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From local to nonlocal correlations: The Dual Boson perspective
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Extended dynamical mean-field theory (EDMFT) is insufficient to describe nonlocal effects in strongly
correlated systems, since corrections to the mean-field solution are generally large. We present an efficient
scheme for the construction of diagrammatic extensions of EDMFT that avoids the usual double-counting
problem by using an exact change of variables (the Dual Boson formalism) to distinguish the correlations
included in the dynamical mean-field solution and those beyond. With a computational efficiency comparable to
the EDMFT + GW approach, our scheme significantly improves on the charge order transition phase boundary
in the extended Hubbard model.
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I. INTRODUCTION

The description of strongly correlated electronic systems
is still one of the most challenging problems in condensed
matter physics, despite a lot of efforts and plenty of sug-
gested theories. One of the most popular approaches is the
dynamical mean-field theory (DMFT) [1–4], which provides
an approximate solution of the (multiband) Hubbard model
by mapping it to a local impurity problem. Although DMFT
neglects nonlocal correlation effects, it is able to capture
important properties of the system such as the formation of
Hubbard bands [5,6] and the Mott transition [7,8]. Later, an
extended dynamical mean-field theory (EDMFT) [9–12] was
introduced to include collective (bosonic) degrees of freedom,
such as charge or spin fluctuations, into DMFT. Unfortunately,
these collective excitations have a strongly nonlocal nature,
so a dynamical mean-field approach is insufficient and it
was necessary to develop some extensions, we will call them
EDMFT++, to treat nonlocal correlations.

The quantities of physical interest in EDMFT++ are the
electronic self-energy �kν and polarization operator �qω. The
main idea of the dynamical mean-field approach is that all
local correlations are already accounted for in the effective
local impurity problem which results in the self-consistency
conditions on the local part of lattice Green’s function and
susceptibility. The mean-field ideology implies that in the
EDMFT approach, the local self-energy and polarization
operator are given by those of the impurity model. To go
beyond, one needs to determine the corrections �̄kν and �̄qω

to the electronic self-energy and polarization operator that
describe nonlocal excitations.

However, as soon as one goes beyond the dynamical
mean-field level, the nonlocal corrections also change the local
parts of �kν and �qω. Indeed, the self-consistency condition
on the local part of the lattice Green’s function Gkν is not
able to fix the local part of the self-energy �kν at the same
time. Thus, the exact local part of full self-energy is no longer
determined within the effective impurity problem and has
contributions both from the dynamical mean-field solution
and from the nonlocal corrections. The same holds true for
the polarization operator and the self-consistency condition
on the local part of renormalized interaction. Therefore, great
care should be taken to avoid double-counting of correla-

tion effects when merging EDMFT with a diagrammatic
approach.

The EDMFT + GW approach [13–19] combines GW
diagrams [20–22] for the self-energy and polarization operator
with EDMFT. In an attempt to avoid double-counting, all
local contributions of the GW diagrams are subtracted and
only the purely nonlocal part of �̄kν and �̄qω is used to
describe nonlocal correlations. Exclusion of the impurity
contributions from the diagrams introduced beyond EDMFT is
necessary for a correct construction of the theory. However, the
EDMFT + GW way of treating the double-counting problem
is not unique and is the subject of hot discussions.

More complicated approaches invented to describe nonlocal
effects with the impurity problem as a starting point are
D�A [23], 1PI [24] and DMF2RG [25]. These extensions
of DMFT include two-particle vertex corrections in their
diagrams. However, D�A and 1PI methods cannot describe
the collective degrees of freedom arising from nonlocal inter-
actions that are of interest here, and the DMF2RG approach
has not yet been applied to this problem. On the other hand,
the recent TRILEX [26,27] approach was introduced to treat
diagrammatically both fermionic and bosonic excitations. In
this method the exact Hedin form [20] of the lattice self-energy
and polarization operator are approximated by including the
full impurity fermion-boson vertex in the diagrams.

Instead of trying to construct the proper dynamical mean-
field extension in terms of lattice Green’s functions, one can
take a different route and introduce so-called dual fermions
(DF) [28] and Dual Bosons (DB) [29–31] and then deal
with new dual degrees of freedom. In these methods the
local impurity model still serves as the starting point of a
perturbation expansion, so (E)DMFT is reproduced as the
noninteracting dual problem. It is important to point out
that the self-energy and polarization operator in DF and
DB are free from double-counting problems by construction:
There is no overlap between the impurity contribution to
the self-energy and polarization operator and local parts
of dual diagrams since the impurity model deals with
purely local Green’s functions only and the dual theory
is constructed from purely nonlocal building blocks. The
impurity contribution has been excluded already on the level
of the bare dual Green’s function and interaction. Contrary
to the existing methods, the DB approach does allow one
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to describe strongly nonlocal collective excitations such as
plasmons [32].

The self-energy and polarization operator in self-consistent
DB are built up as a ladder consisting of full fermion-fermion
and fermion-boson vertices obtained from the local impurity
problem. For computational applications, particularly those
aimed at realistic multiorbital systems, it can be convenient
to use simpler approximations that do not require the com-
putational complexity of the full two-particle vertex. To that
end, we construct EDMFT++ schemes that do not require the
full two-particle vertex, that exclude double-counting using
the dual theory, and that contain the most essential parts
of the nonlocal physics. We illustrate this by means of the
charge-order transition in the extended Hubbard model.

II. EDMFT++ THEORIES

The extended Hubbard model serves as the canonical
example of a strongly correlated system where nonlocal effects
play a crucial role. In momentum space, its action is given by
the following relation:

S = −
∑
kνσ

c∗
kνσ [iν + μ − εk]ckνσ + 1

2

∑
qω

Uq ρ∗
qωρqω. (1)

Here we are interested only in the charge fluctuations, so
in the following we suppress the spin labels on Grassmann
variables c∗

qν (cqν) corresponding to creation (annihilation)
of an electron with momentum k and fermionic Matsubara
frequency ν. The interaction Uq = U + Vq consists of the
on-site U and nonlocal interaction Vq, respectively. Here we
consider Vq as a nearest-neighbor interaction for simplicity.
The charge fluctuations are given by the complex bosonic
variable ρω = nω − 〈n〉δω, where nω = ∑

νσ c∗
νcν+ω counts

the number of electrons and ω is a bosonic Matsubara
frequency. The chemical potential μ is chosen in such a
way that the average number of electrons per site is one
(half-filling). Finally, εk is the Fourier transform of the hopping
integral t between neighboring sites.

First of all, since we are interested in the EDMFT++
theories, let us briefly recall the main statements of the
extended dynamical mean-field theory. In EDMFT, the lattice
action (1) is split up into a set of single-site local impurity
actions Simp and a nonlocal remaining part Srem,

S =
∑

j

S(j )
imp + Srem, (2)

which are given by the following explicit relations:

Simp = −
∑

ν

c∗
ν [iν + μ − �ν]cν

+ 1

2

∑
ω

Uω ρ∗
ωρω, (3)

Srem = −
∑
kν

c∗
kν[�ν − εk]ckν

+ 1

2

∑
qω

(Uq − Uω) ρ∗
qωρqω. (4)

Since the impurity model is solved exactly, our goal is to
move most of the correlation effects into the impurity, so that
the remainder is only weakly correlated. For this reason, two
hybridization functions �ν and �ω are introduced to describe
the interplay between the impurity and external fermionic and
bosonic baths, respectively. These functions are determined
self-consistently for an optimal description of local correlation
effects. The local bare interaction of the impurity model is
then equal to Uω = U + �ω. The impurity problem can be
solved using, e.g., continuous-time quantum Monte Carlo
solvers [33,34], and one can obtain the local impurity Green’s
function gν , susceptibility χω and renormalized interactionWω

as

gν = −〈cνc
∗
ν〉imp, (5)

χω = −〈ρωρ∗
ω〉imp, (6)

Wω = Uω + UωχωUω, (7)

where the average is taken with respect to the impurity
action (3). One can also introduce the local impurity self-
energy �imp and polarization operator �imp,

�imp = iν + μ − �ν − g−1
ν , (8)

�−1
imp = χ−1

ω + Uω, (9)

that are used as the basis for the EDMFT Green’s function GE

and renormalized interaction WE defined as

G−1
E = G−1

0 − �imp = g−1
ν − (εk − �ν), (10)

W−1
E = W−1

0 − �imp = U−1
q − (

χ−1
ω + Uω

)−1
. (11)

Here G0 = (iν + μ − εk)−1 is the bare lattice Green’s function
and W0 is the bare interaction, which is equal to Uq, or Vq in
the case of UV –, or V – decoupling, respectively [15,16].

Importantly, a solution of every EDMFT++ theory can
be exactly written in terms of EDMFT Green’s functions and
renormalized interactions as follows:

G−1
kν = G−1

0 − �kν = G−1
E − �̄kν, (12)

W−1
qω = W−1

0 − �qω = W−1
E − �̄qω, (13)

where �kν and �qω are the exact, unknown in general,
self-energy and polarization operator of the model, respec-
tively, and �̄kν = �kν − �imp and �̄qω = �qω − �imp are
the corrections to the dynamical mean-field solution. With
EDMFT as a starting point, the goal of EDMFT++ theories
is to approximate these corrections. As pointed out above,
�̄kν and �̄qω should be introduced without double-counting
with an effective local impurity problem, but still can give a
local contribution to the lattice self-energy and polarization
operator.

There is, in fact, a numerically exact way to obtain the
nonlocal self-energy using the so-called bold diagrammatic
Monte Carlo method [35]. However, this method is very
expensive for realistic calculations, so we will be focused on
less expensive diagrammatic methods.
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A. (E)DMFT + GW approach

Historically, the EDMFT + GW approach [13–17] intro-
duced the first approximations for �̄kν and �̄qω. Here, the
self-energy and polarization operator diagrams from the GW
approximation [20–22] are added to the dynamical mean-field
solution to treat nonlocal correlations,

�GW
kν = −

∑
q,ω

Gk+q,ν+ωWqω, (14)

�GW
qω = 2

∑
k,ν

Gk+q,ν+ωGkν, (15)

where the coefficient “2” in Eq. (15) accounts for the spin
degeneracy. To avoid double-counting between the impurity
correlations and the GW correlations, only the nonlocal part
of Eqs. (14) and (15) is used, i.e., �̄GW

kν = �GW
kν − �GW

loc
and �̄GW

qω = �GW
qν − �GW

loc . Since the local interaction U has
already been accounted for in the impurity problem, the bare
nonlocal interaction in Eq. (14) can be taken in the form of
V – decoupling (W0 = Vq), which leads to a simple separation
of local and nonlocal contributions to the self-energy �̄kν .
Unfortunately, this form of renormalized interaction overesti-
mates nonlocal interactions [15,16]. Alternatively, the form of
UV – decoupling (W0 = Uq) is more consistent with standard
perturbation theory for the full Coulomb interaction, but leads
to the problems with separation of local and nonlocal parts
of the diagrams. For example, it accounts only for the large
local contribution Wω instead of the small full local four-point
vertex function γ 4,0 as shown in Appendix B. Therefore, the
form of the renormalized interaction and the way to avoid
the double-counting in general is a topic of hot discussions
nowadays [36].

Note that hereinafter the name V – or UV – decoupling in the
EDMFT++ theories implies only the form of interaction W0

used in the self-energy diagrams beyond the dynamical-field
level. Since the aim of the paper is to compare the existing
schemes of exclusion of the double-counting, the form of the
self-energy diagrams in these both cases remains the same.
Our notations can differ from those introduced in the previous
works on EDMFT++ theories by the presence of additional
diagrams in the different versions of decoupling schemes (see,
for example, Ref. [16]).

It should be noted, that there is another clear way to
avoid the double-counting problem, namely simply ignoring
nonlocal interactions in the dynamical mean-field part of
the action and including them in the nonlocal corrections
only. The impurity model then corresponds to DMFT, i.e.,
Uω = U . Then, the nonlocal renormalized interaction in
Eq. (14) can be taken in the form of V – decoupling as
W0 = Vq, and the local part of this self-energy diagram is
automatically zero. Although the DMFT + GW approach is
free from double-counting by construction, it is less advanced
than EDMFT+GW, since it ignores screening of the local
interaction by nonlocal processes.

B. Local vertex corrections beyond the EDMFT

The exact self-energy and polarization operator of
the lattice problem (1) are given by the following

relations [20]:

�kν = −
∑
qω

Gk+q,ν+ωWqω�kq
νω = , (16)

�qω = 2
∑
kν

Gk+q,ν+ωGkν �kq
νω = , (17)

where �
kq
νω is the exact three-point Hedin vertex. Unfortunately,

the full three-point vertex of the considered problem is
unknown, and the self-energy and polarization operator can
be found only approximately. The most important correlation
effects beyond EDMFT and the GW diagrams are expected in
the frequency dependence of the fermion-boson vertex [26,30].
For this reason, the recent TRILEX [26,27] approach with
application to the Hubbard model was introduced. In this
approach the exact Hedin vertex is approximated by the full
local three-point vertex of impurity problem, which results in

�TRILEX
kν = −

∑
qω

Gk+q,ν+ωWqωγνω, (18)

�TRILEX
qω = 2

∑
kν

Gk+q,ν+ωGkν γνω, (19)

where γνω is the full three-point vertex of the impurity problem
determined below [see Eq. (33)]. Thus, the local parts of
the self-energy and polarization operator are identically equal
to the local impurity quantities �imp and �imp, respectively.
Moreover, it is possible to split �TRILEX

kν and �TRILEX
qω into the

local impurity part and nonlocal contribution as it was shown
in Ref. [27],

�TRILEX
kν = �imp + �̄TRILEX

kν , (20)

�TRILEX
qω = �imp + �̄TRILEX

qω , (21)

where

�̄TRILEX
kν = −

∑
qω

ḠTRILEX
k+q,ν+ωW̄TRILEX

qω γνω, (22)

�̄TRILEX
qω = 2

∑
kν

ḠTRILEX
k+q,ν+ω ḠTRILEX

kν γνω, (23)

and ḠTRILEX
kν = Gkν − gν , W̄TRILEX

qω = Wqω − Wω are nonlo-
cal parts of the full lattice Green’s function and renormalized
interaction, respectively. Therefore, the TRILEX approach is
nothing more than an (E)DMFT+GW approximation with the
same exclusion of double-counting, where the GW diagrams
are additionally dressed with the local three-point vertex
from one side. In this case, the lattice Green’s function
and renormalized interaction are given by the same Dyson
Eqs. (12) and (13) with �̄TRILEX

kν and �̄TRILEX
qω introduced

beyond the dynamical mean-field level.
The main advantage of the TRILEX approach compared to

existing diagrammatic methods is a computational efficiency
due to the use of only the three-point vertex γνω to treat
nonlocal correlations. Nevertheless, even with this vertex
function one can approximate the exact Hedin form of the
self-energy and polarization function in a better way.

It is of course true, that if the self-energy and polarization
operator in the exact form of Eqs. (16) and (17) do not

205110-3



E. A. STEPANOV et al. PHYSICAL REVIEW B 94, 205110 (2016)

FIG. 1. Hedin form of the self-energy diagram in case of (a) at
least one nonlocal Green’s function G̃ and nonlocal renormalized
interaction W̃ , and (b) only local renormalized interactions W .
Straight and wave lines correspond to the Green’s function and
renormalized interaction.

contain any nonlocal propagators, then these quantities are
given by the impurity �imp and �imp, respectively. Therefore,
the improvements concern only the contributions �̄TRILEX

kν and
�̄TRILEX

qω , written in terms of nonlocal propagators and local
impurity vertex functions. As it was mentioned above, the
self-consistency condition on the local parts of the Green’s
function and renormalized interaction cannot also fix the local
parts of �kν and �qω at the same time. Therefore, additional
local contributions to the self-energy and polarization operator,
hidden in the nonlocal structure of the exact three-point
vertex, can appear from the diagrams introduced beyond the
dynamical mean-field level. For example, the Hedin vertex
with the same lattice indices at all three external points can
contain nonlocal parts,

(24)

Therefore, these contributions are not provided by the local
impurity problem and should be taken into account.

It is worth mentioning, that the Hedin form of the self-
energy and polarization operator is exact for the theories with
only one type of propagators. As soon as one includes the
vertex functions of the impurity problem in the diagrams, all
propagators become effectively separated into two different
types. Now, since the correction to the dynamical mean-field
level is introduced in terms of only one (nonlocal) type of lines
and all local lines are gathered in the local vertices, the Hedin
form does not provide the exact result for the self-energy and
polarization as shown in Refs. [37,38].

In order to discuss this in more detail, let us take a
closer look at the Hedin diagram (16) for the self-energy.
Above we discussed the case of only local propagators. Now
let us assume, that the Hedin vertex contains at least one
nonlocal Green’s function G̃kν and renormalized interaction
W̃qω. Then, the self-energy diagram can be reduced to the form
of two renormalized three-point vertices with the nonlocal
propagators in between as shown in Fig. 1(a). It may also
happen that one particular contribution to the lattice self-
energy does not contain the nonlocal renormalized interaction
at all. This case is shown in Fig. 1(b). The last case without
a nonlocal Green’s function is not considered here due to
appearance of higher-order vertex functions of the impurity
problem in the diagrams. The same procedure can be used
for the polarization operator. Then, if we restrict ourselves
only to the lowest order vertex function γνω, the self-energy

FIG. 2. Structure of the vertex corrections in theories consisted of
(a) one and (b) two types of propagators. Solid straight and wave lines
correspond to the Green’s function and renormalized interaction of
one type and the dashed lines to those of the second type, respectively.

and polarization operator introduced beyond the dynamical
mean-field level are

,
(25)

,
(26)

where, according to the above discussions, the three-point
vertices appear at both sides of the GW diagrams, as was
already discussed in Ref. [13]. Moreover, the specified form
of the diagrams for the self-energy and polarization operator
allows one to resum more diagrams than with the use of the
TRILEX form.

The illustration of the importance of having the three-point
vertex functions on both sides is also shown in Fig. 2. The
top row corresponds to a theory constructed from only one
type of Green’s function. Then, the fermion-boson vertices
are composed of the same propagators as the remainder of
the diagram, and it is always possible to “move” all vertex
correction to the right side of the diagram and obtain the Hedin
form for the self-energy [20]. On the other hand, if the vertex
functions are constructed from propagators (for example, gν

and Wω obtained from the impurity problem) that differ from
the Green’s function G and renormalized interaction W , it is
no longer possible to obtain the Hedin form for this diagram.
More clearly, the Hedin form is hidden inside of the impurity
vertices. “Moving” the left part of the diagram to the right, as
in the bottom row of Fig. 2, gives a diagram with the same
Hedin structure, but with different propagators.

So, if one prefers to work with the bare lattice propagators
and to use the Hedin form of self-energy, then it would be
consistent to approximate the exact Hedin vertex using the
same bare lattice quantities without inclusion of any other
types of propagators. If, instead, a combination of Green’s
functions and impurity vertices coming from different models
is used, the renormalized vertices should be included at both
ends of the GW diagram for the self-energy and polarization
operator.

In order to take the above corrections into account and
to compare the double-counting exclusion schemes, one can
introduce the EDMFT + GW γ approach in the same way as
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EDMFT+GW by including the local impurity vertex γνω in
the GW diagrams as

�
GWγ

kν = −
∑
q,ω

γνωGk+q,ν+ωWqωγν+ω,−ω, (27)

�GWγ
qω = 2

∑
k,ν

γνωGk+q,ν+ω Gkνγν+ω,−ω. (28)

Similarly to the EDMFT+GW case, only the nonlocal parts
�̄

GWγ

kν and �̄
GWγ
qω of the self-energy (27) and the polarization

operator (28) are used beyond the EDMFT. Then, the lattice
quantities are given by the same equations (12) and (13).

III. DUAL BOSON APPROACH

A different way of accounting for nonlocal correlations
beyond EDMFT is given by the Dual Boson approach [29,31].
The nonlocal part Srem of the lattice action (1) can be rewritten
in terms of new dual variables f ∗,f,φ by performing a
Hubbard-Stratonovich transformation, which leads to the dual
action,

S̃ = −
∑
kν

f ∗
kνG̃

−1
0 fkν − 1

2

∑
qω

φ∗
qωW̃−1

0 φqω + Ṽ , (29)

with the bare dual propagators,

G̃0 = GE − gν, (30)

W̃0 = WE − Wω, (31)

and the full dual interaction Ṽ that includes the impurity vertex
functions γ n,m with n fermion and m boson lines to all orders
in n and m, as detailed in Appendix A. The first two terms in
Ṽ are given by the following relation:

Ṽ = γ 2,1
ν,ω f ∗

ν fν+ωφ∗
ω + 1

4 γ
4,0
ν,ν ′,ω f ∗

ν f ∗
ν ′fν+ωfν ′−ω. (32)

We define the three-point vertex γ 2,1
νω in the same way as it is

done in the TRILEX [26,27] approach:

γ 2,1
νω = g−1

ν g−1
ν+ωα−1

ω 〈cνc
∗
ν+ωρω〉, (33)

where αω = Wω/Uω = (1 + Uωχω) is the local renormaliza-
tion factor. It is important to realize that this factor only
affects the transformations from lattice to dual quantities and
vice versa. Therefore, it does not change the final results
written in terms of the initial lattice degrees of freedom.
In order to shorten notations, hereinafter we call the three-
point vertex γνω. The four-point vertex function γ

4,0
νν ′ω can be

determined similarly to the previous papers on the Dual Boson
formalism [29,31],

γ
4,0
νν ′ω = g−1

ν g−1
ν ′ g−1

ν ′−ωg−1
ν+ω[〈cνcν ′c

∗
ν ′−ωc∗

ν+ω〉
− gνgν ′(δω − δν ′,ν+ω)]. (34)

Then, the dual Green’s function G̃kν = −〈fkνf
∗
kν〉 and renor-

malized dual interaction W̃qω = −〈φqωφ∗
qω〉, as well as dual

self-energy �̃kν and polarization operator �̃qω, can be obtained
diagrammatically [29–31]. These dual quantities have the

usual connection,

G̃−1
kν = G̃−1

0 − �̃kν, (35)

W̃−1
qω = W̃−1

0 − �̃qω. (36)

To close the circle, the Green’s function Gkν and renor-
malized interaction Wqω of the original model can be exactly
expressed in terms of dual quantities via the similar Dyson
Eqs. (12) and (13) as follows:

G−1
kν = G−1

E − �̄kν, (37)

W−1
qω = W−1

E − �̄qω, (38)

where the self-energy and polarization operator introduced
beyond EDMFT are

�̄kν = �̃kν

1 + gν�̃kν

, (39)

�̄qω = �̃qω

1 + Wω�̃qω

. (40)

It should be noted that the bare dual Green’s function (30)
and renormalized interaction (31) are strongly nonlocal due to
the EDMFT self-consistency conditions,

∑
k

GE = gν, (41)

∑
q

WE = Wω. (42)

Therefore, the dual theory is free from the double-counting
problem by construction, and the local impurity contribution
is excluded from the diagrams on the level of the bare
propagators (30) and (31). The DB relations up to this point
are exact and derived without any approximations.

It is worth mentioning, that the noninteracting dual theory
(Ṽ = 0) is equivalent to EDMFT. However, even in the
weakly interacting limit of the original model, U → 0, the
fermion-boson vertex γ 2,1 is nonzero and equal to unity,
as shown in Appendix A and previous works on the DB
approach. Thus, the Dual Boson formalism explicitly shows
that corrections to EDMFT are not negligible. Therefore,
the dynamical mean-field level is insufficient for describing
nonlocal bosonic excitations, because the interactions between
the nonlocal fermionic and bosonic degrees of freedom are
always relevant.

A. Dual diagrams for the self-energy and polarization operator

The impurity vertices γ n,m are computationally expensive
to calculate for large n and m. Practical DB calculations are
usually restricted to γ 4,0 and γ 2,1, since that is sufficient to
satisfy conservation laws and since processes involving higher-
order vertices can be suppressed with the appropriate self-
consistency condition [31].

As it was shown above, the dual theory can be rewritten in
terms of lattice quantities [see Eqs. (37) and (38)], where the
dual diagrams are constructed in terms of only one type of bare
propagators, i.e., the nonlocal part of EDMFT Green’s function
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FIG. 3. Structure of the vertex corrections in different theories in
case of one (top line) and two (bottom line) types of propagators.
Solid straight and wave lines correspond to the Green’s function and
renormalized interaction of one type and the dashed lines to those of
the second type, respectively.

and renormalized interaction given by Eqs. (30) and (31). Local
parts of the bare EDMFT propagators, namely gν and Wω, are
of the second type and hidden in the full local vertex functions
of the impurity problem, which serve as the bare interaction
vertices in dual space. Then, with the same logic presented in
Sec. II B, the DB self-energy and polarization operator in the
ladder approximation are given by

= + , (43)

=
, (44)

where the renormalized vertex functions are taken in the
ladder approximation (see Fig. 3, top line). Note that here
the splitting of propagators into the two parts is nominal and
matters only for the dual theory when all diagrams are written
in terms of only one nonlocal type of bare propagator. In
general, the initial lattice theory works only with one type
of Green’s function and renormalized interaction, namely the
bare EDMFT propagators, that for the local case we call
impurity gν or Wω and for nonlocal dual G̃0 or W̃0. Since the
dual theory gives the correction to the lattice quantities, the
dual contributions �̄kν and �̄qω introduced beyond EDMFT
should be irreducible with respect both to the impurity and the
dual propagators.

Let us turn to a more detailed explanation. As was shown in
Eqs. (37) and (38), the lattice self-energy and polarization
operator introduced beyond EDMFT are not given by the
dual �̃kν and �̃qω and have the form of Eqs. (39) and (40).
Note that the denominators in the expressions for �̄kν and
�̄qω have a very important physical meaning. The DB theory
works with the full vertex functions of the impurity problem,
that obviously contain one-particle reducible contributions.
Therefore, the denominators in Eqs. (39) and (40) exclude
these one-particle reducible contributions from the diagrams
for the self-energy and polarization operator in order to avoid
the double-counting in the Dyson Eqs. (37) and (38). Similar
discussions were presented in Ref. [24] with regards to the DF
approach.

To show this more explicitly, let us consider the following
example. The dual polarization operator in the form of the full
two-particle ladder can be written in a matrix form as (see the

FIG. 4. Diagrammatic representation of the second- and the third-
order contribution to the renormalized interaction.

second line of Fig. 3 for the diagrammatic representation)

�̃kω = γ G̃G̃γ

1 + [γ ]−1γ 4,0G̃G̃γ
, (45)

where γ 4,0 is the full local four-point vertex of the impurity
problem. Using these relations, Eq. (38) can be rewritten as
(see the third line of Fig. 3)

�̄qω = γ G̃G̃γ

1 + [γ ]−1(γ 4,0 + γWωγ )G̃G̃γ
. (46)

Here

γ4,0
irr = γ4,0 + γWωγ,

(47)

is identically the irreducible part γ 4,0
red of the full four-fermionic

vertex function of the impurity problem with respect to the
renormalized interaction Wω. Then the polarization operator
�̄ introduced beyond EDMFT is nothing more than the normal
dual polarization operator �̃ taken in the form of the full dual
ladder, but with irreducible four-point vertices γ 4,0

irr instead
of the full vertices γ 4,0 of the impurity problem. Therefore,
the exact relation (40) automatically corrects the structure
of the polarization operator, which is irreducible with respect
to the dual renormalized interaction, to be also irreducible with
respect to the impurity interaction Wω.

Let us then compare the second- and the third-order term
of diagrammatic expansion of Eq. (38) shown in Fig. 4,

W (2)
qω = WE

qω�̄qωWE
qω, (48)

W (3)
qω = WE

qω�̄qωWE
qω�̄qωWE

qω. (49)

After the substitution of the the second term of �̄ to Eq. (48)
and of the first term of �̄ to Eq. (49) we get

W (2)
qω = −WEγGGγ 4,0

irr GGγWE, (50)

W (3)
qω = WEγGGγWωγGGγWE

+WEγGGγ (WE − Wω)γGGγWE
qω, (51)

W (2)+(3)
qω = −WEγGGγ 4,0

irr GGγWE

+WEγGGγWEγGGγWE
qω. (52)
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Then one can see that the first term in Eq. (51) exactly gives
the reducible contribution to the full four-point vertex function
that was excluded from Eq. (50) by the denominator of �̄. If
one neglects this denominator, it will immediately lead to the
double-counting in Dyson Eq. (52).

The same holds for the self-energy, where all contributions,
coming from the denominator, give corrections to the six-point
vertices γ 6,0 and γ 2,2 and remove the reducible contributions
with respect to the local impurity Green’s function gν . Previous
DB studies did not account for the six- and higher-point
vertices, because they are negligibly small in both the large
and small U limits [31]. Therefore, from one point of view,
if the ladder approximation for the dual self-energy does
not contain these six-point vertices, then the denominator in
Eq. (39) should be neglected, because otherwise it will cancel
the reducible terms in Dyson Eq. (37) with respect to the
impurity gν . On the other hand, one of the advantages of the DB
formalism is the fact that all dual diagrams are written in terms
of full impurity vertices instead of irreducible ones. Therefore,
in the strong interaction limit, where the formal diagrammatic
expansion cannot be performed, the full high-order vertices
are small, which is not the case for the irreducible ones. Thus,
writing the dual diagrams in terms of full vertices, it allows
us to exclude the terms with the six-point vertices from the
self-energy. Then, the presence of the denominator in Eq. (39)
helps to include irreducible contributions of the high-order
vertices when their full contributions are negligibly small.

B. DB − GW approach

With the four-fermion vertex γ 4,0, the Dual Boson approach
can obviously include more correlation effects than EDMFT +
GW, at a significant computational cost. However, it is also
possible to construct a EDMFT++ approach from DB that
does not require the full two-particle vertex. Taking γ 4,0 = 0,
the fermion-boson vertex γνω can be approximated as unity,
as was discussed above, and the expressions for the dual �̃kν

and �̃qω operator are

�̃DB−GW
kν = −

∑
qω

G̃k+q,ν+ωW̃qω, (53)

�̃DB−GW
qω = 2

∑
kν

G̃k+q,ν+ωG̃kν . (54)

We call this the DB − GW approximation. According to the
above discussions, in this simplest case the denominator in
Eqs. (39) and (40) should be excluded, since we are interested
in the contribution of only lower-order vertex functions, so we
should take

�̄kν = �̃DB−GW
kν , (55)

�̄qω = �̃DB−GW
qω , (56)

without the denominators presented in Eqs. (39) and (40). Thus
we see that the EDMFT + GW and DB − GW approaches
start with the same form of the self-energy and polarization
operator diagrams and with similar propagators based on the
same EDMFT quantities GE and WE. The difference between
the two approaches lies in the way double-counting is excluded
from these diagrams, which for the DB − GW case is shown

in Eqs. (30)and (31). This results in different self-energies
�̃kν , and polarization operators �̃qω that are used to treat
nonlocal effects beyond the EDMFT in these two different
cases. Since the local and nonlocal correlation effects are
intertwined in a complicated way, it is more efficient to exclude
double-counting already on the level of the bare EDMFT
Green’s function and bare interaction in the dual formalism,
rather than to remove the local contribution of the full diagram.
This happens naturally in the exact dual Hubbard-Stratonovich
transformation.

It is worth mentioning that the dual renormalized interaction
W̃qω does not depend on the form of decoupling. As it is shown
in Eq. (A16), both UV – and V – decoupling forms lead to the
same result Uq − Uω = Vq − �ω for the interaction accounted
beyond the dynamical mean-field level in the DB theory. It is
then easy to see that the DMFT+GW theory in a V – decou-
pling form excludes the impurity interaction in a proper way,
since the dual renormalized interaction (A16) in the case �ω =
0 has exactly the form of V – decoupling. Due to the problems
arising in the EDMFT+GW approach in the UV – decoupling
form mentioned in Appendix B we take the renormalized
interaction for the EDMFT + GW(γ ) theories in the form of
V – decoupling for the later comparison with DB results.

C. Local vertex corrections in DB method

To add vertex corrections to the DB − GW approach,
one can take the second-order diagrams for the dual self-
energy �̃GWγ = �̄

(2)
kν (25) and polarization operator �̃GWγ =

�̄
(2)
qω (26), which are dressed with the full local impurity

fermion-boson vertices γνω as

�̃
GWγ

kν = −
∑
qω

γνωG̃k+q,ν+ωW̃qωγν+ω,−ω, (57)

�̃GWγ
qω = 2

∑
kν

γνωG̃k+q,ν+ωG̃kνγν+ω,−ω. (58)

Similarly to the DB − GW approach we neglect the denomi-
nator in Eqs. (39) and (40) and repeat all calculations in the
same way.

The four approaches are summarized in Fig. 5, showing the
self-energy and polarization operator diagram, where square
brackets [. . .]nloc denote the exclusion of the local part. The
computational recipes for all the EDMFT++ theories is shown
in Fig. 6.

IV. NUMERICAL RESULTS

To test the EDMFT++ schemes, we study the charge-order
transition in the square lattice Hubbard model, a popular
testing ground for extensions of EDMFT [16,17,30]. Here
we show calculations where first �ν and �ω are determined
self-consistently on the EMDFT level for all schemes. Then,
the nonlocal correlation effects are included. Having the same
impurity problem as the starting point for all approaches allows
us to compare clearly the effect from the extensions only. We
use t = 1/4, β = 50, and a 32 × 32 lattice. The resulting phase
boundary between the charge-ordered phase (CO) and the
Fermi liquid (FL), determined in the same way as in Ref. [30],
is shown in Fig. 7. The checkerboard CO phase is characterized
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FIG. 5. Self-energy and polarization operator for EDMFT++
approaches. The square brackets [. . .]nloc denote exclusion of the
local part. DMFT + GW is not listed here, it has the same diagrams
as EDMFT + GW and only differs in their choice of Uω.

by a divergent charge susceptibility at the wave vector q =
(π,π ). The phase boundary may therefore be located by
looking for zeros of the inversed susceptibility X−1

ω=0,q=(π,π).
Note that the renormalized interaction Wqω in DMFT + GW,
EDMFT + GW, and EDMFT + GW γ approaches is taken in
the form of the V – decoupling as discussed above.

Since ordering is unfavorable for the interaction energy for
V < U/4, the true phase boundary is expected to be above the
V = U/4 line. Indeed, the full DB result is above this line [30].
In all other EDMFT++ approximations with fewer correlation
effects, the phase transition occurs at smaller V . The DB −
GWγ approximation performs best in this respect, and is close
to the DB phase boundary for all values of U . The two approx-
imations that include local vertex corrections via γνω perform
better than their counterparts without, and both DB-based
approaches outperform their EDMFT + GW counterpart.

At U = 0, we expect the random phase approximation
(RPA) to give a reasonable prediction for the phase bound-
ary. The RPA limit is recovered by all shown EDMFT++
approaches, but already at relatively small U = 0.5, strong
differences between the methods become clear.

In the opposite limit of large U , EDMFT itself starts to
give an accurate phase boundary, since it accounts for all local
effects and those are most important at large U . Both DB-based
approaches converge to EDMFT at U = 2.5, whereas both
EDMFT + GW approaches give a phase boundary at the same,
slightly smaller V .

We even observe that DMFT + GW performs better than
EDMFT + GW, although it is simpler. Although DMFT +
GW contains fewer correlation effects than EDMFT + GW,
it is free from double-counting by construction. This clearly
shows the huge role that double-counting can play. On the other
hand, comparison of DMFT + GW and DB − GW schemes
confirms the fact that inclusion of bosonic correlations already
on the impurity level is also very important and provides
the better starting point for extending dynamical mean-field
theory.

In Fig. 8, we show the polarization operator corrections
�̄qω at high-symmetry q points, according to the EDMFT +
GW(γ ) and DB − GW(γ ) approaches. The results of the
two approaches DB − GW and EDMFT + GW, that do not
take into account the frequency dependent vertex function
γ , are similar. The presence of the full local three-point

FIG. 6. The recipe to construct an EDMFT++ theory. DMFT +
GW is obtained by taking Uω = U instead of determining it self-
consistently.

vertex function in the diagrams significantly changes the
results [30]. Moreover, the inclusion of the vertex function
results in the different behavior of the polarization operator of
the DB − GWγ and EDMFT + GW γ approaches. The dual
contribution to the polarization operator in this case is larger.
Therefore, using the dual way one excludes fewer contributions
from the diagrams, than in the case of the EDMFT + +
theories. Thus, the main difference in the approaches lies in
their description of the collective excitations and comes from
the different ways of treating the double-counting problem.

The fermion-boson vertex exhibits less structure as the
metallicity of the system is increased and becomes mostly
flat as the phase boundary to the CO phase is approached [30].
The influence of nonlocal interaction V on the three-point
vertex function γνω is shown in Fig. 9. The effects of the
three-leg vertex are also visible in the nonlocal part of the
polarization operator in the difference between DB − GW

FIG. 7. U − V phase diagram in EDMFT, DB and EDMFT++
theories at inverse temperature β = 50. The dashed line shows V =
U/4; the dot at U = 0 shows the starting point of RPA data. CO and
FL denote charge-ordered and Fermi-liquid metallic phases, respec-
tively. The EDMFT and DB data are taken from [30]; EDMFT + GW
data practically coincides with results shown in [15,16] papers.
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FIG. 8. Frequency dependence of nonlocal Re �̄qω for momentum k = (0,0), k = (π,π ) for on-site interaction U = 2.3 and the nearest-
neighbor interaction V = 0.2.

and DB − GWγ (or between EDMFT + GW and EDMFT +
GW γ ) approaches (see Fig. 8).

V. CONCLUSIONS

We have presented a recipe to create approximations beyond
EDMFT that take into account nonlocal correlation effects
while simultaneously avoiding double-counting issues. By
properly including nonlocality we see an improvement in
the phase boundary between the charge-ordered phase and
the Fermi liquid. Even in weakly and moderately inter-
acting systems, the phase boundary is shifted significantly
upwards compared to traditional EDMFT + GW. In fact,
EDMFT+GW is even improved upon by DMFT + GW, which
neglects the effect of nonlocal interactions on the impurity
model but does avoid double-containing. This allows us to
study the physics in a larger part of parameter space, where
EDMFT + GW has undergone a spurious transition. This
is important for accurately determining the charge-ordering
transition in real materials and in surface systems.

The approaches presented here work without requiring
the computationally expensive full two-particle vertex. The
frequency dependence of the much simpler fermion-boson
vertex already contains most of the relevant physics, and
including it via DB − GWγ gives a phase boundary close
to the full DB result. Without access to the fermion-boson
vertex, deviations are bigger. In both cases, however, the dual
way of treating the double-counting problem greatly improves
the results.

The ladder Dual Boson approach can be derived from
the dual functional, that automatically solves the complicated
issue of the conservation laws [31]. For the future, it would
be useful to obtain a similar functional description for the
approximated theories presented in this work.
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APPENDIX A: DUAL TRANSFORMATIONS

The dual transformations of the nonlocal part of the action
Srem can be made in the same way as in previous works on the
DB approach. In order to define the three-point vertex in the
TRILEX way, here we introduce a different rescaling of the
dual bosonic fields. The partition function of our problem is
given by

Z =
∫

D[c∗,c] e−S, (A1)

where the action S is given by (2). Performing the Hubbard-
Stratonovich transformations one can introduce the new dual
variables f ∗,f,φ,

e

∑
kνσ

c∗
kνσ [�νσ −εk]ckνσ

= Df

∫
D[f ∗,f ] e

− ∑
kνσ

{f ∗
kνσ [�νσ −εk]−1fkνσ +c∗

νσ fνσ +f ∗
νσ cνσ }

,

e

1
2

∑
qω

ρ∗
qω[�ω−Vq]ρqω

= Db

∫
D[φ] e

− 1
2

∑
qω

{φ∗
qω[�ω−Vq]−1φqω+ρ∗

ωφω+φ∗
ωρω}

. (A2)

Terms Df = det[�νσ − εk] and D−1
b = √

det[�ω − Vq] can
be neglected because they do not contribute to expectation
values. Rescaling the fermionic fields fkνσ as fkνσ g−1

νσ , the
bosonic fields φqω as φqωα−1

ω , where αω = (1 + Uωχω), and
integrating out the original degrees of freedom c∗ and c we
arrive at the dual action,

S̃ = −
∑
kν

f ∗
kνG̃

−1
0 fkν − 1

2

∑
qω

φ∗
qωW̃−1

0 φqω + Ṽ , (A3)
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FIG. 9. Local three-point vertex function γνω for two bosonic frequencies ωm = 2mπ/β with m = 0 and m = 6 for different values of
nearest-neighbor interaction V and local interaction U = 1.5 (top line) and U = 2.3 (bottom line).

with the bare dual propagators,

G̃0 = [
g−1

ν + �ν − εk
]−1 − gν = GE − gν, (A4)

W̃0 = αω[[Uq − Uω]−1 − χω]−1αω = WE − Wω, (A5)

and the dual interaction term Ṽ . The explicit form of the
dual interaction can be obtained by expanding the c∗ and
c dependent part of the partition function in an infinite
series and integrating out these degrees of freedom as
follows:

∫
e
− ∑

νω

{
c∗
νg

−1
ν fν +f ∗

ν g−1
ν cν+ρ∗

ωα−1
ω φω+φ∗

ωα−1
ω ρω

}
,

e−Simp[c∗,c] D[c∗,c]

= f ∗
ν1

fν2
〈cν1

c∗
ν2

〉g−1
ν1

g−1
ν2

+ 1

2
φ∗

ω1
φω2

〈ρω1
ρ∗

ω2
〉α−1

ω1
α−1

ω2

−f ∗
ν1

fν2
φ∗

ω3
〈cν1

c∗
ν2

ρω3
〉g−1

ν1
g−1

ν2
α−1

ω3

+1

4
f ∗

ν1
f ∗

ν2
fν3

fν4
〈cν1

cν2
c∗
ν3

c∗
ν4

〉g−1
ν1

g−1
ν2

g−1
ν3

g−1
ν4

+ . . .

= −f ∗
ν g−1

ν fν − 1

2
φ∗

ωα−1
ω χωα−1

ω φω

−f ∗
ν1

fν2
φ∗

ω3
〈cν1

c∗
ν2

ρω3
〉g−1

ν1
g−1

ν2
α−1

ω3

+1

4
f ∗

ν1
f ∗

ν2
fν3

fν4
〈cν1

cν2
c∗
ν3

c∗
ν4

〉g−1
ν1

g−1
ν2

g−1
ν3

g−1
ν4

+ . . .

= e
−
{

f ∗
ν g−1

ν fν + 1
2 φ∗

ωα−1
ω χωα−1

ω φω+Ṽ

}
. (A6)

So the dual interaction has the form of an infinite expansion
off the full vertices of the local impurity problem,

Ṽ = f ∗
ν1

fν2
φ∗

ω3
〈cν1

c∗
ν2

ρω3
〉g−1

ν1
g−1

ν2
α−1

ω3

− 1

4
f ∗

ν1
f ∗

ν2
fν3

fν4
g−1

ν1
g−1

ν2
g−1

ν3
g−1

ν4

{〈cν1
cν2

c∗
ν3

c∗
ν4

〉
− 〈cν1

c∗
ν4

〉〈cν2
c∗
ν3

〉 + 〈cν1
c∗
ν3

〉〈cν2
c∗
ν4

〉} + . . . . (A7)

Here we define the three- and four-point vertex functions as
(γνω is the shorthand notation for the γ 2,1

νω ),

γνω = g−1
ν g−1

ν+ωα−1
ω 〈cνc

∗
ν+ωρω〉, (A8)

γ
4,0
νν ′ω = g−1

ν g−1
ν ′ g−1

ν ′−ωg−1
ν+ω

× [〈cνcν ′c
∗
ν ′−ωc∗

ν+ω〉 − gνgν ′(δω − δν ′,ν+ω)],(A9)

with the simple connection between them,

γνω = α−1
ω

∑
ν ′

[
1 − γ

4,0
νν ′ωgν ′gν ′−ω

]
. (A10)
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In the weakly interacting limit, namely U → 0, the renor-
malization factor αω goes to unity and the four-point vertex
γ 4,0 is zero, as detailed in previous works [29–31] on the
DB approach. Then, the three-point vertex can be reduced to
its bare form γ0 = 1. Frequency dependence of the full local
three-point vertex function γνω and the influence of nonlocal
interaction V is shown in Fig. 9.

Then, the two first terms in Ṽ are given by

Ṽ = γνω f ∗
ν fν+ωφ∗

ω + 1

4
γ

4,0
νν ′ω f ∗

ν f ∗
ν ′fν+ωfν ′−ω. (A11)

The dual Green’s function G̃kν = −〈fkνf
∗
kν〉 and renormalized

dual interaction W̃qω = −〈φqωφ∗
qω〉, as well as dual self-

energy �̃kν and polarization operator �̃qω, can be obtained
diagrammatically [29–31]. These dual quantities have the
usual connection,

G̃−1
kν = G̃−1

0 − �̃kν, (A12)

W̃−1
qω = W̃−1

0 − �̃qω. (A13)

Finally, lattice Green’s function Gkν and susceptibility
Xqω can be expressed in terms of dual propagators via exact
relations,

Gkν = −[εk − �ν]−1

+ [εk − �ν]−1 g−1
ν G̃kν g−1

ν [ εk − �ν]−1, (A14)

Xqω = −[Uq − Uω]−1

+ [Uq − Uω]−1α−1
ω W̃qωα−1

ω [Uq − Uω]−1. (A15)

One can also rewrite the last relation and obtain the relation
for the full dual renormalized interaction,

α−1
ω W̃qωα−1

ω = [Uq − Uω] + [Uq − Uω]Xqω[Uq − Uω],

(A16)

to show that the dual propagator W̃qω is evidently a renor-
malized interaction in the nonlocal part of the action, where
the impurity interaction is excluded on the level of the
bare interaction. It is worth mentioning, that for the case of
�ω = 0, which corresponds to the DMFT theory as a basis,
the renormalized interaction is exactly that of the usual V –
decoupling.

APPENDIX B: COMPARISON OF THE DIFFERENT
DECOUPLING SCHEMES WITH THE DB APPROACH

As a consequence of the exact dual transformations pre-
sented in Appendix A, the renormalized interaction introduced
beyond the DMFT when the bosonic hybridization function
�ω is equal to zero (i.e., Uω = U ) should be taken in the form
of V – decoupling (A16). Contrary to DMFT, the impurity
model in the EDMFT approach contains nonzero bosonic
retarded interaction �ω, thus the renormalized interaction in
EDMFT++ theories has neither UV –, nor V – decoupling
form. In this case the bare nonlocal interaction Uq − Uω for
small �ω (i.e., Uω � U ) is closer to Vq than to Uq = U + Vq,
and therefore in this paper we take Wq in the form of V –
decoupling for all EDMFT++ theories.

One more argument to avoid treating the renormalized
interaction in the UV – decoupling form is the fact that in
this case EDMFT+GW reproduces the results of the GW
approach in the region close to the phase boundary. Indeed, the
self-energy and polarization operator for the GW approach are
given by Eqs. (14) and (15), respectively. The EDMFT + GW
approach uses only nonlocal parts of these diagrams beyond
the dynamical mean-field solution. They can be written as
follows:

�̄E+GW
kν = −

∑
qω

ḠE+GW
k+q,ν+ωW̄E+GW

qω , (B1)

�̄E+GW
qω = 2

∑
kν

ḠE+GW
k+q,ν+ω ḠE+GW

kν , (B2)

where ḠE+GW
kν = Gkν − gν , W̄E+GW

qω = Wqω − Wω are nonlo-
cal parts of the full lattice Green’s function and renormalized
interaction, respectively. Then, the full self-energy and polar-
ization operator of the lattice problem can be written as

�kν = �imp + �̄E+GW
kν , (B3)

�qω = �imp + �̄E+GW
qω , (B4)

where

�imp = −
∑

ω

gν+ωWωγνω, (B5)

�imp = 2
∑

ν

gν+ω gν γνω, (B6)

are the exact self-energy and polarization operator of the
impurity problem written in the Hedin form. Then, one can
rewrite the full lattice self-energy and polarization operator as

�kν = −
∑
qω

Gk+q,ν+ωWqω −
∑

ω

gν+ωWω(γνω − 1)

= �GW
kν −

∑
ω

gν+ωWω(γνω − 1), (B7)

�qω = 2
∑
kν

Gk+q,ν+ω Gkν + 2
∑

ν

gν+ωgν(γνω − 1)

= �GW
qω + 2

∑
ν

gν+ωgν(γνω − 1). (B8)

Therefore, in the region where the value of the three-point
vertex γνω is close to the value of the bare three-point vertex
γ0 = 1, the EDMFT + GW approach reproduces the result
of the GW method. Thus, the contribution of the exactly
solvable impurity model in this region is lost. It happens,
because one cancels the very big local contribution from the
GW diagrams in order to avoid the double-counting problem,
and then this local contribution suppresses the contribution of
the local impurity model. It turns out that the EDMFT + GW
approach cancels too much from the diagrams introduced
beyond the dynamical mean-field level, and treating of the
double-counting problem can be done in a better way.

To see this, one can compare the dual way of exclusion
of the double-counting with the UV – decoupling scheme.
Since the inner self-consistency for the diagrams beyond the
dynamic mean-field level is used, it is hard to compare the
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resulting diagrams of these two approaches. Nevertheless, let
us consider the polarization operator in the first iteration, when
only the bare EDMFT Green’s functions enter the diagrams.
Studying the first iteration is sufficient since the nonlocal
self-energy �̃kν is small in our region of interest. Then, one
can see, that the polarization operator for EDMFT+GW and
DB − GW has the same form,

�̃0
qω = 2

∑
kν

G̃0 G̃0, (B9)

where G̃0 = GE − gν . Then, one can obtain for the difference
between the renormalized interactions used in EDMFT + GW
and DB − GW the following relation:

[Wqω − Wω] − W̃qω

= WE

1 − �̃0
qωWE

− W̃0

1 − �̃0
qωW̃0

− Wω

= Wω

[
1 − �̃0

qωW̃0
]−1[

1 − �̃0
qωWE

]−1 − Wω

= Wω�̃0
qω

[
W̃qω + Wqω + W̃qω�̃0

qωWqω

]
. (B10)

Therefore, the self-energy (B1) in the form of UV – decoupling
additionally to the nonlocal dual contribution accounts for
some diagrams that have local renormalized interaction Wω

in their structure. In the Dual Boson formalism all local
propagators are gathered in the local vertex functions of the
impurity problem, including the local renormalized interaction
Wω, which is a part of the local four-point vertex γ 4,0. For
example, the first term in the right-hand side of Eq. (B10)
gives the following contribution to the self-energy,

(B11)

which is a part of the dual diagram for the self-energy shown in
Fig. 1(a). The second term in the right-hand side of Eq. (B10),
when one takes only the local part of the EDMFT renormalized
interaction in Eq. (13), namely Wqω = WE

1−�̃0
qωWE

∼ Wω

1−�̃0
qωWω

, is

then equal to

(B12)

which is again a part of the dual diagram for the self-energy
shown in Fig. 1(b). This fact leads to two important problems
in the EDMFT + GW approach. First of all, these additional
self-energy diagrams in case of UV – decoupling presented
above are very selective and account only for the local
renormalized interactionWω instead of the full local four-point
vertex functions γ 4,0, as the DB approach does. This selective
choice is not well-controlled and may result in over- or
underestimation of interaction effects. Also, the existence of
the local propagators as a part of the nonlocal interaction
shows that the EDMFT + GW approach in the form of UV –

decoupling is not able to separate local and nonlocal degrees
of freedom in a proper way. This leads, in particular, to the
double-counting problem in the next-order nonlocal diagrams
introduced beyond EDMFT. Indeed, if one does not restrict
himself to the simplest GW diagram accounted beyond the
dynamical mean-field level and additionally includes the four-
point vertex functions γ 4,0 in the diagrams for the self-energy
[for example, the diagrams shown in Fig. 1(b)], then, as it
was shown in Eqs. (B11)–(B12), the GW diagram (B1) for the
self-energy would have contributions with the local Wω, that
would already be accounted for in these additional diagrams
with the local four-point vertices.

Let us study what happens in the region, where the impurity
renormalized interaction Wω gives the main contribution
in the full local four-point vertex γ 4,0. In this region the
EDMFT + GW solution should be close to the Dual Boson
ladder approximation with the self-energy and polarization
operator diagrams shown in Figs. 1(a) and 1(b). Substituting
“−Wω” for the four-point vertex γ 4,0 in Eq. (A10) and using
Eq. (B6) and the relation α−1 = 1 − �imp Uω one can get the
trivial solution

∑
ν gν+ωgν(γνω − 1) = 0. Therefore, as it was

shown in Eqs. (B7) and (B8), in this region EDMFT + GW
in the UV – decoupling form reproduces the result of the GW
approach. In the other regions, where the bare vertex γ0 = 1
does not give the main contribution to the full three-point
vertex γνω, EDMFT + GW shows a result different from
the GW approach, but unfortunately, it is not correct to
approximate the full local vertex γ 4,0 by the local Wω there.
As it was pointed out above, one of the advantages of the DB
formalism is that the full impurity vertices, in particular the
full four-point vertex γ 4,0, are used in the dual diagrams for
the self-energy and polarization operator. This full vertex γ 4,0

is small and consists of the two large contributions: reducible
(γ 4,0

red ) and irreducible (−γWωγ ) with respect to renormalized
interaction Wω. These two contributions compensate each
other as shown in Eq. (47). If one accounts for only one large
irreducible contribution to the vertex function, it leads to an
incorrect description of the collective excitations and problems
mentioned above.

Finally, one can rewrite Eq. (B10) as follows:

W̃qω = Wqω − Wω

[
1 + �̃0

qωW̃qω + �̃0
qωWqω

+ �̃0
qωW̃qω�̃0

qωWqω

]
, (B13)

and see that DB excludes not the full local renormalized
interaction Wω of the impurity model from the full lattice
interaction Wqω, but the local interaction, that is renormalized
by nonlocal polarization and nonlocal interactions Wqω and
W̃qω. Therefore, the DB approach, which is free from the
double-counting problem by construction, excludes fewer
contributions from the full lattice renormalized interaction
than the EDMFT + GW approach, and effects of the impurity
model are not suppressed in our calculations.
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