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Spontaneous dimerization, critical lines, and short-range correlations in a frustrated spin-1 chain
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We report on a detailed investigation of the spin-1 J1-J2-J3 Heisenberg model, a frustrated model
with nearest-neighbor coupling J1, next-nearest neighbor coupling J2, and a three-site interaction
J3[(Si−1 · Si)(Si · Si+1) + H.c.] previously studied in [Phys. Rev. B 93, 241108(R) (2016)]. Using density
matrix renormalization group (DMRG) and exact diagonalizations, we show that the phase boundaries
between the Haldane phase, the next-nearest neighbor Haldane phase, and the dimerized phase can be very
accurately determined by combining the information deduced from the dimerization, the ground-state energy,
the entanglement spectrum and the Berry phase. By a careful investigation of the finite-size spectrum, we also
show that the transition between the next-nearest neighbor Haldane phase and the dimerized phase is in the Ising
universality class all along the critical line. Furthermore, we justify the conformal embedding of the SU(2)2

Wess-Zumino-Witten conformal field theory in terms of a boson and an Ising field, and we explicitly derive a
number of consequences of this embedding for the spectrum along the SU(2)2 transition line between the Haldane
phase and the dimerized phase. We also show that the solitons along the first-order transition line between the
Haldane phase and the dimerized phase carry a spin-1/2, while the domain walls between different dimerization
domains inside the dimerized phase carry a spin 1. Finally, we show that short-range correlations change character
in the Haldane and dimerized phases through disorder and Lifshitz lines, as well as through the development of
short-range dimer correlations in the Haldane phase, leading to a remarkably rich phase diagram.
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I. INTRODUCTION

A. Background

Antiferromagnetic Heisenberg spin chains have been stud-
ied intensively over the years. Adding frustration through
competing interactions leads to a variety of new phases and
quantum phase transitions. The most famous example is proba-
bly the J1-J2 spin-1/2 chain [1] which undergoes spontaneous
dimerization when the ratio of the next-nearest neighbor inter-
action to the nearest-neighbor one J2/J1 � 0.2411 [2]. For the
spin-1 chain, spontaneous dimerization has long been known
to be induced by a negative biquadratic interaction Jbiq exactly
opposite to the bilinear one: Jbiq/J1 = −1. The critical point
is integrable with Bethe ansatz [3,4], and it is in the SU(2)2

Wess-Zumino-Witten (WZW) universality class [5–7]. Unlike
in spin-1/2 chains however, a next-nearest neighbor interaction
J2 does not lead to dimerization, but induces a phase transition
into a phase that consists of intertwined next nearest-neighbor
(NNN) Haldane chains [8,9]. More recently, it has been shown
that a three-site interaction J3[(Si−1 · Si)(Si · Si+1) + H.c.]
that reduces to the next-nearest neighbor interaction for
spin-1/2 is also able to induce a spontaneous dimerization
in spin-S chains for arbitrary S, and that, at least up to
S = 2, the transition is in the SU(2)2S WZW universality
class [10,11].

The combined effect of J2 and Jbiq for the spin-1 chain
has recently been investigated by Pixley et al. [12], who came
to the conclusion that the phase diagram only consists of the
phases previously identified in the models with only one of
these frustrating interactions (J2 or Jbiq): the Haldane phase, a
spontaneously dimerized phase, and the NNN-Haldane phase.
They also carefully investigated the short-range correlations,
which become incommensurate through Lifshitz and disorder
transition line. The dimerization transition was argued to be

either in the SU(2)2 WZW universality class, or to be first
order.

Shortly after, the combined effect of J2 and of the three-site
interaction J3 has been studied by the present authors [13].
The model is defined by the J1-J2-J3 Hamiltonian:

H =
∑

i

(J1Si · Si+1 + J2Si−1 · Si+1)

+
∑

i

J3[(Si−1 · Si)(Si · Si+1) + H.c.]. (1)

The phases turn out to be the same as for the J1-J2-Jbiq model,
but, quite surprisingly, the dimerization transition between the
NNN-Haldane and the dimerized phase was found to be in
the Ising universality class. The goal of the present paper is to
give a detailed account of how these conclusions were reached
for the J1-J2-J3 model, and to investigate the nature of the
short-range correlations, which were not touched upon in the
previous paper. The apparent discrepancy regarding the nature
of the transition from the NNN-Haldane to the dimerized
phase between the J1-J2-Jbiq and the J1-J2-J3 model has
been resolved since then by the present authors [14], and the
transition appears to be in the Ising universality class in both
cases.

B. Previous results

The spin-1 chain with isotropic nearest-neighbor Heisen-
berg (J2 = J3 = 0) interaction has been shown to be
gapped [15] with exponentially decaying spin-spin correla-
tions. The system is topologically nontrivial, and the ground
state has a hidden order characterized by a nonlocal string
order parameter. For open boundary conditions, spin-1/2 edge
states appear and give rise to two low-lying states, a singlet
and the so-called Kennedy triplet [16]. More recently, it
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was shown that the Haldane phase is characterized by the
double degeneracy of the entanglement spectrum [17]. This
degeneracy is protected by the same set of symmetries that
protect the stability of the Haldane phase. If the Hamiltonian is
deformed while preserving these symmetries, the degeneracy
can be lifted only by crossing a phase boundary.

The model with J3 = 0 has been studied using a varia-
tional ansatz and the density matrix renormalization group
(DMRG) [8,18–20]. The authors have shown that the Haldane
phase is stable until J2 = 0.7444(6), where a phase transition
to the NNN-Haldane phase takes place. According to DMRG
calculations, the spin gap remains open. The finite jump in
the string order parameter suggests that the phase transition
is first order, although no discontinuity could be identified in
the first derivative of the energy at the transition. Disorder
and Lifshitz points (i.e., points, where the correlation function
in real space becomes incommensurate with a wave vector
q �= 0,π/2,π , or where the structure factor has two peacks at
q �= 0,π/2,π , respectively) were identified at αd = 0.284(1)
and αL = 0.3725(25).

For the model with J2 = 0, there is a transition at J3 �
0.111 [10] to a spontaneously dimerized phase. This transition
is continuous and belongs to the SU(2)k=2 WZW universality
class [7].

There is also a line where the ground state is known exactly.
Michaud et al. [10,11] have shown that there is an exactly
dimerized point for all spin-S chains for the J1-J3 model at
J3/J1 = 1/(4S(S + 1) − 2). For spin-1/2, this model reduces
to the J1-J2 model with J2 = J3/2, and this exactly dimerized
state can be seen as the generalization of the Majumdar-Ghosh
point of the spin-1/2 J1-J2 chain. Further investigations have
shown that this result can be extended to the case where a
next-nearest neighbor exchange J2 interaction is included [21].
Indeed, provided that

J3

J1 − 2J2
= 1

4S(S + 1) − 2
, (2)

the two fully dimerized states are eigenstates, and they are
ground states if J2 is not too large. Now, for J3 = 0 and S = 1,
it has already been shown by Roth and Schollwöck that the
ground state is not dimerized for J2 = 1/2, but that it lies
in the Haldane phase [8,18]. This suggests that, for spin 1,
the transition between the dimerized phase and the Haldane
phase, which is continuous for J2 = 0, has to become first
order somewhere on the line J2 + 3J3 = 1/2 [the form taken
by the condition of Eq. (2) for S = 1].

The phase diagram of the J1-J2-J3 model (Fig. 1) was
reported previously in Ref. [13], in which we have discussed
in details the nature of the phase transitions into the sponta-
neously dimerized phase. In particular, it was shown that the
phase transition between the Haldane and dimerized phases is
either WZW SU(2)k=2 or first order depending on the value
of the coupling constant of the marginal operator, while the
transition between the NNN-Haldane and dimerized phases is
in the Ising universality class. In addition, we have suggested
that the type of continuous transition depends on the nature of
the domain walls between the phases: the transition is magnetic
[WZW SU(2)k=2] if the domain wall carries a free spin, while
it occurs in singlet sector and is in the Ising universality class
otherwise.

FIG. 1. Phase diagram of the one-dimensional, spin-1 J1-J2-J3

model. The transition from the dimerized phase to the Haldane phase
is continuous along the solid line and first order along the dashed
line. The transition from the NNN-Haldane to the dimerized is always
continuous. The transition between the Haldane phase and the NNN-
Haldane phase is always first order. The dotted line is the line where
the ground state is exactly dimerized.

C. Scope

In this paper, we report on an in-depth numerical and analyt-
ical investigation of the model of Eq. (1) using DMRG, exact
diagonalizations, and field theory. Without loss of generality,
we set J1 = 1 throughout the paper, and we concentrate on
the antiferromagnetic case J2 � 0 and on positive three-site
interaction J3 � 0. In particular, we discuss the dimerization,
the ground-state energy and the entanglement spectrum, all
obtained by a matrix product state implementation of DMRG
known as variational MPS [22,23], and the Berry phase [24,25]
calculated with exact diagonalization. We also confirm the
magnetic nature of the domain walls between the Haldane and
dimerized phases by looking at the solitons at the first order
transition between these phases. Furthermore, coming back to
the nature of the phase transition between the NNN-Haldane
and dimerized phases, we provide numerical evidence that the
universality class is Ising all along the critical line, including
the triple point. Finally, we discuss a variety of short range
phases that appear on top the main phases.

The paper is organized as follows. We start with a brief
discussion of the phase diagram in Sec. II. Section III discusses
the conformal embedding used in the field theory approach
and provides some technical details on DMRG calculations.
In Sec. IV, we describe in more details how the phase diagram
was obtained by a careful investigation of the dimerization
order parameter, of the energy, of the entanglement spectrum,
and of two types of Berry phases. In Sec. V, we discuss solitons
that appear at the first order phase transition between the
Haldane and dimerized phases. Section VI discusses the limits
of the Ising critical line: the triple point and the J2-J3 model.
Section VII gives additional details about the short-range
orders realized in the system. We conclude with a summary of
our main results in Sec. VIII.

II. SUMMARY OF MAIN RESULTS

A. Phases and transitions

Our main results are summarized in the phase diagram of
Fig. 1. It consists of three phases: a Haldane phase around
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the nearest-neighbor Heisenberg chain (J2 = J3 = 0), a next-
nearest neighbor (NNN)-Haldane phase upon increasing J2,
and a dimerized phase upon increasing J3. Each phase has a
simple valence-bond-solid (VBS) representation sketched on
the diagram. In this representation, each spin-1 is represented
as a pair of spins 1/2, and bonds correspond to spin singlets
built out of two spins 1/2.

The transition between the Haldane phase and the dimerized
phase starts at J2 = 0 and J3 � 0.111, and it remains continu-
ous along a line up to the point J2 � 0.12 and J3 � 0.087. On
this line, and at the end point, the transition is characterized
by a central charge c = 3/2 and is in the SU(2)k=2 WZW
universality class. Beyond, the transition is first order.

The transition between the Haldane phase and the NNN-
Haldane phase is first order. It is a topological transition: the
two phases cannot be distinguished by any local symmetry,
but Haldane phase is topological with gapless edge excitations
(so-called Kennedy triplet [16]), whereas the NNN-Haldane
phase is not. One can also resort to the nonlocal string order
parameter, or to probes of topological properties such as the
entanglement spectrum or the Berry phase, to distinguish them.

Finally, the transition between the NNN-Haldane phase and
the dimerized phase is in the Ising universality class with a
central charge c = 1/2. The singlet-triplet gap does not close
at this transition.

On top of these transition lines, there is a remarkable line
J2 + 3J3 = 1/2 along which the fully dimerized state is an
exact eigenstate of the model. This state is the ground state until
the point J2 � 0.335 and J3 � 0.055. At that point, the system
undergoes a strongly first order transition into the Haldane
phase.

B. Short-range order

In addition to these phases, which can be distinguished
by their topological properties or by the development of long-
range dimerization, we have also identified regions of the phase
diagrams characterized by various types of short-range order.
The discussion and notations follow closely those of Ref. [12],
in which a very detailed investigation of the same problem for
the J1-J2-Jbiq model has been reported. The lack of long-range
order to distinguish these regeions prevents them from being
true phases in the thermodynamic sense. However, they play an
important role in understanding the evolution of correlations
in the phase diagram, and we will nevertheless refer to them
as phases.

The correlation function C(x) = 〈S(0) · S(x)〉 can be
well accounted for throughout by the product of the two-
dimensional Ornstein-Zernicke (OZ) form:

COZ(x) ∝ cos(q x)
e−x/ξ

√
x

, (3)

with, in some cases, a prefactor 1 + δ(−1)x , leading to the
dimerized Ornstein-Zernicke (DOZ) form:

CDOZ ∝ (1 + δ(−1)x)COZ(x). (4)

The wave number q, the correlation length ξ , and the
dimerization parameter δ are fitting parameters that depend
on the couplings J2 and J3.

FIG. 2. Phase diagram based on the type of short-range order
realized in the phases of Fig. 1. The notations for the different phases
are described in the text. Note that the disorder line αd is distinct
from the Lifshitz line αL in both Haldane and dimerized phases. The
line where the fully dimerized state is an exact ground-state coincides
with the disorder line αd in the dimerized phase.

Note that the same form applies to the dimerized and
nondimerized phases, except, of course, a line of continu-
ous WZW SU(2)2 phase transition, at which the spin-spin
correlation decays algebraically C(x) ∝ (−1)x/|x|3/4 up to
logarithmic corrections. The dimerized phase is characterized
by the development of long-range correlations of the two-spin
operator Si · Si+1.

The structure factor is defined by the Fourier transform of
real-space correlations 〈Si · Sj 〉:

SF (q) = 1

N

∑
i,j

eiq(i−j )〈0|Si · Sj |0〉. (5)

Various short-range commensurate and incommensurate
phases are shown in Fig. 2. Below we provide a short
description of each phase. The detailed discussion of the form
of the correlations that led to the identification of short-range
order can be found in Sec. VII.

1. Haldane phase

(1) H-C. Short-range antiferromagnetic order with com-
mensurate real-space correlation function. C(x) is well de-
scribed by the OZ form with q = π and no dimerization
(δ = 0). The structure factor SF (q) has a single peak at q = π .

(2) H-SD-C. Short-range dimer phase with commensurate
real-space correlations (q = π ). C(x) is well described by the
dimerized OZ form with q = π and δ > 0. SF (q) has a single
peak at q = π .

(3) H-SD-ICR. Short-range dimer phase with incommensu-
rate real-space correlations, characterized by q > π and δ > 0
in Eq. (4). SF (q) has a single peak at q = π .

(4) H-ICR. Short-range antiferromagnetic order with in-
commensurate real-space correlations. C(x) is well described
by the OZ form with q �= π and no dimerization (δ = 0).
SF (q) has a single peak at q = π .

(5) H-IC. Short-range antiferromagnetic order with incom-
mensurate correlations in both real and momentum spaces.
C(x) is well described by the OZ form with q > π and no
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dimerization (δ = 0), but SF (q) has two symmetric peaks at
q �= π .

2. Dimerized phase

(1) D-C. The spin correlations are commensurate in both,
real and momentum space. C(x) is well described by the
dimerized DOZ form with q = π and δ > 0. SF (q) has a
single peak at q = π .

(2) D-ICR. Real-space correlations are incommensurate,
and C(x) is well fitted by the DOZ form with δ > 0 and q > π .
SF (q) still has a single peak at q = π .

(3) D-IC. The spin correlations are incommensurate in both
real and momentum space, C(x) is well fitted by the DOZ form
with δ > 0 and q > π , but SF (q) has two symmetric peaks at
q �= π .

(4) D-ICM. The spin correlations are incommensurate in
momentum space, SF (q) has two symmetric peaks at q �=
π,π/2. Real-space correlations are commensurate with q =
π/2.

3. NNN-Haldane phase

(1) NNN-IC. The spin-spin correlations are incommensu-
rate in both, real and momentum space. C(x) is reasonably
well fitted by the OZ form with q > π and no dimerization
(δ = 0). SF (q) has two symmetric peaks at q �= π .

III. METHODS

A. Conformal embedding

An important technique used in Ref. [13] was a confor-
mal embedding—an exact equivalence of the SU(2)2 WZW
conformal field theory (CFT) with the direct product of Ising
and free boson CFT’s. This was convenient since both sectors
are gapless along the second-order transition line between
Haldane and dimerized phases while only the Ising sector
is gapless along the transition line between NNN-Haldane and
dimerized phases. The conformal embedding implies that each
operator in the SU(2)2 field theory can be written as a product
of operators in the Ising and free boson theories. It also implies
that the finite size spectra are identical once certain selection
rules are imposed. Here we give those selection rules, which
were used to derive Table II of the Supplemental Material in
Ref. [13]. We consider the case of open boundary conditions
(OBC) on the spin chain with N � 1 sites, at the tri-critical
point. The SU(2)2 WZW model has three conformal towers,
labeled by lowest energy states of spin j = 0, 1/2, and 1. The
states in the spin-j conformal tower have energies

Ej,n = πv

N

[
− 1

16
+ j (j + 1)

4
+ n

]
(6)

for non-negative integer n. Excited states form multiplets of
arbitrary spin, subject to the condition of being integer for
j = 0, 1 and half-integer for j = 1/2. In general, multiplets
of a given spin and energy occur with integer degeneracies �1.
As argued in Ref. [13], the low-energy spectrum of the spin
chain at the tricritical point is given by the j = 0 conformal
tower for N even and the j = 1 conformal tower for N odd.

The Ising model has three conformal towers with energies

EIsing = πv

N

(
− 1

48
+ xIsing

)
, (7)

where

xIsing = x + n; (8)

x = 0, 1/2, or 1/16, corresponding to the I , σ , and ε conformal
towers and n is a non-negative integer. The complete finite-size
spectrum of the free boson model is

Eboson = πv

N

[
− 1

24
+ (Sz)2

2
+

∞∑
n=1

mnn

]
, (9)

where Sz labels the quantum number of the state and the
mn are non-negative integers. This follows from the standard
mode expansion for a periodic boson with Sz the winding
mode and the mn labeling excitations of the oscillator modes.
Note that unlike the SU(2)2 and Ising cases, we have a simple
explicit formula for all energies in the free boson case, labeled
by Sz.

There are selection rules determining which Ising confor-
mal towers can combine with boson states of various values of
Sz. The three conformal towers of SU(2)2 correspond to the
following selection rules:

j = 0 : (Sz = even integer,I ) or (Sz = odd integer, ε),

j = 1 : (Sz = even integer,ε) or (Sz = odd integer, I ),

j = 1/2 : (Sz = half-integer,σ ). (10)

Using Eq. (9) and the known multiplicities of the Ising
conformal towers we can work out the complete SU(2)2

conformal towers. Knowing the Sz quantum numbers allows us
to uniquely assign total spin quantum numbers s to multiplets.
(Of course, for this to be consistent, the number of states at
a given level, n, for a given Sz must be � the number of
states at the same level for smaller Sz. This turns out to always
be the case.) Note that half-integer Sz only occurring with
σ is consistent with the periodicity conditions discussed in
Ref. [13]. These results lead to Tables I–V.

We can easily read off formulas for the energy of the lowest
state of spin s for any s in each conformal tower. For the
j = 0 conformal tower, the lowest-energy state of spin s has

TABLE I. Details of j = 0 conformal tower.

n Sz m1 m2 xIsing

0 0 0 0 0

1 ±1 0 0 1/2
1 0 1 0 0

2 ±2 0 0 0
2 ±1 1 0 1/2
2 ±1 0 0 3/2
2 0 2 0 0
2 0 0 1 0
2 0 0 0 2
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TABLE II. j = 0 conformal tower, labeled by multiplicities of
spin multiplets at each energy level.

n s = 0 s = 1 s = 2

0 1 0 0
1 0 1 0
2 1 1 1

energy

E = πv

N

(
− 1

16
+ s2

2

)
(s even),

= πv

N

(
− 1

16
+ s2

2
+ 1

2

)
(s odd). (11)

For the j = 1 conformal tower,

E = πv

N

(
− 1

16
+ s2

2
+ 1

2

)
(s even),

= πv

N

(
− 1

16
+ s2

2

)
(s odd). (12)

These results are summarized in Table VI.
We have checked the validity of the conformal embedding

by comparing the characters. The character for a conformal
tower is the corresponding partition function:

χx = q−c/12+x

∞∑
n=0

dnq
n. (13)

Here, q ≡ e−πv/(NT ), c is the central charge [3/2, 1/2, and 1
for SU(2)2, Ising, and free bosons, respectively] x labels the
conformal tower and the dn’s are the multiplicities.

For the boson conformal field theory, the characters are
given by

χ (q) = q− 1
24

1

ϕ(q)

∑
Sz

qS2
z ,

where ϕ(q) = ∏∞
n=1(1 − qn) is the Euler function.

TABLE III. Details of j = 1 conformal tower.

n Sz m1 m2 xIsing

0 ±1 0 0 0
0 0 0 0 1/2

1 ±1 1 0 0
1 0 1 0 1/2
1 0 0 0 3/2

2 ±2 0 0 1/2
2 ±1 2 0 0
2 ±1 0 1 0
2 ±1 0 0 2
2 0 2 0 1/2
2 0 0 1 1/2
2 0 1 0 3/2
2 0 0 0 5/2

TABLE IV. j = 1 conformal tower, labeled by multiplicities of
spin multiplets at each energy level.

n s = 0 s = 1 s = 2

0 0 1 0
1 1 1 0
2 1 2 1

If the sum is restricted to even values of Sz, this leads to

χboson
even (q) = q− 1

24
1

ϕ(q)

∑
n

q2n2

= q− 1
24 (1 + q + 4q2 + 5q3 + 9q4 + · · · ),

while if the sum is restricted to odd values of Sz, this leads to

χboson
odd (q) = q− 1

24
1

ϕ(q)

∑
n

q(2n−1)2/2

= q− 1
24 q

1
2

1

ϕ(q)

∑
n

q2n(n−1)

= q− 1
24 q

1
2 (2 + 2q + 4q2 + 6q3 + 12q4 + · · · ).

Finally, if the sum is restricted to half-integer values of Sz, this
leads to

χboson
1/2 (q) = q− 1

24
1

ϕ(q)

∑
n

q(n− 1
2 )2/2

= q− 1
24 q

1
8

1

ϕ(q)

∑
n

q
n(n−1)

2

= q− 1
24 q

1
8 (2 + 2q + 4q2 + 6q3 + 12q4 + · · · ).

For the Ising conformal field theory, the characters are given
by (see Ref. [26], pp. 242–243):

χ (q) = q− 1
48 qhr,s

q− 1
48 q−hr,s

ϕ(q)

×
∑

n

[
q

(24n+4r−3s)2

48 − q
(24n+4r+3s)2

48
]
,

where hr,s = (4r−3s)2−1
48 and where (r,s) = (1,1) for I , (r,s) =

(2,1) for ε, and (r,s) = (1,2) for σ .
This leads to the following characters for I , ε, and σ :

χ
Ising
I (q) = q− 1

48
q− 1

48

ϕ(q)

∑
n

[
q

(24n+1)2

48 − q
(24n+7)2

48
]

= q− 1
48 (1 + q2 + q3 + 2q4 + 2q5 + · · · ),

TABLE V. j = 1/2 conformal tower, labeled by multiplicities of
spin multiplets at each energy level.

n s = 1/2 s = 3/2

0 1 0
1 1 1
2 2 2
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TABLE VI. Lowest excitation energy with spin s for both j = 0
and 1 conformal towers.

s 0 1 2 3 4 5

(E − E0)N/πv, j = 0 0 1 2 5 8 13
(E − E0)N/πv, j = 1 1 0 2 4 8 12

χ Ising
ε (q) = q− 1

48 q
1
2
q− 1

48 q− 1
2

ϕ(q)

∑
n

[
q

(24n+5)2

48 − q
(24n+11)2

48
]

= q− 1
48 q

1
2 (1 + q + q2 + q3 + 2q4 + 2q5 + · · · ),

χ Ising
σ (q) = q− 1

48 q
1
16

q− 1
48 q− 1

16

ϕ(q)

∑
n

[
q

(24n−2)2

48 − q
(24n+10)2

48
]

= q− 1
48 q

1
16 (1 + q + q2 + 2q3 + 2q4 + 3q5 + · · · ).

For the SU(2)2 conformal field theory, the characters for a
given j are given by (see Ref. [26], p. 585)

χ (q) = q− 1
16 q

j (j+1)
4

∑
n(2j + 1 + 8n)qn(2j+1+4n)∑

n(1 + 4n)qn(1+2n)
.

This leads to the following characters for j = 0, 1
2 and 1:

χ
SU(2)2
j=0 (q) = q− 1

16 (1 + 3q + 9q2 + 15q3 + 30q4 + · · · ),

χ
SU(2)2

j= 1
2

(q) = q
1
8 (2 + 6q + 12q2 + 26q3 + 48q4 + · · · ),

χ
SU(2)2
j=1 (q) = q

7
16 (3 + 4q + 12q2 + 21q3 + 43q4 + · · · ).

By expanding all these characters to order 100 or higher,
we have checked that the following relations hold:

χboson
even (q)χ Ising

I (q) + χboson
odd (q)χ Ising

ε (q) = χ
SU(2)2
j=0 (q),

χboson
even (q)χ Ising

ε (q) + χboson
odd (q)χ Ising

I (q) = χ
SU(2)2
j=1 (q),

χboson
1/2 (q)χ Ising

σ (q) = χ
SU(2)2

j= 1
2

(q)

corresponding to Eq. (10).

B. DMRG

Most of the numerical results in this paper have been
obtained with density matrix renormalization group (DMRG)
algorithm. The only exception is the calculation of the
Berry phase that has been done on small rings by exact
diagonalization. In this section, we provide some technical
details on the DMRG algorithm we have used.

First of all, we have used the matrix product state formu-
lation of DMRG, and therefore the proper name would be
variational MPS. The code consists of four parts:

(1) Infinite-size DMRG. The system size grows from 2 to
N by inserting two-site matrix product operator (MPO) in the
middle of the chain and by diagonalizing the corresponding
effective Hamiltonian. Everything on the left and on the
right of the MPO is effectively described by the left and
right environments. The singular value decomposition of
the eigenvector produces left and right normalized on-site
tensors. These tensors are multiplied with the corresponding
environments in order to update them and at the same time

to increase the size of each environment by one. For an odd
total number of spins N , the same procedure is performed
until the system reaches a size of N − 1, in which case only
one tensor is multiplied to the environment. Assuming without
loss of generality that the left environment was updated and
therefore contains an effective basis for (N − 1)/2 spins, one
can reuse the right environment for (N − 3)/2 spins and insert
the local Hamiltonian for two additional spins to reach a system
size with N odd. In this part of the code, we usually keep
44 singular values. However, close to the critical lines, we
increase this number to 66 for systems larger than N � 300
spins. The infinite-size DMRG provides a good starting point
for the remaining parts of the code.

(2) The warm-up function consists of an incomplete sweep.
Sweeping from the middle of the chain to its right end we
update local tensors site by site and increase the number of
kept states by a factor 1.5. Sweeping back from the right end
to the left one we again increase the number of states by the
same factor. Therefore in the end of the warm-up the number of
kept states is 100 (or 150 for 66 states in infinite-size DMRG).

(3) The “main body” of the algorithm is sweeping from left
to right and back locally updating the tensors. We usually per-
form 6 or 7 sweeps for open boundary conditions and up to 16
sweeps for periodic chains. We keep up to 700 singular values
for N < 200 and up to 900 states for larger systems. During the
first 6 or 7 sweeps we increase the number of states linearly up
to its maximal value. For periodic chains we continue to jiggle
the wave-function by decreasing and increasing the number
of states until the convergence is reached. The traditional
formulation of the variational MPS imply “one-site” DMRG,
where the effective Hamiltonian diagonalized at each iteration
represents a single spins in its left and right environments.
Since the dimerized phase has two spins per unit cell, we im-
plement a two-site routine, which turns out to be significantly
more stable and to converge faster, despite the obvious growth
of complexity by a factor (2S + 1)2 = 9. Roughly speaking,
the number of kept states 700 and 900 for two-site DMRG is
equivalent to 1210 and 1560 for the one-site routine, although
there is no simple one-to-one correspondence.

(4) During the “final sweep,” we do not increase the number
of states anymore, but at each iteration we measure the set
of local observables such as on-site magnetization, nearest-
neighbor spin-spin correlations, and entanglement entropy.
The left and right normalized tensors and vectors of the
Schmidt decomposition are stored and used later in order to
calculate the observables which involve more than two spins
(energy in the middle of the chain, long-range correlations,
structure factor, etc.) or to extract the entanglement spectrum.

A significant role in the successful convergence is played
by an efficient representation of the Hamiltonian (1) in
terms MPO. The MPO is a four-dimensional tensor with
two physical and two auxiliary legs. The complexity of the
algorithm is proportional to the dimension of the latest. The
straightforward MPO representation of the J1-J2-J3 model has
a bond dimension d = 17 (3 + 3 for J1 and J2 terms, 9 for J3

interaction, 1 for unity matrix, and 1 for magnetic field or
so-called “full term”). Using the spin commutation relations,
this number can be reduced to d = 14. Below we show a
different approach that allows to reduce the bond dimension
to d = 8.
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The efficient MPO representation naturally appears when
the J3 term is rewritten in terms of quadrupolar operators:

∑
i

∑
α,β=x,y,z

J3S
α
i−1Q

αβ

i S
β

i+1, (14)

where

Q
αβ

i = Sα
i S

β

i + S
β

i Sα
i . (15)

Generally speaking, Q is not a traceless tensor, and therefore
it is not a quadrupolar operator, but let us keep the Q notation
for simplicity. Combining the new expression for the J3 term
with the J2 term, one obtains the Hamiltonian in the following

form:

H =
∑

i

J1Si · Si+1

+
∑

i

∑
α,β=x,y,z

Sα
i−1

(
J2δ

αβ + J3Q
αβ

i

)
S

β

i+1. (16)

The sum in brackets can be written in matrix form as⎛
⎝J2I + J3Q

xx J3Q
xy J3Q

xz

J3Q
xy J2I + J3Q

yy J3Q
yz

J3Q
xz J3Q

yz J2I + J3Q
zz

⎞
⎠, (17)

where I is a d × d unity matrix, with d = 2S + 1. In terms of
rescaled lowering and raising operators S±

i = (Sx
i ± iS

y

i )/
√

2,
the MPO tensor reads

Hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

S−
i

S+
i

Sz
i

J2I + J3Q
+− J3Q

−− J3Q
−z

J3Q
++ J2I + J3Q

+− J3Q
+z

J3Q
+z J3Q

−z J2I + J3Q
zz

hSz
i J1S

+
i J1S

−
i J1S

z
i S+

i S−
i Sz

i I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where blank spaces correspond to zero entries. The MPO
Hamiltonians for the first and the last sites are given by the last
row and the first column of tensor (18), respectively.

The investigation of the low-lying spectra along the Ising
critical line requires being able to access the energy of several
low-lying singlets. In order to distinguish singlet and triplet
excitations, we have calculated a few low-lying states within
the sector Sz

tot = 1. Since triplet excitations are present in both
Sz

tot = 0 and Sz
tot = 1 sectors, while singlet excitations are only

present in the sector Sz
tot = 0, one can distinguish the magnetic

excitations from the singlet ones by comparing the results
of the two sectors. For finite values of the nearest-neighbor
coupling J1, the triplet excitation is a bulk excitation and it is
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FIG. 3. (a) Energy of the ground state and of the first four low-
lying excited states as a function of the number of DMRG iterations in
the sector Sz

tot = 0. The ground-state energy, bulk, and edge excitation
are marked with red, blue, and green dots, respectively. (b) Energy
scaling with the number of iterations. The values of the energies
are taken at the points marked on the left panel. The lower bound
estimates are linear fits of the last two available points. The upper
bounds are the values of the last available points.

above a few low-lying singlet excitations for systems with N >

30, as shown in Ref. [13]. The picture is more complicated
when the J1 coupling is absent. The bonds close to each edge
can be excited to a triplet state with a very low energy. The
singlet bulk excitations are below the edge excitations for very
large system sizes N > 300, see Fig. 20. When bulk and edge
excitations are close enough, they can be distinguished by
looking at the excitation energy as a function of iterations. The
energies obtained by diagonalizing the effective Hamiltonian
with an MPO located in the middle of the chain are related to
the bulk excitations, while minima in energies around the end
of each half-sweep correspond to edge excitations. In Fig. 3,
we provide an example for the J2-J3 chain with N = 300 spins.

IV. PHASE DIAGRAM

A. Dimerization

The natural order parameter to identify the dimerized phase
is the dimerization parameter defined by D = |〈Si · Si+1 − Si ·
Si−1〉|, where (i,i + 1) is the central bond of an open chain.
Figure 4 shows numerical results for the dimerization of a chain
with N = 150 sites as a function of J3 obtained by variational
MPS.

In large systems (N = 120,150) and close to the first-order
phase transition, the variational MPS algorithm suffers from
a kind of hysteresis: the algorithm converges to the first
excited state instead of the ground state. This results in an
unphysical jump in the energy curve and in an abrupt change
of dimerization before the actual phase transition. These
results were discarded when discussing the nature of the phase
transition, and Fig. 4 presents only dimerization curves for
which the finite-size energy is continuous.
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FIG. 4. Finite-size (N = 150) dimerization as a function of J3

for 0 � J2 � 0.3 (left) and 0.5 � J2 � 0.9 (right). The dashed line
indicates a first-order phase transition.

In order to determine the boundary of the dimerized phase
in the thermodynamic limit, we have performed a finite-size
extrapolation for chains with N = 30, 60, 90, 120, and 150
sites. A chain is in the dimerized phase if the dimerization
stays finite for N → ∞, which we associate with a convex
curve in a log - log plot. By contrast, a concave scaling curve
leads to a vanishing dimerization in the thermodynamic limit
and therefore means that the system is in the Haldane or
NNN-Haldane phase. The phase transition then corresponds
to a straight line in the scaling. Some examples of finite-size
scaling are shown in Fig. 5. A smooth change of the scaling
curvature implies that the dimerization curve is continuous in
the thermodynamic limit Figs. 5(a) and 5(c), while a first-order
phase transition with a finite jump in the dimerization curve
leads to an abrupt change from concave to convex scaling at the
critical point Fig. 5(b). The investigation of dimerization has
led to a precise determination of the transition line, and of the
nature of the phase transition (continuous or first order) except
in the vicinity of the end point of the continuous transition
between the Haldane phase and the dimerized phase (see
section E).

B. Ground-state energy

In view of the hysteretic behavior of the system, and to
complete the phase diagram in regions where the ground-
state energy appears to be discontinuous, we have carefully
investigated the behavior of the energy in the vicinity of the
transition lines. An estimate of the ground-state energy in the

(a) (b)

FIG. 6. (a) Energy of the central bonds for J2 = 0.4 as a function
of J3 for finite-size chains with N = 30, 60, 90, 120, and 150 sites.
Solid lines are polynomial fits. The kink was created by letting the
two fits cross. b) Position of the kink in εmid as a function of size. The
fitting curve is a quadratic function in 1/N .

thermodynamic limit is provided by the value of the energy of
the central bonds:

εmid = ε1 + ε2 + ε3,

where

ε1 = J1

2
〈Si−1 · Si + Si · Si+1〉,

ε2 = J2〈Si−1 · Si+1〉,
ε3 = J3〈(Si−1 · Si)(Si · Si+1) + H.c.〉,

and where (i,i + 1) is the central bond. The dependence on
J3 of εmid for chains with N = 30, 60, 90, 120, and 150 sites
for J2 = 0.4 is presented in Fig. 6(a). The energy curves are
discontinuous due to the edge effects and due to hysteresis
of the variational MPS algorithm for N = 120 and 150. In
order to determine as precisely as possible the location of the
first-order phase transition in the thermodynamic limit, we
have extrapolated the lines until they cross. Then, a finite-size
scaling of the position of the kink is presented in Fig. 6(b).

For 0.25 � J2 � 0.45, the ground-state energy and the
dimerization parameter lead to the same estimate for the
location of the phase transition. For larger next-nearest-
neighbor coupling, the kink disappears for small clusters but it
is still present in large chains (see Fig. 7). The phase transition
line continues towards small J3 and end up at J3 = 0 and

FIG. 5. Finite-size scaling of the dimerization parameter for J2 = 0.2, 0.3, and 0.6. The value of J3 is attached to each curve. The phase
transition is continuous at J2 = 0.2 and 0.6. The abrupt change of scaling at J2 = 0.3 indicates a first-order phase transition.
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(a) (b)

FIG. 7. Same as Fig. 6 for J2 = 0.6.

J2 = 0.75, close to the value 0.0744(4) obtained by Kolezhuk
et al. [8,18].

In order to confirm the location of the continuous phase
transition deduced from the dimerization parameter, we have
calculated the second derivative of εmid with respect to
J3. Examples for N = 90 and 150 are shown in Fig. 8.
A kink in the energy implies a divergence of its second
derivative. Besides divergences, one can see the appearance of
pronounced minima, which agree with the continuous finite-
size phase transitions found with the dimerization parameter.
The finite-size effect slightly increase with increasing J2. The
positions of the minima are in good agreement with the phase
boundaries found with the dimerization parameter for J2 � 0.2
and J2 � 0.5 (see scaling comparison on Fig. 14).

The kink across the first-order phase transition between the
Haldane phase and the NNN-Haldane phase is only visible
for nonzero value of J3. At J3 = 0, the first derivative of the
ground-state energy with respect to J2 is not discontinuous

for finite chains, as reported before [8]. Although the second
derivative is not divergent, the position of its minimum at
J2 = 0.75 coincides with the extrapolation of the critical line
deduced from the kink in the energy for J3 > 0.

C. Entanglement spectrum

As mentioned in the introduction, the Haldane phase of
the spin-1 chain is an example of a symmetry protected
topological phase in one dimension [27]. It is distinct from the
topologically trivial NNN-Haldane and dimerized phases, and
it can be characterized by the finite value of the string order
parameter, a criterion already used for the J1-J2 model [8].
More recently, it has been proposed to characterize topological
phases by their entanglement spectrum, obtained by dividing
the system into two parts, tracing out one of them, and
diagonalizing the reduced density matrix of the remaining
part [28–30]. This creates artificial edges without breaking
the inversion symmetry.

In the present case, a system with open ends may be
partitioned across a certain bond and the wave function can be
then Schmidt decomposed as

|�〉 =
∑

α

λα|Lα〉|Rα〉, (19)

where |Lα〉 and |Rα〉 are orthonormal basis vectors of the left
and right parts. In variational MPS, the Schmidt values λα are
obtained naturally at each iteration. Now, the multiplicity of
the Schmidt values is related to the number of edge states that
appear due to partitioning: Any topologically nontrivial phase
is characterized by at least twofold degeneracy. Pollmann
et al. [17] have shown that the Haldane phase of S = 1 chains
is characterized by a twofold degeneracy of the entanglement
spectrum.

0.0

FIG. 8. (Top) Second derivative of εmid with respect to J3 for N = 90,150 and J2 = 0,0.1,0.15 across continuous phase transition between
Haldane and dimerized phases. (Bottom) Second derivative of εmid for N = 90, 150 and J2 = 0.6,0.8,1 across the transition line between
NNN-Haldane and dimerized phases.
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(a)

(b) (c) (d)

FIG. 9. (a) Entanglement spectrum for an open chain with N =
150 sites as a function of J3 (only the lower part of the spectrum
is shown). The dots show the multiplicity of the Schmidt values.
The plot for J2 = 0.6 is shown here as an example. (b)–(d) VBS
sketches of the artificial edges created by the bipartition of the chain
in Haldane, NNN-Haldane, and dimerized phase, respectively. (b) The
black arrows at each edge stand for two free spins 1/2, which form
a singlet, leading to a twofold degenerate entanglement spectrum.
(c) The two spin-1/2 created at each edge couple with each other,
which is represented as a gray ellipse. There are no edge states, and
the entanglement spectrum is nondegenerate. (d) The edge spins are
spins 1 and form a singlet, which leads to a threefold degenerate
entanglement spectrum.

An example of finite-size entanglement spectrum contain-
ing all three phases is shown in Fig. 9. Three VBS (valence
bond solid) sketches are attached in order to show how edge
states are formed in each phase. In complete agreement with
previous works, the entanglement spectrum in the Haldane
phase is twofold degenerate, the edge states being spins 1/2.
By contrast, the entanglement spectrum is nondegenerate in
the NNN-Haldane phase because there are no edge states. For
the dimerized phase, it depends where the system is cut. For
a system with open boundary conditions and an even number
of sites, the ground state is non degenerate and consists of
alternating strong and weak bonds. If the system is cut in
the middle of a weak bond, no edge states appear, and the
entanglement spectrum is non degenerate. However, if the
system is cut on a strong bond, i.e., on a bond which is
essentially a singlet made of two spins 1, as done in Fig. 9,
the entanglement spectrum is threefold degenerate because
spin-1 edge states are created, and the NNN-Haldane phase can
be distinguished from the dimerized phase. In small systems
an intermediate phase with a three fold degenerate entangle-
ment spectrum and a low-lying nondegenerate level appears
between Haldane and NNN-Haldane phases. This phase
disappears for larger system sizes and is a thus a finite-size
effect.

The resulting phase diagram is shown in Fig. 10. It is
consistent with other approaches, but finite-size effects are
strong, especially for the transition between the NNN-Haldane
phase and the dimerized phase.

(a) (b)

FIG. 10. (a) Phase boundaries deduced from the entanglement
spectrum for chains with N = 30, 60, 90, 120, and 150 sites, and
after finite-size scaling (N∞). Shaded area: intermediate phase for
N = 60 and 90. (b) Example of finite-size scaling for J2 = 0.7 with
a quadratic fit.

D. Berry phase

Another powerful tool to characterize topologically non-
trivial phases is the Berry phase [24] that can be defined for any
Hamiltonian H (φ), which depends periodically on a parameter
φ. If |GS(φ)〉 is a single-valued ground state of H (φ), the
Berry connection is given by A(φ) = 〈GS(φ)|∂φ|GS(φ)〉, and
the Berry phase is the integration of the Berry connection over
a loop:

iγ =
∮

A(φ)dφ.

It was proposed by Hatsugai et al. [25] to use the angle
φ of the twist of the transverse component of the spin-spin
interaction on a given bond (i,j )

S+
i S−

j + S−
i S+

j → eiφS+
i S−

j + e−iφS−
i S+

j .

Then the number of valence bond singlets Bij on the bond
(i,j ) is related to the Berry phase by

γ = Bij π, mod(2π ).

In other words, the Berry phase gives access to the parity of
the number of valence-bond singlets on a given bond.

Previous studies of the Berry phase in spin systems have
demonstrated that topological phase transitions can be reliably
captured when the applied twist at φ = π is equivalent to anti-
periodic boundary conditions for the transverse component
of the interaction. To fulfill this requirement, three bonds
must be simultaneously twisted as shown in Fig. 11(a). The
twist applied on a bond (i,i + 1) implies that the transverse
component of the interaction in the initial Hamiltonian is
changed in all terms where the term Si · Si+1 appears, i.e.
both in the J1 and J3 terms. The twist of an (i,i + 2) bond
changes only the J2 term.

In the dimerized phase, there is no singlet on next-nearest
neighbor bonds (i − 1,i + 1) and (i,i + 2), while bonds (i,i +
1) have either zero or two singlets. So the Berry phase γ , which
is defined only up to 2π , is equal to zero. In the NNN-Haldane
phase, the bonds (i − 1,i + 1) and (i,i + 2) contain one spin-
1/2 singlet each and there is no singlet on the link (i,i + 1),
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(a) (b)

FIG. 11. (a) Berry phase applied on three bonds to be consistent
with antiperiodic boundary conditions for the transverse component
of the spin-spin interaction at φ = π . This Berry phase γ = π in the
Haldane phase and γ = 0 otherwise. (b) Berry phase applied on two
bonds to distinguish the dimerized phase (γ2 = 0) from the Haldane
and NNN-Haldane phases (γ2 = π ).

so that γ = 0 as in the previous case. By contrast, the Berry
phase is equal to π in the Haldane phase, in which there is one
VBS singlet on the bond (i,i + 1) and no VBS singlet on the
bonds (i − 1,i + 1) and (i,i + 2).

We have calculated the Berry phase γ for chains with
periodic boundary conditions using exact diagonalizations.
The results for finite sizes are presented in Figs. 12(a)–12(c),
and the finite-size scaling based on chains of length N =
8, 10, 12, and 14 sites in the interval 0 � J3 � 0.25 is shown
in Fig. 12(d). The results from the finite-size extrapolation
are also included in Fig. 12(a). Systems close to the first-
order phase transition have strong finite-size effects, and no
meaningful extrapolation could be performed with only four
points. There is also a clear indication of an even-odd effect: the
scaling for N = 8,12, . . . ,4k is different from the one for N =
10,14, . . . ,2(2k + 1). For J2 � 0.3, the results for N = 12 (the
largest accessible chain with an even number of spin pairs) is

taken as the Berry phase estimate of the phase boundary. Quite
remarkably, the finite-size results for such small chains are
already very close to the phase boundaries obtained in the ther-
modynamic limit with other techniques (see Fig. 14 and 15).

When the twist used to define the Berry phase does not
correspond to anti-periodic boundary conditions at φ = π ,
the Berry phase can still reflect some local properties of
the system and capture phase transitions. To distinguish the
dimerized phase from the NNN-Haldane phase, we propose
to define the Berry phase by twisting two links as shown in
Fig. 11(b). Similarly to what was done for the three-bond Berry
phase, we apply the twist on two bonds (i,i + 1) and (i,i + 2)
simultaneously. In the Haldane phase, there is only one VBS
singlet on the bond (i,i + 1), in the NNN-Haldane phase one
VBS singlet on the (i,i + 2) bond, and in both cases γ2 = π . In
the dimerized phase the bond (i,i + 1) contains either zero or
two singlets while the (i,i + 2) bonds have no singlets, and the
Berry phase γ2 = 0. The finite-size results for N = 12 and 14
are shown in Fig. 13. Qualitatively, this Berry phase gives the
same phase boundaries as the dimerization parameter, which
is also shown as a reference line. There is a strong finite-size
effect however, and the extrapolation to the thermodynamic
limit requires bigger system sizes.

E. Comparison

To show that all approaches presented above capture
essentially the same phase diagram, we provide examples of
comparative finite-size scaling (Fig. 14) and phase diagrams
obtained with different criteria (Fig. 15). We compare the phase

(a) (b) (c)

(d) (e) (f)

FIG. 12. Results of the Berry phase calculation in a periodic chain with N = 8,10,12,14. (Top) Finite size phase transitions captured by
the Berry phase for J2 in the range (a) 0 � J2 � 0.25, (b) 0.3 � J2 � 0.5, and (c) 0.5 � J2 � 0.78. The results of finite-size extrapolation
are shown in (a) as a black line. (Bottom) Size dependence of the boundaries deduced from Berry phase. (d) Finite-size scaling for J2 = 0
performed with a cubic fit in 1/N . (e) and (f) Examples of strong finite-size effects that do not allow one to make a finite-size extrapolation.
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FIG. 13. Phase transition obtained by the γ2 Berry phase for
periodic chains with N = 12 (blue circles) and N = 14 (red circles)
sites. The phase transition, obtained with finite-size scaling of the
dimerization parameter (black squares) is shown as a reference.

boundaries deduced from the dimerization, energy, entangle-
ment spectra, and Berry phase (Fig. 15). For J2 = 0, the second
derivative in the energy gives a phase boundary different from
the one obtained with the dimerization parameter. Except for
this point, the two boundaries are in rather good agreement.
They also agree with the “entanglement boundary” between
the NNN-Haldane phase and the dimerized phase. The first-
order phase transition from Haldane to the dimerized phase is
well located by all methods. The most reliable phase boundary
between Haldane and NNN-Haldane phases is obtained by the
kink in the energy of the central bond. Since on the one hand,
the kink in the εmid for large J3 has vanishing finite-size effect
[see Fig. 6(b)] and on the other hand the kink for small J3

appears only in large systems, we determined the boundary of
the phases with the energy of the central bonds of the largest
cluster to which we have access εmid(N = 150). We cannot

(a) (b)

(c) (d)

FIG. 14. Comparison of finite-size scaling for (a) J2 = 0.2, (b)
J2 = 0.4, (c) J2 = 0.6 and J3 � 0.026, (d) J2 = 0.6 and J3 � 0.045.
Finite-size results for: entanglement spectra (red squares), the Berry
phase (green diamonds), kink in the energy of the central bond
εmid (blue circles), minimum in the second derivative of εmid (cyan
circles). Results from finite-size scaling of the dimerization parameter
(magenta stars). All fitting curves are polynomial in 1/N . Dashed
green lines shows the interval between the smallest and the biggest
values deduced from the Berry phase.

FIG. 15. Comparative phase diagram obtained by dimerization
parameter (magenta stars), kink in the energy of the central bond εmid

(blue circles), εmid(N = 150), and εmid(N = 90) (cyan open circles
and dots), entanglement spectra (red squares), and Berry phase (green
diamonds).

see a kink for J3 = 0 and to locate the phase transition on the
J2 axis we have used the minimum in the second derivative of
the energy with respect to J2. The error in the “entanglement
boundary” is due to the abrupt change of the degeneracy from
two in the Haldane phase to one in the NNN-Haldane or
three in the dimerized. The finite-size results of the Berry
phase for N = 12 agree with the “energy boundary” except
for 0.5 � J2 � 0.6. The finite-size extrapolation of the Berry
phase is close to the “dimerization boundary.”

V. SOLITONS AT THE FIRST-ORDER TRANSITION
BETWEEN HALDANE AND DIMERIZED PHASES

We have studied numerically the soliton formation around
the first-order phase transition between the Haldane and
dimerized phases. In Fig. 16, we show results for the lowest-
lying Sz

tot = 1 states of a N = 121 site chain for J2 = 0.3
and different values of J3. The most relevant quantities
are (i) the local magnetization 〈Sz

j 〉 that reveals edge states
or solitons; (ii) the spin-spin correlation between nearest
neighbors 〈Sz

jS
z
j+1〉 that reflects the presence of dimerization;

and (iii) the expectation value of the three-site interaction
〈(Si−1 · Si)(Si · Si+1) + H.c.〉, an indicator of the Haldane
phase—it is large and positive in the Haldane phase since spin-
spin correlations on adjacent bonds are (almost) equal and neg-
ative, it is very small and positive in the dimerized phase close
to the transition, it vanishes when the state is exactly dimerized,
and it is negative everywhere else in dimerized phase.

Our main results can be summarized as follows. Deep
inside the Haldane phase there are spin-1/2 edge states as
seen from the local magnetization of Fig. 16(a). The small
dimerization and the large expectation value of the three-body
interaction all along the chain confirm that the entire chain
is in the Haldane phase. Around the phase transition, two
phases coexist: the dimerized state is favoured close to the
edges, while the central part of a chain remains in the Haldane
phase [Figs. 16(e) and 16(f)]. The two humps of the local
magnetization curve [Fig. 16(d)] show that free spins have
moved away from the boundaries and form a pair of spin-1/2
solitons that separates the Haldane and dimerized domains.
Deep inside the dimerized phase, the two spins-1/2 recombine
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FIG. 16. Spin solitons in chains with N = 121 at J2 = 0.3 and Sz
tot = 1 below (a)–(c), above (g)–(i), and on the critical line (d)–(f). (Left)

On-site magnetization. It reveals (a) spin-1/2 edge states, (d) spin-1/2 solitons inside the chain, and (g) spin-1 soliton. (Middle) Spin-spin
correlations. They provide evidence of a small dimerization all along the chain in the Haldane phase (b), of a large dimerization at the edges
and of its fast decrease in the middle, when the two phases coexist (e), and of a large dimerization all along the chain except in the narrow
window in the middle, where the spin-1 soliton is located (h). (Right) Expectation value of the three-body term. It is large and positive all along
the chain in he Haldane phase (c), it is small at the dimerized edges but remains large in a domain of Haldane phase in the middle of a chain
(f), and it almost vanishes in the dimerized phase (i). The sketches on the right show the VBS picture of solitons in different phases. Thin and
thick arrows indicates spin-1/2 and spin-1 solitons. For clarity, each even (odd) data point corresponds to a blue (red) symbol.

into a delocalized spin S = 1, and two dimerized domains
with different orientations occupy half of the chain each
[Figs. 16(g)–16(i)]. The transition between two dimerization
domains with different dimer orientations can also be deduced
from the crossing of the lines formed by red and blue points
in the spin-spin correlation [see Fig. 16(h)].

The soliton picture remains true for higher values of the total
spin. Figure 17 provides an example of solitons in a chain with
N = 120 and Sz

tot = 2. As in the previous case, one can clearly
distinguish spin-1/2 edge states in Fig. 17(a). On top of it, a

slight increase of the on-site magnetization occurs in the mid-
dle of the chain, indicating the appearance of a spin-1 bond in
the bulk. The Haldane phase is then perturbed. This is reflected
in the suppressed three-body term measured in the middle of
the chain [Fig. 17(c)]. The formation of the dimerized phase
starts at the edges, but also in the bulk when approaching the
phase transition. Different dimerization domains are separated
by domains of Haldane phase, each carrying a total spin
1. Numerically, three dimerization domains are clearly seen
with the spin-spin correlations in Fig. 17(e), while the two
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FIG. 17. Same as Fig. 16 for N = 120 at J2 = 0.3 and Sz
tot = 2 (see main text for the details).
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maxima in the three-body term correspond to two Haldane
domains. Inside the dimerized phase, the Haldane domains are
suppressed, the dimerization is essentially different from zero
everywhere along the chain except at two points symmetric
with respect to the middle of the chain. The domain walls are
located at the points with vanishing dimerization. The four
spins 1/2 recombine into a pair of spins 1, each of them
delocalized along half the chain. The lines formed by red
and blue points in the spin-spin correlation intersect twice
in Figs. 17(e) and 17(c), implying that the orientation of the
dimers is different in neighboring domains.

VI. ISING TRANSITION

Previously, it was shown that the transition between the
NNN-Haldane and dimerized phases is in the Ising universality
class at a generic point on the transition line [13]. In this
section, we numerically check that the universality class
remains the same at the two edges of the transition line: at
the triple point where three phases touch each other, and in the
limit of large J2 and J3 couplings.

A. Triple point

There are two possible scenarios for the triple point of Ising
critical line: it can be in either in the Ising or in the tricritical
Ising universality class. According to conformal field theory,
the first scenario is characterized by a scaling dimension
d = 1/8 and a central charge c = 1/2, while the second one
is characterized by d = 1/24 and c = 7/10.

We have looked at the critical point along a line that is very
close to the first-order transition and perpendicular to the Ising
critical line. According to conformal field theory, the local
dimerization depends on the chain length N and bond index j

as D(j,N ) = [N sin(πj/N )]−d . The values of J2 and J3, for
which the scaling of the mid-chain dimerization D(N/2,N ) is
a separatrix is taken as the critical point [Fig. 18(a)]. At the
critical point, the fit of D(j,N ) is also good [Fig. 18(b)]. The
resulting values of d ≈ 0.158 and 0.155 point rather towards
Ising than towards tricritical Ising criticality.

The central charge was extracted at the critical point
from the scaling of entanglement entropy with block size in
open systems. Following Ref. [31], we defined the reduced
entanglement entropy S̃N (n) as the one with removed Friedel
oscillations:

S̃N (n) = SN (n) − ζ 〈SnSn+1〉, (20)

where ζ is a numerical parameter. Then, according to confor-
mal field theory the reduced entanglement entropy scales with
conformal distance d(n) = 2N

π
sin( πn

N
) according to

S̃N (n) = c

6
log d(n) + s1 + log g. (21)

Although our numerical result point out to a central charge c ≈
0.6, that is in between the two expected values, the monotonous
decrease and the fact that for N = 150 and 200 the central
charge is below 0.7 suggest that the critical point is in the
Ising universality class.

N

1

1.5

2

0 100 200
1

1.5

2

50 100 150

1.5

1.6

1.7

0 0.01 0.02
0.5

0.7

0.9

2,

,

Fit
DMRG

cN=200
N=150
N=120
N=90

(a) (b)

(d)(c)

50 100 200

0.158
0.155

0.509 0.03942
0.505 0.0399

0.515 0.0387

FIG. 18. (a) Log-log plot of the mid-chain dimerization as a
function of the number of sites N for different parameters J2

and J3 along the line close to the first-order phase transition and
perpendicular to the Ising critical line. The linear curve corresponds
to the critical point and the slope gives the critical exponent
d ≈ 0.158. (b) Site dependence of D(j,N ) at the critical point
fitted to 1/[N sin(πj/N )]d . This determines the exponent d ≈ 0.155.
(c) Scaling of the entanglement entropy of open chains after removing
the Friedel oscillations with conformal distance d(n). (d) Central
charge extracted from the entanglement entropy of open chains as a
function of 1/N .

B. J2- J3 model

We have studied the limit of large J2 and J3 couplings
by setting the nearest neighbor interaction to zero: J1 = 0. As
above, we locate the critical point by looking for the separatrix
in the scaling of the mid-chain dimerization D(N/2,N ) with
the chain length N . The slope gives a critical exponent
d ≈ 0.126, in excellent agreement with the Ising one [see
Fig. 19(a)]. We also looked at the local dimerization D(j,N )
as a function of the bond position j . Although the dimerization
remains large close to the boundary, one can clearly see that
some edge effects appear in the absence of a J1 coupling. A
similar picture arises in the Ising chain in a transverse field
when a magnetic field is applied to the first and last sites of
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FIG. 19. (a) Log-log plot of the mid-chain dimerization as a
function of the number of sites N for J1 = 0, J2 = 1, and different
values of J3. The linear curve corresponds to the Ising critical point
and the slope gives a critical exponent d = 0.126, in good agreement
with 1/8 for the Ising transition. (b) Site dependence of D(j,N ) at the
critical point fitted to 1/[N sin(πj/N )]d . This leads to an exponent
d = 0.124, again close to the Ising prediction 1/8.
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FIG. 20. Ground state and excitation energy as J1 = 0, J2 = 1,
and J3 = 0.352, on the Ising line. (a) and (b) Linear scaling of
the ground-state energy per site in an open chain with 1/N2 after
subtracting the ε0 and ε1 terms for even (a) and odd (b) number of
sites. (c) and (d) Energy gap in singlet (blue) and triplet (red) sectors
for OBC as a function of 1/N for even and odd number of sites. Each
magnetic excitation is twofold degenerate. Grey lines mark the Ising
conformal towers of I (c) and of ε (d) with the velocity v = 8.03
deduced from the finite-size scaling of the ground state energy for
even N .

the chain with the same orientation if this field is weak as
compared to the transverse field. The system renormalizes to
fixed boundary conditions at large enough length scales (far
enough from the edge) but when the boundary field is weak this
corresponding length becomes long. We have thus excluded
a few edge points from the fit. The rest of the curve is again
in excellent agreement with the Ising prediction d = 1/8 [see
Fig. 19(b)].

As predicted by boundary conformal field theory, for the
Ising critical point the ground-state energy of an open system
with an even number of sites scales as E = ε0N + ε1 −
πv/(48N ), where ε0 is a ground-state energy per site, ε1

is a nonuniversal constant, and v is the velocity. For odd
N the scaling is of the form E = ε0N + ε1 + 23πv/(48N ).
We present the fit of the numerical data in the Figs. 20(a)
and 20(b). The extracted values of the velocities veven ≈ 8.03
and vodd ≈ 7.62 are in reasonable agreement with each other.

As discussed in Ref. [13], if the formation of a dimer is
favored on the edge bonds, the chain with even (odd) number
of sites N is identified with ↑,↑ (↑,↓) boundary conditions
in the Ising model. Then the conformal tower for even N

corresponds to the Ising conformal tower of I , while for odd
N it corresponds to the Ising conformal tower of ε. We have

FIG. 21. Enlarged part of phase diagram on Fig. 2 indicating
short-range order within the thermodynamic phases. Lifshitz line αL

is marked with diamonds and disorder line αd is marked with open
circles. Dashed line is a line of the first-order phase transition.

used the velocity veven deduced from the finite-size scaling of
the ground state energy for even N in order to plot the Ising
towers of I and of ε in Figs. 20(c) and 20(d) as references.

We have calculated the excitation energy for even and odd
numbers of sites in the singlet Sz

tot = 0 and triplet Sz
tot = 1

sectors. The absence of the J1 term releases low-lying magnetic
excitations that are shown with red lines in Figs. 20(c)
and 20(d). Each red line is twofold degenerate, corresponding
to the excitation close to the left and to the right edges. The
first singlet excitation appears below the triplet one only for
N > 300. By looking at the excitation energy as a function
of the number of DMRG iterations, or, more specifically, as
a function of the position of the state tensor updated at each
iteration, we were able to distinguish bulk excitations from the
excitations at the edges, even when they were above the first
triplet excitation. Note that by edge excitation we understand
a local magnetic excitation of a bond that is located close to
the chain boundary.

Since the calculations had to be done for very large systems
[in Figs. 20(c) and 20(d)], we present the results for N in
the range 150 to 601), the convergence of the algorithm is
quite slow, implying significant error bars. In systems with
nonzero J1 coupling, we saw that for an odd number of sites
the fourth excitation was more stable in the DMRG sense
than the third one. This explains the “missing” third excitation
on panel (d): we were not able to converge enough excited
states for systems that are so large. To summarize, we have
have provided numerical evidence that the phase transition
between the NNN-Haldane and dimerized phases is always in
the Ising universality class, including at the triple point where
the Haldane, NNN-Haldane and dimerized phases touch, and
in the limiting case of the J2-J3 model.

VII. SHORT-RANGE ORDER

A. Disorder and Lifshitz lines

As mentioned in Sec. II, several types of short-range order
are present in the Haldane, NNN-Haldane and dimerized
phases (see Fig. 21). A detailed description of each phase
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FIG. 22. Spin-spin correlation function 〈SiSj 〉 for J2 = 0.25 with
(a) J3 = 0.083 and (b) J3 = 0.084; the red lines are fit to the data
with the dimerized OZ form given by Eq. (4) with (a) q = π and
(b) q > π .

has already be given in Sec. II. In this section, we describe the
numerical results that led to this phase diagram in more detail.

The most important result is that, by tuning either the next-
nearest-neighbor or the three-body interaction, short-range
incommensurate order can be induced beyond the so-called
disorder and Lifshitz lines. Disorder points were first discussed
by Stephenson in models of classical statistical mechanics [32–
34]. On one side of a disorder point, the correlation function
decays in a commensurate way, while on the other side it
decays in an incommensurate way. The disorder point is said
to be of the first kind if the wave number in the incommensurate
phase depends on the temperature, and of the second kind if it
does not [33]. In the present case, we have only found disorder
points of the first kind.

By contrast, at a Lifshitz transition, the spin-spin correlation
function becomes incommensurate in momentum space, each
peak being replaced by two symmetric peaks in the structure
factor SF (q) defined in Eq. (5). By keeping track of real-space
and momentum-space correlations, we found that disorder and
Lifshitz lines cross the transition line at J2 � 0.335 and J2 �
0.342.

B. Dimerized phase

By fitting the numerical results of the spin-spin correlations
with the dimerized OZ form given by Eq. (4), we have extracted
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FIG. 23. Wave number q and dimerization δ deduced from a fit
of the spin-spin correlation function with Eq. (4) for J2 = 0.25. The
position of the first-order phase transition and the line αd where the
ground state is fully dimerized are marked with black and red lines,
respectively.

FIG. 24. Structure factor SF (q) for J2 = 0.25 and various values
of J3. The Lifshitz point is at J3 = 0.0915 ± 0.0005.

the wave number q and the short-range dimerization parameter
δ. Examples of fits for J2 = 0.25 are shown in Fig. 22.

We have found that, with very high accuracy, the disorder
line coincides with the line where the fully dimerized wave
function is the exact ground state of the model (see Fig. 23).
In order to determine the Lifshitz line, we have looked for the
appearance of a two-peak structure in SF (q) given by Eq. (5),
where we have restricted the sum to the interval 20 < i,j �
N − 20 in order to eliminate edge effects. Some examples of
structure factor calculated for fixed J2 = 0.25 are presented in
Fig. 24.

The conclusion that emerges from these results is that, to
go from the commensurate to the incommensurate part of the
dimerized phase, one has to cross first a disorder line, and
then a Lifshitz line. These results are very similar to those
obtained for the spin-1/2 chain with next-nearest-neighbor
interaction, the fully dimerized line of our model being the
equivalent of the Majumdar-Ghosh point [1]. At that point, the
correlation length vanishes, and it coincides with the disorder
point J d

2 = 1/2, while the Lifshitz point of the spin-1/2 chain
is located at JL

2 = 0.52036(6) [35], well above the disorder
point.

FIG. 25. Spin-spin correlation function 〈SiSj 〉 for (a) J2 = 0.27,
J3 = 0; (b) J2 = 0.3, J3 = 0; (c) J2 = 0.3, J3 = 0.04, and (d) J2 =
0.3, J3 = 0.059. The red line on (a) and (b) is a fit to the data with
the OZ form.
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FIG. 26. Wave number q and dimerization δ deduced from a fit
of the spin-spin correlation function with Eq. (4) for J3 = 0.03.

C. Haldane phase

Depending on the type of correlation in the Haldane phase
we have fitted the numerical data with either nondimerized OZ
or dimerized OZ forms given by Eqs. (3) and (4). Figure 25
provides several examples of spin-spin correlations and some
fits.

The wave number q and the short-range dimerization
parameter δ extracted from the fit for fixed J3 = 0.03 are
summarized in Fig. 26. Note that there is a finite region where
the dimerization is essentially different from zero.

Crossing the transition line at J2 � 0.335, the disorder line
is separated from the transition line in Haldane phase by a
thin tail of commensurate phase with short-order dimerization
(H-SD-C). The Lifshitz line in the Haldane phase is obtained in
the same way as in the dimerized phase. Close to the crossing
point J2 � 0.342, the Lifshitz line is very close to the boundary
of the H-SD-ICR phase, making the H-ICR phase vanishingly
small in this region.

VIII. CONCLUSION

Combining field theory arguments with DMRG (and
occasionally exact diagonalizations), we have shown that
the dimerization transitions of the spin-1 Heisenberg model
with next-nearest neighbor and three-site interaction can be
precisely located and fully characterized. In particular, the

transition between the Haldane phase and the dimerized
phase is in the SU(2)2 WZW universality class for small
J2, and it becomes first order at an end point also in the
SU(2)2 WZW universality class. Along the first-order line
between these phases, the solitons between Haldane and
dimerized phases carry a spin-1/2, in qualitative agreement
with the fact that along the SU(2)2 line, there are low-lying
magnetic excitations. By contrast, the transition between the
next-nearest neighbor Haldane phase and the dimerized phase
is in the Ising universality class. Along this transition line, the
spin-gap remains open, and the low-lying excitations are all in
the singlet sector.

To fully characterize the transitions, DMRG with open
boundary conditions turned out to be extremely useful. This
is due to the fact that the conformal tower of a critical
model with open boundary conditions is often just the tower
of a single primary field. By contrast, the conformal tower
of a critical model with periodic boundary conditions is in
general the superposition of different towers. We think that a
systematic use of these ideas might turn out to be useful in
other one-dimensional quantum systems.

In addition, we have shown that short-range correlations can
be commensurate or incommensurate, with several disorder
and Lifshitz lines, leading to a remarkably rich phase diagram.
Interestingly, several of these phases occur for relatively small,
hence physically realistic values of the couplings J2 and J3.
So it is our hope that the present investigation will encourage
experimentalists to try and check some aspects of this phase
diagram.
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skyy for insightful discussions and advises. The first evidence
of a partially first-order transition between the Haldane phase
and the dimerized phase has been obtained by Clément Bazin
during his Master thesis. This work has been supported by the
Swiss National Science Foundation and by NSERC of Canada,
Discovery Grant 04033-2016 (IA) and the Canadian Institute
for Advanced Research (IA).

[1] C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388
(1969).

[2] K. Okamoto and K. Nomura, Phys. Lett. A 169, 433 (1992).
[3] L. A. Takhtajan, Phys. Lett. A 87, 479 (1982).
[4] H. M. Babujian, Nucl. Phys. B 215, 317 (1983).
[5] I. Affleck, Nucl. Phys. B 265, 409 (1986).
[6] I. Affleck, Phys. Rev. Lett. 56, 746 (1986).
[7] I. Affleck and F. D. M. Haldane, Phys. Rev. B 36, 5291 (1987).
[8] A. Kolezhuk, R. Roth, and U. Schollwöck, Phys. Rev. Lett. 77,
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(2002).
[10] F. Michaud, F. Vernay, S. R. Manmana, and F. Mila, Phys. Rev.

Lett. 108, 127202 (2012).
[11] F. Michaud, S. R. Manmana, and F. Mila, Phys. Rev. B 87,

140404 (2013).

[12] J. H. Pixley, A. Shashi, and A. H. Nevidomskyy, Phys. Rev. B
90, 214426 (2014).

[13] N. Chepiga, I. Affleck, and F. Mila, Phys. Rev. B 93, 241108(R)
(2016).

[14] N. Chepiga, I. Affleck, and F. Mila, Phys. Rev. B 94, 136401
(2016).

[15] F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).
[16] T. Kennedy, J. Phys.: Condens. Matter 2, 5737 (1990).
[17] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys.

Rev. B 81, 064439 (2010).
[18] A. Kolezhuk, R. Roth, and U. Schollwöck, Phys. Rev. B 55,
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