy the Rankin-
Hugoniot relation E1 − E0 = 1

2 (P1 + P0)(V0 − V1), where E

is the total internal energy per formula unit, P is the pressure,
and V is the volume of each 6Li D formula unit. Subscripts
0 and 1 stand for the uncompressed and the shocked states,
respectively. The initial state of 6Li D is a face-centered cubic
(FCC) lattice structure at ρ0 = 0.8 g/cm3, and the initial
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FIG. 1. (a) Principal Hugoniots of 6Li D calculated by using
the OFMD method (Calc. 1) and the ext-FPMD method (Calc.
2), compared with preceding OFMD results [28] and SESAME
7360 [28], SESAME 7245 [28]. Ionization ratio α of the 1s state
of the lithium element along the ext-FPMD Hugoniot is also
displayed. (b) OFMD Hugoniots calculated with different E0, where
the red solid curve is the ext-FPMD result, and the black curve is
Calc. 1 in (a).

pressure P0 ≈ 0. The equation is solved with the second order
polynomial interpolation.

The OFMD Hugoniot, displayed as stars and denoted as
Calc. 1 in the figure, is calculated with E0 = −254.85 eV per
formula unit. It agrees with the OFMD result of Ref. [28],
displayed as hollow circles. The small difference between
Calc. 1 and the previous OFMD results comes from technical
details, as have been described in Sec. II. The ext-FPMD
Hugoniot, displayed as upper triangles and denoted as Calc.
2, is calculated with the initial energy E0 of −217.70 eV per
formula unit. It serves as the reference and keeps the same as
the LDA result in Ref. [34].

As displayed in Fig. 1(a), Calc. 1 (the OFMD result)
separates from Calc. 2 (the ext-FPMD result) when pressure is
greater than 4 TPa. The maximum compression ratio of Calc.

FIG. 2. Relative deviation of pressure (δP ) and energy difference
(δE) of OFMD calculations with respect to the ext-FPMD results. In
the subfigure of δE , results calculated with E0 = −254.85 eV and
E0 = −192.82 eV are displayed. As a reference, ionization ratios of
the corresponding thermal states are displayed together.

1 is smaller than that of Calc. 2. At the same compression ratio
η, the pressure of Calc. 1 in the lower branch of the “bump”
is 40–150% higher than that in Calc. 2 near the maximum η.
For instance, at η = 4.20 the pressure of Calc. 1 is 11.67 TPa,
while the pressure of Calc. 2 is 4.95 TPa, which is half of the
magnitude of Calc. 1.

The choice of E0 is a major issue in the combined
calculation of the OFMD+FPMD method [26,28]. In order to
show that the variation of E0 is not the origin of the difference
between the OFMD Hugoniot and the reference calculation
of the ext-FPMD method, several modified E0 are used to
rebuild the Hugoniot in the OFMD calculation. Figure 1(b)
displays the change of Hugoniots with the variation of E0.
The black line denotes the OFMD Hugoniot calculated with
E0 = −254.85 eV per formula unit, and the red line denotes
the reference calculation from the ext-FPMD method. When
E0 increases, the maximum η decreases and the size of the
“bump” structure shrinks, which makes the Hugoniot further
deviate from the ext-FPMD calculation. On the other hand,
when E0 decreases, the pressure at low compression ratio is
much smaller than the ext-FPMD pressure. Anyhow, there is no
way to recover the entire ext-FPMD results by modifying E0.

The other factor that determines the Hugoniot is the EOS. In
order to make the Hugoniots close to each other, the pressure
difference between the two methods in the shocked state at a
given density (or η equivalently) needs to be small enough, and
the total energy can only have a constant difference from each
other, as required by the Rankine-Hugoniot relation. So, in
this sense, the difference in the principal Hugoniot sensitively
reflects the variation of EOS in the two methods.

Using the ext-FPMD results as a reference, the relative
difference of pressure can be defined as δP = (POFMD −
Pext-FPMD)/Pext-FPMD. Figure 2(a) displays the relative dif-
ference in the pressure calculation, presented as a function
of temperature. Data calculated at different η (in the range
from 3.0 to 4.27) are distinguished with various symbols,
as indicated in the legend. The relative difference δP is not
sensitive to the change of η but has a prompt response to
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the variation of temperature in the compression ratio range
considered. The variation of δP can be divided into two regions.
In the first region, δP keeps decreasing from ∼10% at low
temperature to ∼−2% at T ∼ 100 eV. In the second region,
where T > 100 eV, δP slightly increases and approaches zero.

Similarly, the relative deviation of 
E = E − E0 in the
Rankin-Hugoniot relation can be defined as δE = (
EOFMD −

Eext-FPMD)/
Eext-FPMD. In the compression ratio range
considered, it is essentially a function of temperature and
less relevant to the change of η, as displayed in Fig. 2(b).
δE strongly depends on the choice of E0 in the calculation.
When calculated with E0 = −254.85 eV per formula unit, δE

displays a damped undulating structure. However, when δE

is calculated with E0 = −192.82 eV per formula unit, which
corresponds to the curve of 
E0 = +62 eV per formula unit
in Fig. 1(b), δE is less than −100% at low temperature and
monotonically approaches zero. Note that the low temperature
part of the curve is out of the range of δE displayed. Although
δE displays a different trend at low temperature, it approaches
zero at high temperature in both cases. This is a reasonable
result because |E0| � |E| at high temperature limit, at which
E0 can be neglected in the Rankin-Hugoniot relation.

Taking both P and E − E0 into consideration, it is clear that
the EOS from the OFMD calculation below at least 180 eV
is out of the validity boundary of the method, provided one
takes the green area as a loose standard, at which |δP | = 2%
and |δE| = 4%. When Hugoniot calculation is concerned, it
is safe to use the Hugoniot state η = 4.11 and T = 300 eV,
indicated by the vertical line in Fig. 2, as the starting point of
the OFMD calculation, where both |δP | and |δE| is less than
1%. The corresponding E0 is −192.82 eV per formula unit.
With this value, the OFMD Hugoniot agrees with the upper
branch of the ext-FPMD Hugoniot, as displayed by the purple
curve in Fig. 1(b).

Following the procedure described above, the validity
boundary of the OFMD method can be practically determined.
However, one can go a step further to understand the physical
origin of the deviations.

Figure 3 displays the density of states (DOS) of electrons
and the projected DOS (PDOS) of the 1s orbital of Li for
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FIG. 3. Density of electronic states and projected density of states
of the 1s state of Li for selected 6Li D thermal states along the
Hugoniot curves.

selected states around η = 4, calculated with the ext-FPMD
method. It shows that the 1s electronic orbital of Li, repre-
sented by the PDOS in the figure, is energetically separated
from other electronic orbitals at relatively low temperature.
With the increase of temperature, the distribution of the 1s state
smears out, and the peak of the PDOS moves to a lower energy
due to the increase of the valence state β in ionic Liβ+. Atomic
calculations show that the 1s has an average radius less than 0.5
Bohr, which is 1/6 of the average distance (∼3 Bohr) between
atoms at η ∼ 4. This suggests that the ionization potential
depression (IPD), which mainly depends on the density [53],
is not strong enough to delocalize the majority of the 1s state,
and the “bump” structure in the Hugoniot is more likely caused
by the thermal ionization of the 1s state of the lithium element.
Note that some of the 1s states of Li are indeed energetically
overlapped with other electronic states at high temperature,
as displayed in Fig. 3(d). It occurs when an extremely high
local density emerges somewhere in the system as a result of
strong thermal fluctuations, where the distance between ions
is comparable with the average radius of the 1s orbital of Li.

Thermal ionization can be quantitatively represented by
the average ionization ratio α of the 1s state of Li, which is
calculated using the ext-FPMD method in the work to be the
average energy of the lowest band in Fig. 3. As displayed in
the bottom panel of Fig. 2, it monotonically increases from
0 to 1 with the temperature. In order to establish the relation
between the “bump” structure and the thermal ionization, the
average ionization ratio α is explicitly displayed along the
principal Hugoniot in Fig. 1(a). It shows that the formation of
the “bump” structure closely follows the ionization process
of the 1s electronic state of Li. At η = 3.58, α is 0.05,
which indicates that the thermal state is near the starting
point of the ionization process. Then, the 1s state is about half
ionized (α = 0.58) when the Hugoniot reaches its maximum
compression ratio η = 4.31. When the ionization process
finishes, the compression ratio η approaches the η = 4 limit
of strong shock waves. This well supports the conjecture that
the thermal ionization of the 1s state of Li is the main cause
of the “bump” structure.

The deviation of P and E − E0 also depends on α. This is
evident when the three quantities are put together, as displayed
in Fig. 2. It is noticeable that the deviation in P and E − E0

vanishes when most of the electrons in the bound 1s state of
Li are ionized.

The origin of the deviation between the two methods
can be further illustrated by comparing the charge density.
In the framework of FT-DFT, which is the foundation of
both methods, all thermal properties, including total energy,
pressure, and stresses, at a given temperature are determined
by the charge density distribution. Difference in charge
density may be well presented as deviations in thermal
properties. In order to illustrate the variation originated from
methodologies, charge densities are calculated on the same
atomic configurations extracted from equilibrium trajectories
of a given equilibrium state.

Figure 4 displays typical charge density distribution along
the line connecting two ions. Note that only charge densities
outside of the pseudopotential cutoff radius (rc = 0.5 Bohr in
our calculations) are displayed. In Figs. 4 (a)–4(c), charge
densities on the lines connecting two lithium ions, two
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FIG. 4. Typical charge density distribution along the line connect-
ing two ions, calculated from the OFMD method and the ext-FPMD
method. (a)–(c) Charge density distribution in the thermal state
η = 3.00 and T = 2.22 eV. (d)–(f) Charge density distribution in
the thermal state η = 4.11 and T = 300 eV.

deuterium ions, as well as one lithium ion and one deuterium
atom, are presented respectively, which are calculated at a
given ionic configuration in the Hugoniot state of η = 3.00
and T = 2.22 eV. The corresponding α for the 1s state of Li
is almost zero, i.e., most of the electrons in the 1s state are not
ionized. Charge densities calculated with the two methods are
distinguished by different colors and line styles, as indicated
in the legend.

In this case, the charge density has a significant difference
between the two methods. Compared with the ext-FPMD
charge density distribution, the OFMD method underestimates
the charge around the ions. The charge density near the
Li ions is underestimated by about 20–30%, and in the
interstitial space, the OFMD charge density fluctuates around
the ext-FPMD charge density. The amplitude of the fluctuation
can be as much as 60%, for example, in Fig. 4(c). This deviation
in charge density gives a reasonable account to the deviation
in thermal properties displayed in Fig. 2.

On the other hand, when most of the 1s electrons of Li
are ionized, charge densities calculated with the two methods
are close to each other. Figures 4(d)–4(f) give an illustration
to this situation. They are calculated in the Hugoniot state
of η = 4.11 and T = 300 eV, corresponding to the connecting
point of the combined OFMD+FPMD method. The difference
of charge density in all three cases is less than 8%, which is
much smaller than those in Figs. 4(a)–4(c). The corresponding

difference of pressure is −0.27%, and the deviation of E − E0

is about −0.57%.
The comparison of charge density shows that the accuracy

of the OFMD method essentially depends on how well the
charge density distribution is reproduced. At low temperature,
electrons of bound states are distributed in shell structures,
which are not well reproduced by the OFMD method [54].
However, when temperature is greater than the ionization
energy of the lowest bound states, which is the 1s state of
Li here, the majority of electrons are ionized and the influence
of the shell structure is negligible. At this time the OFMD
method can describe the electronic charge density distribution
well and can thus calculate thermal properties accurately.

As thermal ionization of the shell structure is concerned,
an approximate validity boundary of the OFMD method may
be suggested as T ∼ ILowest. It varies with the density as the
result of the IPD effect. Considering the fluctuation of density
in the system, ILowest smears out on the scale of energy, as
displayed in Fig. 3. The ILowest presented is then an average of
the system.

In the calculation of Hugoniots, this condition gives an
estimation to the temperature range at the connecting point.
For example, ILowest = 94 eV in 6Li D, and the connecting
temperature is T = 300 eV. For aluminum, of which electrons
are distributed in several shells, the ILowest is determined to be
about 2100 eV, and the connecting point has a temperature of
T = 2400 eV. A notable situation is the material at extremely
high density, where all bound states of electrons disappear due
to IPD. In this case, the OFMD method has the largest validity
range.

IV. CONCLUDING REMARKS

With the 6Li D as an example, we have shown that the
OFMD method has a large deviation in the description of
electronic structures and thermal properties in the system
made of bound and unbound electrons, compared with the
ext-FPMD calculation. Most of the deviations come from
the shell structure of bound electrons, which may essentially
define a validity boundary T ∼ ILowest for the OFMD method
in the calculation of dense plasmas. We note that this validity
boundary is relevant when thermal properties in a large
temperature range are concerned. It is not contradicted with
current efforts of searching for orbital-free density functionals
of improved performance [55,56], which usually focus on
zero temperature or in a small temperature range. Because the
electronic charge density of bound states has a small variation
in the range, the influence of these electrons can be described
by a well designed pseudopotential [57–60] or by an optimized
functional to the kinetic energy [33,61].
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